Inverse mapping of quantum properties to structures for chemical space of small organic molecules

Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 15; číslo 1; s. 6061 - 14
Hlavní autoři: Fallani, Alessio, Medrano Sandonas, Leonardo, Tkatchenko, Alexandre
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 18.07.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces. A mapping linking a desired molecular property to a 3D structure would facilitate molecular design. Here, the authors parameterize the chemical space of small organic molecules using quantum properties via machine learning, providing insights into targeted molecular design.
AbstractList Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces. A mapping linking a desired molecular property to a 3D structure would facilitate molecular design. Here, the authors parameterize the chemical space of small organic molecules using quantum properties via machine learning, providing insights into targeted molecular design.
Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.
Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.A mapping linking a desired molecular property to a 3D structure would facilitate molecular design. Here, the authors parameterize the chemical space of small organic molecules using quantum properties via machine learning, providing insights into targeted molecular design.
Abstract Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.
Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for "Quantum Inverse Mapping"), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for "Quantum Inverse Mapping"), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.
ArticleNumber 6061
Author Medrano Sandonas, Leonardo
Tkatchenko, Alexandre
Fallani, Alessio
Author_xml – sequence: 1
  givenname: Alessio
  orcidid: 0009-0001-7857-5010
  surname: Fallani
  fullname: Fallani, Alessio
  email: alessio.fallani.001@student.uni.lu
  organization: Department of Physics and Materials Science, University of Luxembourg
– sequence: 2
  givenname: Leonardo
  orcidid: 0000-0002-7673-3142
  surname: Medrano Sandonas
  fullname: Medrano Sandonas, Leonardo
  email: leonardoms20@gmail.com
  organization: Department of Physics and Materials Science, University of Luxembourg, Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden
– sequence: 3
  givenname: Alexandre
  orcidid: 0000-0002-1012-4854
  surname: Tkatchenko
  fullname: Tkatchenko, Alexandre
  email: alexandre.tkatchenko@uni.lu
  organization: Department of Physics and Materials Science, University of Luxembourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39025883$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhiNURC_0BVigSGzYBHxL4ixRBXSkSmxgbR3bJ4NHiZ3aDhJvj2dSCuqi3vjY-v5z-y-rMx88VtUbSj5QwuXHJKjo-oYw0bREENrQF9UFI6IEPeNn_8Xn1XVKB1IOH6gU4lV1zgfCWin5RQU7_wtjwnqGZXF-X4exvl_B53WulxgWjNlhqnOoU46ryWssrzHE2vzE2RmY6rSAwaMszTBNdYh78M7Uc5jQrBOm19XLEaaE1w_3VfXjy-fvN7fN3bevu5tPd40Rss2N4a0cgOLAidQ9IdBpxgnpusHaAaGTgiHVhILou14PDIS2Vo-W6tbQwTJ-Ve22vDbAQS3RzRB_qwBOnT5KXwrKMGZCZQmC7iVnWloBRAMOrYURuBl7tIAl1_stV1nB_Yopq9klg9MEHsOaVOmRdawv-yzouyfoIazRl0lPlOC8l22h3j5Qq57RPrb314gCsA0wMaQUcXxEKFFHw9VmuCqGq5Ph6lhbPhEZlyG74HMENz0v5Zs0lTp-j_Ff28-o_gCwyb-X
CitedBy_id crossref_primary_10_1021_jacsau_5c00242
crossref_primary_10_1021_acs_jcim_5c00347
crossref_primary_10_1002_adts_202400479
crossref_primary_10_1002_jcc_70038
crossref_primary_10_1002_cphc_202500353
crossref_primary_10_1016_j_algal_2025_104055
crossref_primary_10_1039_D5CP00373C
crossref_primary_10_1002_adfm_202507734
crossref_primary_10_1016_j_matdes_2024_113453
Cites_doi 10.1039/D0SC00594K
10.1186/s13321-023-00702-2
10.1039/D3SC03598K
10.1177/2472555220949495
10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U
10.1021/acs.jpca.2c01266
10.1126/science.aat2663
10.1063/1.478522
10.1186/s13321-019-0404-1
10.1038/s41597-021-00812-2
10.1038/s41597-019-0151-1
10.1021/jacs.2c13467
10.1103/PhysRevLett.108.058301
10.1103/PhysRevLett.108.236402
10.1021/acs.jcim.5b00498
10.1063/1.5090303
10.1038/s41467-022-29939-5
10.1038/s41570-020-0189-9
10.1021/acscentsci.7b00572
10.1063/1.5064465
10.1038/ncomms13890
10.1021/acs.jcim.0c00451
10.1088/1367-2630/15/9/095003
10.1039/D1SC00231G
10.1063/1.4865104
10.1063/1.4947214
10.1038/s41586-023-05905-z
10.1039/D2MH01279K
10.1186/s13321-018-0287-6
10.1177/1087057114522515
10.1186/s13321-017-0235-x
10.1039/C9NR10687A
10.1038/s41467-021-27504-0
10.1038/s41467-022-35692-6
10.1186/s13321-018-0265-z
10.1038/s43588-022-00391-1
10.1039/D1SC01050F
10.1002/qua.560050706
10.1021/acs.jcim.9b00048
10.1002/advs.202206674
10.1038/s41467-022-28526-y
10.1038/s41524-018-0128-1
10.1063/1.472933
10.1016/j.nantod.2023.101802
10.1021/ct100684s
10.1021/acs.jcim.8b00263
10.1039/D2DD00003B
10.1088/2516-1075/ac572f
10.1039/C7SC02664A
10.1002/wcms.1395
10.1039/D3CP02256K
10.1016/j.jcp.2009.08.008
10.1039/D3MH00039G
10.1038/s41570-018-0121
10.1109/MSP.2015.2398954
10.1021/ci500190p
10.1038/srep20952
10.1109/CVPRW.2018.00071
10.1609/aaai.v33i01.33011110
10.1063/5.0208746
10.5281/zenodo.11537048
10.1038/s41597-024-03521-8
10.1145/3394486.3403104
10.1186/1758-2946-3-1
10.1063/1.1901564
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-024-50401-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_d0eab7832b8d4a0bae95dafa3cf7edae
39025883
10_1038_s41467_024_50401_1
Genre Journal Article
GrantInformation_xml – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 956832
  funderid: 100010661
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 956832
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c485t-c3589a1e9308b700a6b2300669dd9ea6842e1b01a4767b92a4bddbfd1b5c19d23
IEDL.DBID M7P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001275152300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:40:56 EDT 2025
Thu Sep 04 16:24:38 EDT 2025
Tue Oct 07 07:26:25 EDT 2025
Wed Feb 19 02:04:13 EST 2025
Sat Nov 29 03:55:07 EST 2025
Tue Nov 18 20:37:54 EST 2025
Fri Feb 21 02:37:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-c3589a1e9308b700a6b2300669dd9ea6842e1b01a4767b92a4bddbfd1b5c19d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-7857-5010
0000-0002-7673-3142
0000-0002-1012-4854
OpenAccessLink https://www.proquest.com/docview/3082433785?pq-origsite=%requestingapplication%
PMID 39025883
PQID 3082433785
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_d0eab7832b8d4a0bae95dafa3cf7edae
proquest_miscellaneous_3082627391
proquest_journals_3082433785
pubmed_primary_39025883
crossref_primary_10_1038_s41467_024_50401_1
crossref_citationtrail_10_1038_s41467_024_50401_1
springer_journals_10_1038_s41467_024_50401_1
PublicationCentury 2000
PublicationDate 2024-07-18
PublicationDateYYYYMMDD 2024-07-18
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Noh, Gu, Kim, Jung (CR23) 2020; 11
Sanchez-Lengeling, Aspuru-Guzik (CR16) 2018; 361
Collins, Euwema, Stukel, Wepfer (CR57) 1970; 5
Zunger (CR17) 2018; 2
Chen (CR19) 2023; 15
CR39
CR38
Kim (CR18) 2018; 4
Maziarka (CR37) 2019; 12
CR35
CR34
CR33
Westermayr, Gilkes, Barrett, Maurer (CR51) 2023; 3
CR30
CR72
Anstine, Isayev (CR26) 2023; 145
Beresini (CR15) 2014; 19
Rupp, Tkatchenko, Müller, von Lilienfeld (CR69) 2012; 108
Havu, Blum, Havu, Scheffler (CR81) 2009; 228
Moret (CR21) 2023; 14
Steinmann, Wang, Seh (CR8) 2023; 10
Medrano Sandonas (CR52) 2023; 14
Sorkun, Khetan, Er (CR66) 2019; 6
von Lilienfeld, Müller, Tkatchenko (CR3) 2020; 4
Nigam, Pollice, Aspuru-Guzik (CR25) 2022; 1
Tkatchenko, DiStasio Jr, Car, Scheffler (CR76) 2012; 108
Seo, Lim, Kim (CR27) 2023; 10
Zhu, Thompson, Martinez (CR63) 2019; 150
Ambrosetti, Reilly, DiStasio Jr, Tkatchenko (CR80) 2014; 140
CR6
Perdew, Ernzerhof, Burke (CR78) 1996; 105
Makri, Ortner, Kermode (CR59) 2019; 150
Lee (CR20) 2023; 10
CR47
CR46
Hoja (CR54) 2021; 8
CR45
Dokmanic, Parhizkar, Ranieri, Vetterli (CR71) 2015; 32
CR44
CR43
Gaus, Cui, Elstner (CR75) 2011; 7
CR40
Schreiner, Bhowmik, Vegge, Jørgensen, Winther (CR61) 2022; 3
CR83
CR82
Adamo, Barone (CR79) 1999; 110
Ahmed (CR13) 2018; 10
Dollar, Joshi, Beck, Pfaendtner (CR28) 2021; 12
Xue (CR41) 2019; 9
Kang, Cho (CR32) 2018; 59
van der Maaten, Hinton (CR55) 2008; 9
Yuan, Santana-Bonilla, Zwijnenburg, Jelfs (CR50) 2020; 12
Wu (CR65) 2018; 9
Stöhr, Michelitsch, Tully, Reuter, Maurer (CR77) 2016; 144
Cremer, Medrano Sandonas, Tkatchenko, Clevert, De Fabritiis (CR67) 2023; 36
Lin (CR22) 2023; 49
Riniker, Wang, Jenkins, Landrum (CR12) 2014; 54
Paricharak (CR11) 2016; 19
CR58
CR56
Gebauer, Gastegger, Hessmann, Müller, Schütt (CR42) 2022; 13
O’Boyle (CR73) 2011; 3
Unke (CR60) 2021; 12
Kulik (CR1) 2022; 4
Góger, Medrano Sandonas, Müller, Tkatchenko (CR53) 2023; 25
Sadybekov, Katritch (CR2) 2023; 616
Gao, Ramezanghorbani, Isayev, Smith, Roitberg (CR5) 2020; 60
Helal, Maciejewski, Gregori-Puigjané, Glick, Wassermann (CR14) 2016; 56 2
Nigam, Pollice, Krenn, Gomes, Aspuru-Guzik (CR24) 2021; 12
Montavon (CR70) 2013; 15
Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (CR4) 2017; 8
Batzner (CR7) 2022; 13
Hiener, Hutchison (CR48) 2022; 126
CR68
Olivecrona, Blaschke, Engkvist, Chen (CR31) 2017; 9
Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (CR49) 2016; 6
CR64
Gómez-Bombarelli (CR29) 2018; 4
CR62
Dreiman, Bictash, Fish, Griffin, Svensson (CR9) 2020; 26
Jansen (CR10) 2019; 59
Seifert, Porezag, Frauenheim (CR74) 1996; 58
Li, Zhang, ming Liu (CR36) 2018; 10
S Kang (50401_CR32) 2018; 59
50401_CR72
DC Hiener (50401_CR48) 2022; 126
J Lin (50401_CR22) 2023; 49
O Unke (50401_CR60) 2021; 12
S Riniker (50401_CR12) 2014; 54
G Montavon (50401_CR70) 2013; 15
KY Helal (50401_CR14) 2016; 56 2
50401_CR38
50401_CR39
M Moret (50401_CR21) 2023; 14
Y Li (50401_CR36) 2018; 10
50401_CR30
O von Lilienfeld (50401_CR3) 2020; 4
D Xue (50401_CR41) 2019; 9
50401_CR34
50401_CR33
50401_CR35
B Sanchez-Lengeling (50401_CR16) 2018; 361
J Westermayr (50401_CR51) 2023; 3
M Schreiner (50401_CR61) 2022; 3
X Zhu (50401_CR63) 2019; 150
S Makri (50401_CR59) 2019; 150
S Batzner (50401_CR7) 2022; 13
R Gómez-Bombarelli (50401_CR29) 2018; 4
J Noh (50401_CR23) 2020; 11
L Medrano Sandonas (50401_CR52) 2023; 14
Ł Maziarka (50401_CR37) 2019; 12
50401_CR62
A Zunger (50401_CR17) 2018; 2
50401_CR64
L van der Maaten (50401_CR55) 2008; 9
G Seifert (50401_CR74) 1996; 58
50401_CR68
I Dokmanic (50401_CR71) 2015; 32
M Olivecrona (50401_CR31) 2017; 9
M Beresini (50401_CR15) 2014; 19
NM O’Boyle (50401_CR73) 2011; 3
JP Perdew (50401_CR78) 1996; 105
50401_CR6
O Dollar (50401_CR28) 2021; 12
SN Steinmann (50401_CR8) 2023; 10
C Adamo (50401_CR79) 1999; 110
V Havu (50401_CR81) 2009; 228
A Nigam (50401_CR25) 2022; 1
J Jansen (50401_CR10) 2019; 59
Z Wu (50401_CR65) 2018; 9
Y Chen (50401_CR19) 2023; 15
A Nigam (50401_CR24) 2021; 12
50401_CR56
HJ Kulik (50401_CR1) 2022; 4
M Gaus (50401_CR75) 2011; 7
50401_CR58
S Seo (50401_CR27) 2023; 10
J Lee (50401_CR20) 2023; 10
A Mannodi-Kanakkithodi (50401_CR49) 2016; 6
K Kim (50401_CR18) 2018; 4
X Gao (50401_CR5) 2020; 60
S Paricharak (50401_CR11) 2016; 19
50401_CR83
50401_CR82
KT Schütt (50401_CR4) 2017; 8
L Ahmed (50401_CR13) 2018; 10
AV Sadybekov (50401_CR2) 2023; 616
MC Sorkun (50401_CR66) 2019; 6
Q Yuan (50401_CR50) 2020; 12
M Rupp (50401_CR69) 2012; 108
S Góger (50401_CR53) 2023; 25
NWA Gebauer (50401_CR42) 2022; 13
DM Anstine (50401_CR26) 2023; 145
M Stöhr (50401_CR77) 2016; 144
TC Collins (50401_CR57) 1970; 5
J Cremer (50401_CR67) 2023; 36
A Ambrosetti (50401_CR80) 2014; 140
50401_CR40
50401_CR43
J Hoja (50401_CR54) 2021; 8
50401_CR45
50401_CR44
GHS Dreiman (50401_CR9) 2020; 26
50401_CR47
A Tkatchenko (50401_CR76) 2012; 108
50401_CR46
References_xml – volume: 11
  start-page: 4871
  year: 2020
  end-page: 4881
  ident: CR23
  article-title: Machine-enabled inverse design of inorganic solid materials: Promises and challenges
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00594K
– ident: CR45
– volume: 15
  year: 2023
  ident: CR19
  article-title: Deep generative model for drug design from protein target sequence
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-023-00702-2
– volume: 14
  start-page: 10702
  year: 2023
  end-page: 10717
  ident: CR52
  article-title: "Freedom of design” in chemical compound space: towards rational in silico design of molecules with targeted quantum-mechanical properties
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC03598K
– volume: 26
  start-page: 257
  year: 2020
  end-page: 262
  ident: CR9
  article-title: Changing the hts paradigm: Ai-driven iterative screening for hit finding
  publication-title: Slas Discov.
  doi: 10.1177/2472555220949495
– volume: 58
  start-page: 185
  year: 1996
  end-page: 192
  ident: CR74
  article-title: Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U
– volume: 19
  start-page: 277
  year: 2016
  end-page: 285
  ident: CR11
  article-title: Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening
  publication-title: Brief. Bioinforma.
– volume: 126
  start-page: 2750
  year: 2022
  end-page: 2760
  ident: CR48
  article-title: Pareto optimization of oligomer polarizability and dipole moment using a genetic algorithm
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c01266
– volume: 361
  start-page: 360
  year: 2018
  end-page: 365
  ident: CR16
  article-title: Inverse molecular design using machine learning: Generative models for matter engineering
  publication-title: Science
  doi: 10.1126/science.aat2663
– volume: 3
  start-page: 045022
  year: 2022
  ident: CR61
  article-title: Neuralneb—neural networks can find reaction paths fast
  publication-title: Mach. Learn.: Sci. Technol.
– ident: CR68
– volume: 110
  start-page: 6158
  year: 1999
  end-page: 6170
  ident: CR79
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– ident: CR39
– volume: 36
  start-page: 1561
  year: 2023
  end-page: 1573
  ident: CR67
  article-title: Equivariant graph neural networks for toxicity prediction
  publication-title: Chem. Res. Toxicol.
– volume: 12
  year: 2019
  ident: CR37
  article-title: Mol-cyclegan: a generative model for molecular optimization
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-019-0404-1
– volume: 8
  year: 2021
  ident: CR54
  article-title: QM7-X, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00812-2
– ident: CR35
– volume: 6
  year: 2019
  ident: CR66
  article-title: Aqsoldb, a curated reference set of aqueous solubility and 2d descriptors for a diverse set of compounds
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0151-1
– ident: CR58
– volume: 145
  start-page: 8736
  year: 2023
  end-page: 8750
  ident: CR26
  article-title: Generative models as an emerging paradigm in the chemical sciences
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13467
– volume: 108
  start-page: 058301
  year: 2012
  ident: CR69
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 108
  start-page: 236402
  year: 2012
  ident: CR76
  article-title: Accurate and efficient method for many-body van der waals interactions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.236402
– volume: 56 2
  start-page: 390
  year: 2016
  end-page: 398
  ident: CR14
  article-title: Public domain hts fingerprints: Design and evaluation of compound bioactivity profiles from pubchem’s bioassay repository
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00498
– volume: 150
  start-page: 164103
  year: 2019
  ident: CR63
  article-title: Geodesic interpolation for reaction pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5090303
– volume: 13
  year: 2022
  ident: CR7
  article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29939-5
– ident: CR46
– volume: 4
  start-page: 347
  year: 2020
  end-page: 358
  ident: CR3
  article-title: Exploring chemical compound space with quantum-based machine learning
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0189-9
– volume: 4
  start-page: 268
  year: 2018
  end-page: 276
  ident: CR29
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00572
– volume: 150
  start-page: 094109
  year: 2019
  ident: CR59
  article-title: A preconditioning scheme for minimum energy path finding methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5064465
– volume: 8
  year: 2017
  ident: CR4
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13890
– volume: 60
  start-page: 3408
  year: 2020
  end-page: 3415
  ident: CR5
  article-title: Torchani: A free and open source pytorch-based deep learning implementation of the ani neural network potentials
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00451
– volume: 15
  start-page: 095003
  year: 2013
  ident: CR70
  article-title: Machine learning of molecular electronic properties in chemical compound space
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/9/095003
– volume: 12
  start-page: 7079
  year: 2021
  end-page: 7090
  ident: CR24
  article-title: Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (stoned) algorithm for molecules using selfies
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC00231G
– volume: 3
  start-page: 1
  year: 2011
  end-page: 14
  ident: CR73
  article-title: Open babel: An open chemical toolbox
  publication-title: J. Cheminformatics
– volume: 140
  start-page: 18A508
  year: 2014
  ident: CR80
  article-title: Long-range correlation energy calculated from coupled atomic response functions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865104
– volume: 144
  start-page: 151101
  year: 2016
  ident: CR77
  article-title: Communication: Charge-population based dispersion interactions for molecules and materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4947214
– volume: 616
  start-page: 673
  year: 2023
  end-page: 685
  ident: CR2
  article-title: Computational approaches streamlining drug discovery
  publication-title: Nature
  doi: 10.1038/s41586-023-05905-z
– volume: 10
  start-page: 393
  year: 2023
  end-page: 406
  ident: CR8
  article-title: How machine learning can accelerate electrocatalysis discovery and optimization
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH01279K
– volume: 10
  year: 2018
  ident: CR36
  article-title: Multi-objective de novo drug design with conditional graph generative model
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-018-0287-6
– ident: CR64
– volume: 19
  start-page: 758–770
  year: 2014
  ident: CR15
  article-title: Small-molecule library subset screening as an aid for accelerating lead identification
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057114522515
– volume: 9
  year: 2017
  ident: CR31
  article-title: Molecular de novo design through deep reinforcement learning
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-017-0235-x
– volume: 12
  start-page: 6744
  year: 2020
  end-page: 6758
  ident: CR50
  article-title: Molecular generation targeting desired electronic properties via deep generative models
  publication-title: Nanoscale
  doi: 10.1039/C9NR10687A
– volume: 12
  year: 2021
  ident: CR60
  article-title: Spookynet: Learning force fields with electronic degrees of freedom and nonlocal effects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27504-0
– volume: 14
  year: 2023
  ident: CR21
  article-title: Leveraging molecular structure and bioactivity with chemical language models for de novo drug design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35692-6
– volume: 10
  year: 2018
  ident: CR13
  article-title: Efficient iterative virtual screening with apache spark and conformal prediction
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-018-0265-z
– ident: CR43
– volume: 3
  start-page: 139
  year: 2023
  end-page: 148
  ident: CR51
  article-title: High-throughput property-driven generative design of functional organic molecules
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00391-1
– ident: CR47
– ident: CR72
– volume: 12
  start-page: 8362
  year: 2021
  end-page: 8372
  ident: CR28
  article-title: Attention-based generative models for de novo molecular design
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC01050F
– volume: 5
  start-page: 77
  year: 1970
  end-page: 85
  ident: CR57
  article-title: Valence electron density of states of znse obtained from an energy dependent exchange approximation
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560050706
– ident: CR30
– volume: 59
  start-page: 1709
  year: 2019
  end-page: 1714
  ident: CR10
  article-title: Biased complement diversity selection for effective exploration of chemical space in hit-finding campaigns
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00048
– volume: 10
  start-page: 2206674
  year: 2023
  ident: CR27
  article-title: Molecular generative model via retrosynthetically prepared chemical building block assembly
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206674
– ident: CR33
– volume: 13
  year: 2022
  ident: CR42
  article-title: Inverse design of 3d molecular structures with conditional generative neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28526-y
– ident: CR82
– ident: CR6
– volume: 4
  year: 2018
  ident: CR18
  article-title: Deep-learning-based inverse design model for intelligent discovery of organic molecules
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0128-1
– volume: 105
  start-page: 9982
  year: 1996
  end-page: 9985
  ident: CR78
  article-title: Rationale for mixing exact exchange with density functional approximations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472933
– ident: CR56
– volume: 49
  start-page: 101802
  year: 2023
  ident: CR22
  article-title: Machine learning accelerates the investigation of targeted mofs: Performance prediction, rational design and intelligent synthesis
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2023.101802
– ident: CR40
– volume: 7
  start-page: 931
  year: 2011
  end-page: 948
  ident: CR75
  article-title: DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB)
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100684s
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR55
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 59
  start-page: 43
  year: 2018
  end-page: 52
  ident: CR32
  article-title: Conditional molecular design with deep generative models
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00263
– ident: CR44
– volume: 1
  start-page: 390
  year: 2022
  end-page: 404
  ident: CR25
  article-title: Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
  publication-title: Digital Discov.
  doi: 10.1039/D2DD00003B
– volume: 4
  start-page: 023004
  year: 2022
  ident: CR1
  article-title: Roadmap on machine learning in electronic structure
  publication-title: Electron. Struct.
  doi: 10.1088/2516-1075/ac572f
– ident: CR38
– volume: 9
  start-page: 513
  year: 2018
  end-page: 530
  ident: CR65
  article-title: Moleculenet: a benchmark for molecular machine learning
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02664A
– volume: 9
  start-page: e1395
  year: 2019
  ident: CR41
  article-title: Advances and challenges in deep generative models for de novo molecule generation
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1395
– ident: CR34
– volume: 25
  start-page: 22211
  year: 2023
  end-page: 22222
  ident: CR53
  article-title: Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP02256K
– volume: 228
  start-page: 8367
  year: 2009
  end-page: 8379
  ident: CR81
  article-title: Efficient ( ) integration for all-electron electronic structure calculation using numeric basis functions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.08.008
– volume: 10
  start-page: 5436
  year: 2023
  end-page: 5456
  ident: CR20
  article-title: Machine learning-based inverse design methods considering data characteristics and design space size in materials design and manufacturing: a review
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00039G
– ident: CR83
– volume: 2
  start-page: 0121
  year: 2018
  ident: CR17
  article-title: Inverse design in search of materials with target functionalities
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0121
– volume: 32
  start-page: 12
  year: 2015
  end-page: 30
  ident: CR71
  article-title: Euclidean distance matrices: Essential theory, algorithms, and applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2398954
– ident: CR62
– volume: 54
  start-page: 1880
  year: 2014
  end-page: 91
  ident: CR12
  article-title: Using information from historical high-throughput screens to predict active compounds
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci500190p
– volume: 6
  year: 2016
  ident: CR49
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 5
  start-page: 77
  year: 1970
  ident: 50401_CR57
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560050706
– volume: 13
  year: 2022
  ident: 50401_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28526-y
– ident: 50401_CR58
  doi: 10.1109/CVPRW.2018.00071
– volume: 108
  start-page: 058301
  year: 2012
  ident: 50401_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 59
  start-page: 43
  year: 2018
  ident: 50401_CR32
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00263
– volume: 140
  start-page: 18A508
  year: 2014
  ident: 50401_CR80
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865104
– volume: 8
  year: 2017
  ident: 50401_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13890
– ident: 50401_CR44
– ident: 50401_CR40
– volume: 10
  start-page: 2206674
  year: 2023
  ident: 50401_CR27
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206674
– ident: 50401_CR35
  doi: 10.1609/aaai.v33i01.33011110
– volume: 7
  start-page: 931
  year: 2011
  ident: 50401_CR75
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100684s
– ident: 50401_CR6
  doi: 10.1063/5.0208746
– volume: 26
  start-page: 257
  year: 2020
  ident: 50401_CR9
  publication-title: Slas Discov.
  doi: 10.1177/2472555220949495
– ident: 50401_CR82
– volume: 9
  start-page: 513
  year: 2018
  ident: 50401_CR65
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02664A
– volume: 54
  start-page: 1880
  year: 2014
  ident: 50401_CR12
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci500190p
– volume: 126
  start-page: 2750
  year: 2022
  ident: 50401_CR48
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c01266
– volume: 25
  start-page: 22211
  year: 2023
  ident: 50401_CR53
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP02256K
– ident: 50401_CR34
– ident: 50401_CR83
  doi: 10.5281/zenodo.11537048
– ident: 50401_CR30
– ident: 50401_CR47
– volume: 12
  start-page: 6744
  year: 2020
  ident: 50401_CR50
  publication-title: Nanoscale
  doi: 10.1039/C9NR10687A
– volume: 59
  start-page: 1709
  year: 2019
  ident: 50401_CR10
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00048
– volume: 14
  start-page: 10702
  year: 2023
  ident: 50401_CR52
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC03598K
– ident: 50401_CR68
– volume: 32
  start-page: 12
  year: 2015
  ident: 50401_CR71
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2398954
– volume: 10
  start-page: 5436
  year: 2023
  ident: 50401_CR20
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00039G
– ident: 50401_CR43
– volume: 4
  start-page: 268
  year: 2018
  ident: 50401_CR29
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00572
– volume: 616
  start-page: 673
  year: 2023
  ident: 50401_CR2
  publication-title: Nature
  doi: 10.1038/s41586-023-05905-z
– volume: 10
  year: 2018
  ident: 50401_CR36
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-018-0287-6
– ident: 50401_CR64
  doi: 10.1038/s41597-024-03521-8
– volume: 4
  start-page: 347
  year: 2020
  ident: 50401_CR3
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0189-9
– volume: 4
  start-page: 023004
  year: 2022
  ident: 50401_CR1
  publication-title: Electron. Struct.
  doi: 10.1088/2516-1075/ac572f
– volume: 15
  start-page: 095003
  year: 2013
  ident: 50401_CR70
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/9/095003
– volume: 6
  year: 2016
  ident: 50401_CR49
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 56 2
  start-page: 390
  year: 2016
  ident: 50401_CR14
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00498
– volume: 19
  start-page: 758–770
  year: 2014
  ident: 50401_CR15
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057114522515
– volume: 12
  start-page: 8362
  year: 2021
  ident: 50401_CR28
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC01050F
– ident: 50401_CR38
  doi: 10.1145/3394486.3403104
– volume: 36
  start-page: 1561
  year: 2023
  ident: 50401_CR67
  publication-title: Chem. Res. Toxicol.
– volume: 10
  year: 2018
  ident: 50401_CR13
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-018-0265-z
– volume: 2
  start-page: 0121
  year: 2018
  ident: 50401_CR17
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0121
– ident: 50401_CR33
– volume: 14
  year: 2023
  ident: 50401_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35692-6
– volume: 8
  year: 2021
  ident: 50401_CR54
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00812-2
– volume: 6
  year: 2019
  ident: 50401_CR66
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0151-1
– ident: 50401_CR46
– volume: 361
  start-page: 360
  year: 2018
  ident: 50401_CR16
  publication-title: Science
  doi: 10.1126/science.aat2663
– volume: 3
  start-page: 1
  year: 2011
  ident: 50401_CR73
  publication-title: J. Cheminformatics
  doi: 10.1186/1758-2946-3-1
– volume: 4
  year: 2018
  ident: 50401_CR18
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0128-1
– volume: 145
  start-page: 8736
  year: 2023
  ident: 50401_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13467
– volume: 110
  start-page: 6158
  year: 1999
  ident: 50401_CR79
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 60
  start-page: 3408
  year: 2020
  ident: 50401_CR5
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00451
– volume: 1
  start-page: 390
  year: 2022
  ident: 50401_CR25
  publication-title: Digital Discov.
  doi: 10.1039/D2DD00003B
– volume: 9
  start-page: 2579
  year: 2008
  ident: 50401_CR55
  publication-title: J. Mach. Learn. Res.
– volume: 13
  year: 2022
  ident: 50401_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29939-5
– volume: 150
  start-page: 164103
  year: 2019
  ident: 50401_CR63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5090303
– volume: 19
  start-page: 277
  year: 2016
  ident: 50401_CR11
  publication-title: Brief. Bioinforma.
– volume: 9
  year: 2017
  ident: 50401_CR31
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-017-0235-x
– volume: 150
  start-page: 094109
  year: 2019
  ident: 50401_CR59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5064465
– volume: 10
  start-page: 393
  year: 2023
  ident: 50401_CR8
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH01279K
– ident: 50401_CR72
– volume: 12
  year: 2021
  ident: 50401_CR60
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27504-0
– volume: 3
  start-page: 045022
  year: 2022
  ident: 50401_CR61
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 58
  start-page: 185
  year: 1996
  ident: 50401_CR74
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U
– volume: 12
  start-page: 7079
  year: 2021
  ident: 50401_CR24
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC00231G
– ident: 50401_CR45
– volume: 144
  start-page: 151101
  year: 2016
  ident: 50401_CR77
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4947214
– volume: 15
  year: 2023
  ident: 50401_CR19
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-023-00702-2
– volume: 108
  start-page: 236402
  year: 2012
  ident: 50401_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.236402
– volume: 228
  start-page: 8367
  year: 2009
  ident: 50401_CR81
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.08.008
– volume: 9
  start-page: e1395
  year: 2019
  ident: 50401_CR41
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1395
– ident: 50401_CR62
– ident: 50401_CR39
– volume: 3
  start-page: 139
  year: 2023
  ident: 50401_CR51
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00391-1
– volume: 11
  start-page: 4871
  year: 2020
  ident: 50401_CR23
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00594K
– volume: 12
  year: 2019
  ident: 50401_CR37
  publication-title: J. Cheminformatics
  doi: 10.1186/s13321-019-0404-1
– ident: 50401_CR56
  doi: 10.1063/1.1901564
– volume: 49
  start-page: 101802
  year: 2023
  ident: 50401_CR22
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2023.101802
– volume: 105
  start-page: 9982
  year: 1996
  ident: 50401_CR78
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472933
SSID ssj0000391844
Score 2.5084777
Snippet Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored...
Abstract Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6061
SubjectTerms 639/638/440/94
639/638/563/606
639/705/1042
639/766/94
Artificial intelligence
Chemical compounds
Coders
Design
Design parameters
Equilibrium
Humanities and Social Sciences
Isomers
Learning algorithms
Machine learning
Mapping
Materials science
Molecular properties
Molecular structure
multidisciplinary
Organic chemistry
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kUfAivm1dJYI3bTbppDvJUcXFgyweFPYW8qgWYR7r9Izgv7eS9Iwrvi5eu5Mm-fIlVdXV_RXAsyhtH5XSLRlzClBkwDb0lmIem5LSiVudis7sO312Zs7P7ftLpb7yN2FVHrgCd5I4-qCJd8Ek5XnwaPvkRy_jqDF5zKcv1_ZSMFXOYGkpdFHzXzJcmpNJlTOBTFLbE3FFK36yREWw_3de5i8Z0mJ4Tm_CjdljZC_rSG_BFVzdhmu1huS3O-CzUsZmQrb0WWrhE1uP7MuO8Not2UV-077Jkqlsu2ZVKnZH8TUjT5XFWSqA0ZkSMXebln6xYLXOU2TLWjgXp7vw8fTNh9dv27luQhuV6bdtlL2xXqCV3ATNuR8CBRrkWxD-Fn3OvKEIXHilBx1s51VIKYxJhD4Kmzp5D45W6xU-ADamwXDdeRMIPkm2TKONsYtmQBxp9RsQewxdnEXFc22LhSvJbWlcxd0R7q7g7kQDzw99Lqqkxl9bv8pLc2iZ5bDLBULDzSRx_yJJA8f7hXXzHp1cFupRUmrTN_D0cJt2V06Z-BWud7XNQB6epXHcr4Q4jETmDK0xsoEXe4b8ePifJ_Twf0zoEVzvMpWzwqc5hiMiED6Gq_Hr9vO0eVL2wndHVQ4N
  priority: 102
  providerName: Directory of Open Access Journals
Title Inverse mapping of quantum properties to structures for chemical space of small organic molecules
URI https://link.springer.com/article/10.1038/s41467-024-50401-1
https://www.ncbi.nlm.nih.gov/pubmed/39025883
https://www.proquest.com/docview/3082433785
https://www.proquest.com/docview/3082627391
https://doaj.org/article/d0eab7832b8d4a0bae95dafa3cf7edae
Volume 15
WOSCitedRecordID wos001275152300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFH-4uwpe_NatrkMEb1q2bdImOYkruyjoUERh9BLy1UWYmc5OZxb8731JO11E3YuXHpqkJHkv7zP9PYCXlsrSMsZTVObooFDjU1NK9Hmkc4y7THIXcWY_8ulUzGayHgJu3XCtcicTo6B2rQ0x8uMAq8Io5aJ8s7pIQ9WokF0dSmjswUFASSji1b16jLEE9HPB2PCvTEbFcceiZEDFlJbIvnma_6aPImz_32zNP_KkUf2c3f3fid-DO4PhSd72nHIfbvjlA7jVl6L8-RB0ANxYd54sdEBsOCdtQy62uO3bBVmFgP06IK-STUt6xNktuukEDV5iB8QBgqLJ-jCsW-j5nPTloixZ9PV3ffcIvp6dfnn3Ph3KL6SWiXKTWloKqXMvcQWGZ5muDPoraKIgGaXXIYHnc5PlmvGKG1loZpwzjctNaXPpCvoY9pft0h8CaVwlMl5oYXD_KapE7qW1hRWV9w0yUQL5jgjKDtjkoUTGXMUcORWqJ5xCwqlIOJUn8Gocs-qROa7tfRJoO_YMqNrxBe6GGg6pcpnXhqOMM8IxnRntZel0o6ltuHfaJ3C0I7EajnqnruibwIuxGQ9pyLzopW-3fZ8KDUWJ83jSc9Q4ExoSvULQBF7vWOzq4_9e0NPr5_IMbheBywMEqDiCfWQN_xxu2svNj249gT0-4_EpJnBwcjqtP09iNGISDxA-6_I7ttQfPtXffgHGsiAu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLQguvB-BAkaCE0RNYie2DwjxqrrqdrWHIpWT61cQ0u5mu9kF9U_xG5nJYysE9NYDxyR25MTffDPOxN8Q8sIxlTvORQzOHBYozIbY5grWPMp7LnyihG90ZkdiPJbHx2qyRX72e2Hwt8qeExui9pXDb-S7KKvCGRMyf7s4jbFqFGZX-xIaLSwOwtkPWLLVb4YfYX5fZtnep6MP-3FXVSB2XOar2LFcKpMGBXe0IklMYSEMB88Lo1PBYF4qpDZJDReFsCoz3HpvS5_a3KXKo9ABUP42R7APyPZkeDj5svmqg3rrkvNud07C5G7NGy4CVxjnYDBpnP7mAZtCAX-Lbv_IzDYOb-_m__aqbpEbXWhN37W2cJtshfkdcrUttnl2lxiUFFnWgc4MalJ8pVVJT9cArPWMLjAlsURtWbqqaKupu17CEYT01HWaChTI1wXsVs_MdErbgliOztoKw6G-Rz5fyvPdJ4N5NQ8PCS19IRORGWlhvhk4fRGUc5mTRQglmElE0n7StevU17EIyFQ3fwEwqVugaACKboCi04i82vRZtNojF7Z-j1jatETd8OYEvA3d0ZD2STBWAItb6blJrAkq96Y0zJUieBMistNDSndkVutzPEXk-eYy0BDmlsw8VOu2TQGhsIJxPGgRvBkJw1S2lCwir3tIn9_83w_06OKxPCPX9o8OR3o0HB88JtcztDAUPJU7ZAAwCU_IFfd99a1ePu2MlJKTywb7L7Z5dxU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFhAX3oVAASPBCaJNYie2DwgBZUXVarUHkCouxq8gpN3NdrNb1L_Gr2MmrwoBvfXAMYkT2ck334w9zjeEPHdM5Y5zEYMzhwkKsyG2uYI5j_KeC58o4Rud2SMxmcjjYzXdIj_7f2FwW2XPiQ1R-8rhGvkIZVU4Y0Lmo7LbFjHdH79ZnsRYQQozrX05jRYih-HsB0zf6tcH-_CtX2TZ-MOn9x_jrsJA7LjM17FjuVQmDQqebkWSmMJCSA5eGHqqgsEcVUhtkhouCmFVZrj13pY-tblLlUfRA6D_HQFzTNxOOM2_DOs7qLwuOe_-00mYHNW8YSVwinEOppPG6W--sCkZ8Lc4948cbeP6xjf_55d2i9zoAm76trWQ22QrLO6Qq20JzrO7xKDQyKoOdG5QqeIbrUp6sgG4beZ0iYmKFSrO0nVFW6XdzQqOINCnrlNaoEDJLuBt9dzMZrQtk-XovK07HOp75POljG-XbC-qRXhAaOkLmYjMSAvfnkEoIIJyLnOyCKEE44lI2gNAu06THUuDzHSzN4BJ3YJGA2h0AxqdRuTlcM-yVSS5sPU7xNXQEtXEmxPwNnRHTtonwVgB3G6l5yaxJqjcm9IwV4rgTYjIXg8v3VFcrc-xFZFnw2UgJ8w4mUWoNm2bAgJkBf2436J56AnDBLeULCKvenifP_zfA3p4cV-ekmuAcH10MDl8RK5naGyogir3yDagJDwmV9zp-nu9etJYKyVfLxvpvwBK4X54
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+mapping+of+quantum+properties+to+structures+for+chemical+space+of+small+organic+molecules&rft.jtitle=Nature+communications&rft.au=Fallani%2C+Alessio&rft.au=Medrano+Sandonas%2C+Leonardo&rft.au=Tkatchenko%2C+Alexandre&rft.date=2024-07-18&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50401-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_50401_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon