Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model
We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the su...
Saved in:
| Published in: | Applicable analysis Vol. 102; no. 12; pp. 3463 - 3475 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
13.08.2023
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0003-6811, 1563-504X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the susceptible individuals. We investigate the mathematical properties of the model. We obtain the global asymptotic stability of the two steady states: disease-free and endemic. We construct appropriate Lyapunov functionals where the basic reproduction number appears as a threshold for the global asymptotic behavior of the solution between disease extinction and persistence. |
|---|---|
| AbstractList | We investigate a system of distributed delay differential–difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the susceptible individuals. We investigate the mathematical properties of the model. We obtain the global asymptotic stability of the two steady states: disease-free and endemic. We construct appropriate Lyapunov functionals where the basic reproduction number appears as a threshold for the global asymptotic behavior of the solution between disease extinction and persistence. We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary protected population dynamics. A nonlocal term (distributed delay) appears in this model to describe the temporary protection period of the susceptible individuals. We investigate mathematical properties of the model. We obtain the global asymptotic stability of the two steady states: disease-free and endemic. We construct appropriate Lyapunov functionals where the basic reproduction number appears as a threshold for the global asymptotic behavior of the solution between disease extinction and persistence. |
| Author | Kuniya, Toshikazu Adimy, Mostafa Chekroun, Abdennasser |
| Author_xml | – sequence: 1 givenname: Mostafa surname: Adimy fullname: Adimy, Mostafa organization: Inria – sequence: 2 givenname: Abdennasser orcidid: 0000-0001-9245-3274 surname: Chekroun fullname: Chekroun, Abdennasser email: chekroun@math.univ-lyon1.fr, abdennasser.chekroun@gmail.com organization: Université de Tlemcen – sequence: 3 givenname: Toshikazu surname: Kuniya fullname: Kuniya, Toshikazu organization: Kobe University |
| BackLink | https://hal.science/hal-03683861$$DView record in HAL |
| BookMark | eNqFkU1rFTEUhoO04G3rTxACrlxMm4_JTC5uLKW2pVcKVcFdOJMPTJuZXJNcZf69GW7rogvdJOTwvC-HPEfoYIqTRegtJaeUSHJGCOGdpPSUEcbq0Qsu2Cu0oqLjjSDt9wO0WphmgV6jo5wfCKFMim6FylWIAwQMeR63JRavcS4w-ODLjF1MGLDxuSQ_7Io12NgAc504Z5OdiofQPD-0xXnOxY44upq6tWkE_dh81rd2MsnrR_zl5h6PsVacoEMHIds3T_cx-vbp8uvFdbO5u7q5ON80upWiNHqgILVbQ0dZTziFXveM9-2wpkKblhgi5DBYZhg42kkmtBYtddQ4rSW3a36M3u97f0BQ2-RHSLOK4NX1-UYts-XfuOzoL1rZd3t2m-LPnc1FPcRdmup6ikkuujXpaV8psad0ijkn6_7WUqIWGepZhlpkqCcZNffhRU77AsXHqSTw4b_pj_u0n6qSEX7HFIwqMIeYXIJJ-6z4vyv-AJWEpMQ |
| CitedBy_id | crossref_primary_10_1007_s12346_024_01093_x |
| Cites_doi | 10.1080/00036811.2018.1551997 10.1007/BF00169563 10.1016/j.automatica.2008.10.024 10.1007/s00285-015-0918-8 10.1007/978-3-319-72122-4 10.3934/mbe.2020067 10.1016/0022-0396(70)90114-2 10.1016/S0362-546X(01)00528-4 10.3934/dcdsb.2015.20.2765 10.3934/mbe.2010.7.837 10.1080/00036811.2016.1139698 10.1007/s11768-010-8178-z 10.1016/j.nonrwa.2012.01.007 10.1016/j.jmaa.2021.125464 10.1007/BF02413530 10.1016/j.jmaa.2009.09.017 10.1007/978-1-4612-4342-7 10.1016/S0362-546X(99)00138-8 10.1016/j.cnsns.2014.07.005 10.1016/j.nonrwa.2008.10.014 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 1XC VOOES |
| DOI | 10.1080/00036811.2022.2075352 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1563-504X |
| EndPage | 3475 |
| ExternalDocumentID | oai:HAL:hal-03683861v1 10_1080_00036811_2022_2075352 2075352 |
| Genre | Research Article |
| GroupedDBID | --Z -~X .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABUFD ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ~S~ AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 1XC VOOES |
| ID | FETCH-LOGICAL-c485t-cb1a8cf9a6127031a7c72374b915cd40d058bbe2d2af16825cc541f1dfcc83e93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795717300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-6811 |
| IngestDate | Tue Oct 14 06:53:17 EDT 2025 Wed Aug 13 05:54:11 EDT 2025 Tue Nov 18 22:16:26 EST 2025 Sat Nov 29 05:34:59 EST 2025 Mon Oct 20 23:46:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | 92D30 34K60 37N25 Lyapunov-Krasovskii functional Local and global asymptotic stability Delay differential-difference system SIR epidemic model |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-cb1a8cf9a6127031a7c72374b915cd40d058bbe2d2af16825cc541f1dfcc83e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9245-3274 0000-0003-2732-3830 |
| OpenAccessLink | https://hal.science/hal-03683861 |
| PQID | 2835690717 |
| PQPubID | 53162 |
| PageCount | 13 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03683861v1 proquest_journals_2835690717 informaworld_taylorfrancis_310_1080_00036811_2022_2075352 crossref_citationtrail_10_1080_00036811_2022_2075352 crossref_primary_10_1080_00036811_2022_2075352 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-13 |
| PublicationDateYYYYMMDD | 2023-08-13 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Applicable analysis |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0020 CIT0001 CIT0012 CIT0011 CIT0003 CIT0014 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0012 doi: 10.1080/00036811.2018.1551997 – ident: CIT0005 doi: 10.1007/BF00169563 – ident: CIT0017 doi: 10.1016/j.automatica.2008.10.024 – ident: CIT0018 doi: 10.1007/s00285-015-0918-8 – ident: CIT0019 doi: 10.1007/978-3-319-72122-4 – ident: CIT0001 doi: 10.3934/mbe.2020067 – ident: CIT0016 doi: 10.1016/0022-0396(70)90114-2 – ident: CIT0006 doi: 10.1016/S0362-546X(01)00528-4 – ident: CIT0003 doi: 10.3934/dcdsb.2015.20.2765 – ident: CIT0009 doi: 10.3934/mbe.2010.7.837 – ident: CIT0004 doi: 10.1080/00036811.2016.1139698 – ident: CIT0020 doi: 10.1007/s11768-010-8178-z – ident: CIT0011 doi: 10.1016/j.nonrwa.2012.01.007 – ident: CIT0002 doi: 10.1016/j.jmaa.2021.125464 – ident: CIT0014 doi: 10.1007/BF02413530 – ident: CIT0010 doi: 10.1016/j.jmaa.2009.09.017 – ident: CIT0015 doi: 10.1007/978-1-4612-4342-7 – ident: CIT0007 doi: 10.1016/S0362-546X(99)00138-8 – ident: CIT0013 doi: 10.1016/j.cnsns.2014.07.005 – ident: CIT0008 doi: 10.1016/j.nonrwa.2008.10.014 |
| SSID | ssj0012856 |
| Score | 2.3001869 |
| Snippet | We investigate a system of distributed delay differential-difference equations describing an epidemic model of susceptible, infected, recovered and temporary... We investigate a system of distributed delay differential–difference equations describing an epidemic model of susceptible, infected, recovered and temporary... |
| SourceID | hal proquest crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3463 |
| SubjectTerms | Asymptotic properties Delay delay differential-difference system Difference equations Differential equations Dynamical Systems local and global asymptotic stability Lyapunov-Krasovskii functional Mathematics SIR epidemic model Stability |
| Title | Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00036811.2022.2075352 https://www.proquest.com/docview/2835690717 https://hal.science/hal-03683861 |
| Volume | 102 |
| WOSCitedRecordID | wos000795717300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1563-504X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012856 issn: 0003-6811 databaseCode: TFW dateStart: 19710401 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxQxFG6UeICDKEJcRNIYr5XttDPtHIlxg8HdGMXIrenPQIDdzc5Asv-9fZ3OBGMIBzy26Xsz02nf62tfvw-hj9HteC0CJwX3jPAgKZGs4sTXhQljx0theCKbELOZPD-vv-dswianVUIMHTqgiGSrYXJr0_QZcUcJREVSiO4KuEslAKIkWuHo-mFqnk1-D-cIhUz8rSBBQKS_w_OQlr-80_OLlBt5H8H0H4ud3NBk-z98wCv0Mq9B8XE3aF6jZ36-g7bzehTn2d7soK3pgOnavEFtRw-AdbO-WbaLWInjyjLl1q5xfHessQMUXiDQimoAfXKNe_6VaEeuSV-wHncA0ngRotQpOAd7RaY2Wn0HMP3459cfOHH07KJfky9nn09I5mwglsuyJdZQLW2odQVH2oxqYUXBBDc1La3jYzcupTG-cIUOtIrhqbUlp4G6YK1kvmZ7aGO-mPu3CIu4dKU6RCUucF252lvDfR0YhSjThBHi_b9SNgOaA6_GtaID7mnXzwr6WeV-HqFPg9iyQ_R4TOBDHAhDW8DjPjn-pqAOWjNZ0Ts6QvX9caLatN8SOnIUxR55wEE_qFS2II0CHDzYuaBi_wmq36HNWGSwCU7ZAdpoV7f-PXph79rLZnWY5sofD68Njw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VqNT2AC1t1S3QWlWvbtexkzhHVLFaxO4eYFG5WY4foirdRSRF2n9fj_PQogpxgGMczyRxxjPj1_cBfA1hx-ncC5oIx6nwklHJM0FdkZR-aEWalyKSTeSzmby4KNbPwuC2ShxD-wYoIvpq7Nw4Gd1tifseUVQkw-FdgoepcsQo2YCtNMRaxM-fj372KwmJjAyuKEJRpjvFc5-aO_Fp4zLujlzHMP3PZ8dANNp5ik94DdttGkoOG7t5A8_cYhd22pSUtB2-2oVX0x7WtXoLdcMQQHS1-nNdL0MhCcll3F67IuHliSYWgXiRQyuoQQDKFekoWIIruaLdhXGkwZAmSx-kTjA-mN90aoLjt4jUT86OT0mk6XkH56Oj-Y8xbWkbqBEyrakpmZbGFzrDVW3OdG7yJPyYsmCpsWJoh6ksS5fYRHuWhRGqMalgnllvjOSu4O9hc7FcuA9A8pC9Mu2DEuuFzmzhTClc4TnDgWbpByC6n6VMi2mO1BpXivXQp007K2xn1bbzAL71YtcNqMdDAl-CJfR1EZJ7fDhRWIa1uczYLRtAsW4oqo5TLr7hR1H8gQfsd1alWidSKYTCw8kLln98hOrP8GI8n07U5Hh2sgcvwy2Oc-KM78NmffPXHcBzc1v_qm4-xY7zDyLAEbk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3RghAcKBQqFgpYiKthHTuxc6yAVau2qwqK6M1y_CEQ7e6qCZX23-NxnKgIoR7gGMfjJM54PGOP3wN4E6cdb2QQtBCeUxEUo4pXgvq6aMLUiVI2IpFNyPlcnZ3VJzmbsM1plRhDhx4oItlqHNwrF4aMuHcJREUxjO4KPEslEaJkA25H17lCJT-dfR03EgqVCFxRhKLMcIjnb838Nj1tfEvJkdchTP8w2Wkemm39hy94CA-yE0r2eq15BLf8Yhu2skNK8nBvt-H-8Qjq2j6GrucHIKZdX6y6ZSwk0bVMybVrEt-dGOIQhhcZtGIzCD-5JgMBSzQk53S4sJ70CNJkGaLUIc4O9gc9ttHsO8TpJ58PPpFE0vMEvsw-nr7fp5m0gVqhyo7ahhllQ20q3NPmzEgrCy5FU7PSOjF101I1jS9cYQKrYnxqbSlYYC5Yq7iv-Q5sLpYL_xSIjL4rMyE24oIwlau9bYSvA2cYZjZhAmL4V9pmRHMk1jjXbAQ-7ftZYz_r3M8TeDuKrXpIj5sEXkdFGOsiIPf-3pHGMqzNVcWu2ATq63qiu7TgEnp2FM1veMDuoFQ6m5BWIxAeLl0w-ewfmn4Fd08-zPTRwfzwOdyLdzguiDO-C5vd5U__Au7Yq-57e_kyDZtf0RkQaw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+asymptotic+stability+for+a+distributed+delay+differential%E2%80%93difference+system+of+a+Kermack%E2%80%93McKendrick+SIR+model&rft.jtitle=Applicable+analysis&rft.au=Adimy%2C+Mostafa&rft.au=Chekroun%2C+Abdennasser&rft.au=Kuniya%2C+Toshikazu&rft.date=2023-08-13&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=102&rft.issue=12&rft.spage=3463&rft.epage=3475&rft_id=info:doi/10.1080%2F00036811.2022.2075352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00036811_2022_2075352 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon |