Inverse mapping of quantum properties to structures for chemical space of small organic molecules
Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to th...
Saved in:
| Published in: | Nature communications Vol. 15; no. 1; pp. 6061 - 14 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
18.07.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.
A mapping linking a desired molecular property to a 3D structure would facilitate molecular design. Here, the authors parameterize the chemical space of small organic molecules using quantum properties via machine learning, providing insights into targeted molecular design. |
|---|---|
| AbstractList | Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.
A mapping linking a desired molecular property to a 3D structure would facilitate molecular design. Here, the authors parameterize the chemical space of small organic molecules using quantum properties via machine learning, providing insights into targeted molecular design. Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces. Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.A mapping linking a desired molecular property to a 3D structure would facilitate molecular design. Here, the authors parameterize the chemical space of small organic molecules using quantum properties via machine learning, providing insights into targeted molecular design. Abstract Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for “Quantum Inverse Mapping”), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces. Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for "Quantum Inverse Mapping"), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces.Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored properties. While quantum-mechanical (QM) methods, coupled with machine learning, already offer a direct mapping from 3D molecular structures to their properties, effective methodologies for the inverse mapping in chemical space remain elusive. We address this challenge by demonstrating the possibility of parametrizing a chemical space with a finite set of QM properties. Our proof-of-concept implementation achieves an approximate property-to-structure mapping, the QIM model (which stands for "Quantum Inverse Mapping"), by forcing a variational auto-encoder with a property encoder to obtain a common internal representation for both structures and properties. After validating this mapping for small drug-like molecules, we illustrate its capabilities with an explainability study as well as by the generation of de novo molecular structures with targeted properties and transition pathways between conformational isomers. Our findings thus provide a proof-of-principle demonstration aiming to enable the inverse property-to-structure design in diverse chemical spaces. |
| ArticleNumber | 6061 |
| Author | Medrano Sandonas, Leonardo Tkatchenko, Alexandre Fallani, Alessio |
| Author_xml | – sequence: 1 givenname: Alessio orcidid: 0009-0001-7857-5010 surname: Fallani fullname: Fallani, Alessio email: alessio.fallani.001@student.uni.lu organization: Department of Physics and Materials Science, University of Luxembourg – sequence: 2 givenname: Leonardo orcidid: 0000-0002-7673-3142 surname: Medrano Sandonas fullname: Medrano Sandonas, Leonardo email: leonardoms20@gmail.com organization: Department of Physics and Materials Science, University of Luxembourg, Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden – sequence: 3 givenname: Alexandre orcidid: 0000-0002-1012-4854 surname: Tkatchenko fullname: Tkatchenko, Alexandre email: alexandre.tkatchenko@uni.lu organization: Department of Physics and Materials Science, University of Luxembourg |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39025883$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctu1DAUhiNURC_0BVigSGzYBHxL4ixRBXSkSmxgbR3bJ4NHiZ3aDhJvj2dSCuqi3vjY-v5z-y-rMx88VtUbSj5QwuXHJKjo-oYw0bREENrQF9UFI6IEPeNn_8Xn1XVKB1IOH6gU4lV1zgfCWin5RQU7_wtjwnqGZXF-X4exvl_B53WulxgWjNlhqnOoU46ryWssrzHE2vzE2RmY6rSAwaMszTBNdYh78M7Uc5jQrBOm19XLEaaE1w_3VfXjy-fvN7fN3bevu5tPd40Rss2N4a0cgOLAidQ9IdBpxgnpusHaAaGTgiHVhILou14PDIS2Vo-W6tbQwTJ-Ve22vDbAQS3RzRB_qwBOnT5KXwrKMGZCZQmC7iVnWloBRAMOrYURuBl7tIAl1_stV1nB_Yopq9klg9MEHsOaVOmRdawv-yzouyfoIazRl0lPlOC8l22h3j5Qq57RPrb314gCsA0wMaQUcXxEKFFHw9VmuCqGq5Ph6lhbPhEZlyG74HMENz0v5Zs0lTp-j_Ff28-o_gCwyb-X |
| CitedBy_id | crossref_primary_10_1021_jacsau_5c00242 crossref_primary_10_1021_acs_jcim_5c00347 crossref_primary_10_1002_adts_202400479 crossref_primary_10_1002_jcc_70038 crossref_primary_10_1002_cphc_202500353 crossref_primary_10_1016_j_algal_2025_104055 crossref_primary_10_1039_D5CP00373C crossref_primary_10_1002_adfm_202507734 crossref_primary_10_1016_j_matdes_2024_113453 |
| Cites_doi | 10.1039/D0SC00594K 10.1186/s13321-023-00702-2 10.1039/D3SC03598K 10.1177/2472555220949495 10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U 10.1021/acs.jpca.2c01266 10.1126/science.aat2663 10.1063/1.478522 10.1186/s13321-019-0404-1 10.1038/s41597-021-00812-2 10.1038/s41597-019-0151-1 10.1021/jacs.2c13467 10.1103/PhysRevLett.108.058301 10.1103/PhysRevLett.108.236402 10.1021/acs.jcim.5b00498 10.1063/1.5090303 10.1038/s41467-022-29939-5 10.1038/s41570-020-0189-9 10.1021/acscentsci.7b00572 10.1063/1.5064465 10.1038/ncomms13890 10.1021/acs.jcim.0c00451 10.1088/1367-2630/15/9/095003 10.1039/D1SC00231G 10.1063/1.4865104 10.1063/1.4947214 10.1038/s41586-023-05905-z 10.1039/D2MH01279K 10.1186/s13321-018-0287-6 10.1177/1087057114522515 10.1186/s13321-017-0235-x 10.1039/C9NR10687A 10.1038/s41467-021-27504-0 10.1038/s41467-022-35692-6 10.1186/s13321-018-0265-z 10.1038/s43588-022-00391-1 10.1039/D1SC01050F 10.1002/qua.560050706 10.1021/acs.jcim.9b00048 10.1002/advs.202206674 10.1038/s41467-022-28526-y 10.1038/s41524-018-0128-1 10.1063/1.472933 10.1016/j.nantod.2023.101802 10.1021/ct100684s 10.1021/acs.jcim.8b00263 10.1039/D2DD00003B 10.1088/2516-1075/ac572f 10.1039/C7SC02664A 10.1002/wcms.1395 10.1039/D3CP02256K 10.1016/j.jcp.2009.08.008 10.1039/D3MH00039G 10.1038/s41570-018-0121 10.1109/MSP.2015.2398954 10.1021/ci500190p 10.1038/srep20952 10.1109/CVPRW.2018.00071 10.1609/aaai.v33i01.33011110 10.1063/5.0208746 10.5281/zenodo.11537048 10.1038/s41597-024-03521-8 10.1145/3394486.3403104 10.1186/1758-2946-3-1 10.1063/1.1901564 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 DOA |
| DOI | 10.1038/s41467-024-50401-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_d0eab7832b8d4a0bae95dafa3cf7edae 39025883 10_1038_s41467_024_50401_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 956832 funderid: 100010661 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 956832 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c485t-c3589a1e9308b700a6b2300669dd9ea6842e1b01a4767b92a4bddbfd1b5c19d23 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001275152300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:40:56 EDT 2025 Thu Sep 04 16:24:38 EDT 2025 Tue Oct 07 07:26:25 EDT 2025 Wed Feb 19 02:04:13 EST 2025 Sat Nov 29 03:55:07 EST 2025 Tue Nov 18 20:37:54 EST 2025 Fri Feb 21 02:37:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-c3589a1e9308b700a6b2300669dd9ea6842e1b01a4767b92a4bddbfd1b5c19d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0001-7857-5010 0000-0002-7673-3142 0000-0002-1012-4854 |
| OpenAccessLink | https://www.proquest.com/docview/3082433785?pq-origsite=%requestingapplication% |
| PMID | 39025883 |
| PQID | 3082433785 |
| PQPubID | 546298 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d0eab7832b8d4a0bae95dafa3cf7edae proquest_miscellaneous_3082627391 proquest_journals_3082433785 pubmed_primary_39025883 crossref_primary_10_1038_s41467_024_50401_1 crossref_citationtrail_10_1038_s41467_024_50401_1 springer_journals_10_1038_s41467_024_50401_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-18 |
| PublicationDateYYYYMMDD | 2024-07-18 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Noh, Gu, Kim, Jung (CR23) 2020; 11 Sanchez-Lengeling, Aspuru-Guzik (CR16) 2018; 361 Collins, Euwema, Stukel, Wepfer (CR57) 1970; 5 Zunger (CR17) 2018; 2 Chen (CR19) 2023; 15 CR39 CR38 Kim (CR18) 2018; 4 Maziarka (CR37) 2019; 12 CR35 CR34 CR33 Westermayr, Gilkes, Barrett, Maurer (CR51) 2023; 3 CR30 CR72 Anstine, Isayev (CR26) 2023; 145 Beresini (CR15) 2014; 19 Rupp, Tkatchenko, Müller, von Lilienfeld (CR69) 2012; 108 Havu, Blum, Havu, Scheffler (CR81) 2009; 228 Moret (CR21) 2023; 14 Steinmann, Wang, Seh (CR8) 2023; 10 Medrano Sandonas (CR52) 2023; 14 Sorkun, Khetan, Er (CR66) 2019; 6 von Lilienfeld, Müller, Tkatchenko (CR3) 2020; 4 Nigam, Pollice, Aspuru-Guzik (CR25) 2022; 1 Tkatchenko, DiStasio Jr, Car, Scheffler (CR76) 2012; 108 Seo, Lim, Kim (CR27) 2023; 10 Zhu, Thompson, Martinez (CR63) 2019; 150 Ambrosetti, Reilly, DiStasio Jr, Tkatchenko (CR80) 2014; 140 CR6 Perdew, Ernzerhof, Burke (CR78) 1996; 105 Makri, Ortner, Kermode (CR59) 2019; 150 Lee (CR20) 2023; 10 CR47 CR46 Hoja (CR54) 2021; 8 CR45 Dokmanic, Parhizkar, Ranieri, Vetterli (CR71) 2015; 32 CR44 CR43 Gaus, Cui, Elstner (CR75) 2011; 7 CR40 Schreiner, Bhowmik, Vegge, Jørgensen, Winther (CR61) 2022; 3 CR83 CR82 Adamo, Barone (CR79) 1999; 110 Ahmed (CR13) 2018; 10 Dollar, Joshi, Beck, Pfaendtner (CR28) 2021; 12 Xue (CR41) 2019; 9 Kang, Cho (CR32) 2018; 59 van der Maaten, Hinton (CR55) 2008; 9 Yuan, Santana-Bonilla, Zwijnenburg, Jelfs (CR50) 2020; 12 Wu (CR65) 2018; 9 Stöhr, Michelitsch, Tully, Reuter, Maurer (CR77) 2016; 144 Cremer, Medrano Sandonas, Tkatchenko, Clevert, De Fabritiis (CR67) 2023; 36 Lin (CR22) 2023; 49 Riniker, Wang, Jenkins, Landrum (CR12) 2014; 54 Paricharak (CR11) 2016; 19 CR58 CR56 Gebauer, Gastegger, Hessmann, Müller, Schütt (CR42) 2022; 13 O’Boyle (CR73) 2011; 3 Unke (CR60) 2021; 12 Kulik (CR1) 2022; 4 Góger, Medrano Sandonas, Müller, Tkatchenko (CR53) 2023; 25 Sadybekov, Katritch (CR2) 2023; 616 Gao, Ramezanghorbani, Isayev, Smith, Roitberg (CR5) 2020; 60 Helal, Maciejewski, Gregori-Puigjané, Glick, Wassermann (CR14) 2016; 56 2 Nigam, Pollice, Krenn, Gomes, Aspuru-Guzik (CR24) 2021; 12 Montavon (CR70) 2013; 15 Schütt, Arbabzadah, Chmiela, Müller, Tkatchenko (CR4) 2017; 8 Batzner (CR7) 2022; 13 Hiener, Hutchison (CR48) 2022; 126 CR68 Olivecrona, Blaschke, Engkvist, Chen (CR31) 2017; 9 Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (CR49) 2016; 6 CR64 Gómez-Bombarelli (CR29) 2018; 4 CR62 Dreiman, Bictash, Fish, Griffin, Svensson (CR9) 2020; 26 Jansen (CR10) 2019; 59 Seifert, Porezag, Frauenheim (CR74) 1996; 58 Li, Zhang, ming Liu (CR36) 2018; 10 S Kang (50401_CR32) 2018; 59 50401_CR72 DC Hiener (50401_CR48) 2022; 126 J Lin (50401_CR22) 2023; 49 O Unke (50401_CR60) 2021; 12 S Riniker (50401_CR12) 2014; 54 G Montavon (50401_CR70) 2013; 15 KY Helal (50401_CR14) 2016; 56 2 50401_CR38 50401_CR39 M Moret (50401_CR21) 2023; 14 Y Li (50401_CR36) 2018; 10 50401_CR30 O von Lilienfeld (50401_CR3) 2020; 4 D Xue (50401_CR41) 2019; 9 50401_CR34 50401_CR33 50401_CR35 B Sanchez-Lengeling (50401_CR16) 2018; 361 J Westermayr (50401_CR51) 2023; 3 M Schreiner (50401_CR61) 2022; 3 X Zhu (50401_CR63) 2019; 150 S Makri (50401_CR59) 2019; 150 S Batzner (50401_CR7) 2022; 13 R Gómez-Bombarelli (50401_CR29) 2018; 4 J Noh (50401_CR23) 2020; 11 L Medrano Sandonas (50401_CR52) 2023; 14 Ł Maziarka (50401_CR37) 2019; 12 50401_CR62 A Zunger (50401_CR17) 2018; 2 50401_CR64 L van der Maaten (50401_CR55) 2008; 9 G Seifert (50401_CR74) 1996; 58 50401_CR68 I Dokmanic (50401_CR71) 2015; 32 M Olivecrona (50401_CR31) 2017; 9 M Beresini (50401_CR15) 2014; 19 NM O’Boyle (50401_CR73) 2011; 3 JP Perdew (50401_CR78) 1996; 105 50401_CR6 O Dollar (50401_CR28) 2021; 12 SN Steinmann (50401_CR8) 2023; 10 C Adamo (50401_CR79) 1999; 110 V Havu (50401_CR81) 2009; 228 A Nigam (50401_CR25) 2022; 1 J Jansen (50401_CR10) 2019; 59 Z Wu (50401_CR65) 2018; 9 Y Chen (50401_CR19) 2023; 15 A Nigam (50401_CR24) 2021; 12 50401_CR56 HJ Kulik (50401_CR1) 2022; 4 M Gaus (50401_CR75) 2011; 7 50401_CR58 S Seo (50401_CR27) 2023; 10 J Lee (50401_CR20) 2023; 10 A Mannodi-Kanakkithodi (50401_CR49) 2016; 6 K Kim (50401_CR18) 2018; 4 X Gao (50401_CR5) 2020; 60 S Paricharak (50401_CR11) 2016; 19 50401_CR83 50401_CR82 KT Schütt (50401_CR4) 2017; 8 L Ahmed (50401_CR13) 2018; 10 AV Sadybekov (50401_CR2) 2023; 616 MC Sorkun (50401_CR66) 2019; 6 Q Yuan (50401_CR50) 2020; 12 M Rupp (50401_CR69) 2012; 108 S Góger (50401_CR53) 2023; 25 NWA Gebauer (50401_CR42) 2022; 13 DM Anstine (50401_CR26) 2023; 145 M Stöhr (50401_CR77) 2016; 144 TC Collins (50401_CR57) 1970; 5 J Cremer (50401_CR67) 2023; 36 A Ambrosetti (50401_CR80) 2014; 140 50401_CR40 50401_CR43 J Hoja (50401_CR54) 2021; 8 50401_CR45 50401_CR44 GHS Dreiman (50401_CR9) 2020; 26 50401_CR47 A Tkatchenko (50401_CR76) 2012; 108 50401_CR46 |
| References_xml | – volume: 11 start-page: 4871 year: 2020 end-page: 4881 ident: CR23 article-title: Machine-enabled inverse design of inorganic solid materials: Promises and challenges publication-title: Chem. Sci. doi: 10.1039/D0SC00594K – ident: CR45 – volume: 15 year: 2023 ident: CR19 article-title: Deep generative model for drug design from protein target sequence publication-title: J. Cheminformatics doi: 10.1186/s13321-023-00702-2 – volume: 14 start-page: 10702 year: 2023 end-page: 10717 ident: CR52 article-title: "Freedom of design” in chemical compound space: towards rational in silico design of molecules with targeted quantum-mechanical properties publication-title: Chem. Sci. doi: 10.1039/D3SC03598K – volume: 26 start-page: 257 year: 2020 end-page: 262 ident: CR9 article-title: Changing the hts paradigm: Ai-driven iterative screening for hit finding publication-title: Slas Discov. doi: 10.1177/2472555220949495 – volume: 58 start-page: 185 year: 1996 end-page: 192 ident: CR74 article-title: Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U – volume: 19 start-page: 277 year: 2016 end-page: 285 ident: CR11 article-title: Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening publication-title: Brief. Bioinforma. – volume: 126 start-page: 2750 year: 2022 end-page: 2760 ident: CR48 article-title: Pareto optimization of oligomer polarizability and dipole moment using a genetic algorithm publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c01266 – volume: 361 start-page: 360 year: 2018 end-page: 365 ident: CR16 article-title: Inverse molecular design using machine learning: Generative models for matter engineering publication-title: Science doi: 10.1126/science.aat2663 – volume: 3 start-page: 045022 year: 2022 ident: CR61 article-title: Neuralneb—neural networks can find reaction paths fast publication-title: Mach. Learn.: Sci. Technol. – ident: CR68 – volume: 110 start-page: 6158 year: 1999 end-page: 6170 ident: CR79 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – ident: CR39 – volume: 36 start-page: 1561 year: 2023 end-page: 1573 ident: CR67 article-title: Equivariant graph neural networks for toxicity prediction publication-title: Chem. Res. Toxicol. – volume: 12 year: 2019 ident: CR37 article-title: Mol-cyclegan: a generative model for molecular optimization publication-title: J. Cheminformatics doi: 10.1186/s13321-019-0404-1 – volume: 8 year: 2021 ident: CR54 article-title: QM7-X, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules publication-title: Sci. Data doi: 10.1038/s41597-021-00812-2 – ident: CR35 – volume: 6 year: 2019 ident: CR66 article-title: Aqsoldb, a curated reference set of aqueous solubility and 2d descriptors for a diverse set of compounds publication-title: Sci. Data doi: 10.1038/s41597-019-0151-1 – ident: CR58 – volume: 145 start-page: 8736 year: 2023 end-page: 8750 ident: CR26 article-title: Generative models as an emerging paradigm in the chemical sciences publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13467 – volume: 108 start-page: 058301 year: 2012 ident: CR69 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.058301 – volume: 108 start-page: 236402 year: 2012 ident: CR76 article-title: Accurate and efficient method for many-body van der waals interactions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.236402 – volume: 56 2 start-page: 390 year: 2016 end-page: 398 ident: CR14 article-title: Public domain hts fingerprints: Design and evaluation of compound bioactivity profiles from pubchem’s bioassay repository publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00498 – volume: 150 start-page: 164103 year: 2019 ident: CR63 article-title: Geodesic interpolation for reaction pathways publication-title: J. Chem. Phys. doi: 10.1063/1.5090303 – volume: 13 year: 2022 ident: CR7 article-title: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 – ident: CR46 – volume: 4 start-page: 347 year: 2020 end-page: 358 ident: CR3 article-title: Exploring chemical compound space with quantum-based machine learning publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0189-9 – volume: 4 start-page: 268 year: 2018 end-page: 276 ident: CR29 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 – volume: 150 start-page: 094109 year: 2019 ident: CR59 article-title: A preconditioning scheme for minimum energy path finding methods publication-title: J. Chem. Phys. doi: 10.1063/1.5064465 – volume: 8 year: 2017 ident: CR4 article-title: Quantum-chemical insights from deep tensor neural networks publication-title: Nat. Commun. doi: 10.1038/ncomms13890 – volume: 60 start-page: 3408 year: 2020 end-page: 3415 ident: CR5 article-title: Torchani: A free and open source pytorch-based deep learning implementation of the ani neural network potentials publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00451 – volume: 15 start-page: 095003 year: 2013 ident: CR70 article-title: Machine learning of molecular electronic properties in chemical compound space publication-title: New J. Phys. doi: 10.1088/1367-2630/15/9/095003 – volume: 12 start-page: 7079 year: 2021 end-page: 7090 ident: CR24 article-title: Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (stoned) algorithm for molecules using selfies publication-title: Chem. Sci. doi: 10.1039/D1SC00231G – volume: 3 start-page: 1 year: 2011 end-page: 14 ident: CR73 article-title: Open babel: An open chemical toolbox publication-title: J. Cheminformatics – volume: 140 start-page: 18A508 year: 2014 ident: CR80 article-title: Long-range correlation energy calculated from coupled atomic response functions publication-title: J. Chem. Phys. doi: 10.1063/1.4865104 – volume: 144 start-page: 151101 year: 2016 ident: CR77 article-title: Communication: Charge-population based dispersion interactions for molecules and materials publication-title: J. Chem. Phys. doi: 10.1063/1.4947214 – volume: 616 start-page: 673 year: 2023 end-page: 685 ident: CR2 article-title: Computational approaches streamlining drug discovery publication-title: Nature doi: 10.1038/s41586-023-05905-z – volume: 10 start-page: 393 year: 2023 end-page: 406 ident: CR8 article-title: How machine learning can accelerate electrocatalysis discovery and optimization publication-title: Mater. Horiz. doi: 10.1039/D2MH01279K – volume: 10 year: 2018 ident: CR36 article-title: Multi-objective de novo drug design with conditional graph generative model publication-title: J. Cheminformatics doi: 10.1186/s13321-018-0287-6 – ident: CR64 – volume: 19 start-page: 758–770 year: 2014 ident: CR15 article-title: Small-molecule library subset screening as an aid for accelerating lead identification publication-title: J. Biomol. Screen. doi: 10.1177/1087057114522515 – volume: 9 year: 2017 ident: CR31 article-title: Molecular de novo design through deep reinforcement learning publication-title: J. Cheminformatics doi: 10.1186/s13321-017-0235-x – volume: 12 start-page: 6744 year: 2020 end-page: 6758 ident: CR50 article-title: Molecular generation targeting desired electronic properties via deep generative models publication-title: Nanoscale doi: 10.1039/C9NR10687A – volume: 12 year: 2021 ident: CR60 article-title: Spookynet: Learning force fields with electronic degrees of freedom and nonlocal effects publication-title: Nat. Commun. doi: 10.1038/s41467-021-27504-0 – volume: 14 year: 2023 ident: CR21 article-title: Leveraging molecular structure and bioactivity with chemical language models for de novo drug design publication-title: Nat. Commun. doi: 10.1038/s41467-022-35692-6 – volume: 10 year: 2018 ident: CR13 article-title: Efficient iterative virtual screening with apache spark and conformal prediction publication-title: J. Cheminformatics doi: 10.1186/s13321-018-0265-z – ident: CR43 – volume: 3 start-page: 139 year: 2023 end-page: 148 ident: CR51 article-title: High-throughput property-driven generative design of functional organic molecules publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00391-1 – ident: CR47 – ident: CR72 – volume: 12 start-page: 8362 year: 2021 end-page: 8372 ident: CR28 article-title: Attention-based generative models for de novo molecular design publication-title: Chem. Sci. doi: 10.1039/D1SC01050F – volume: 5 start-page: 77 year: 1970 end-page: 85 ident: CR57 article-title: Valence electron density of states of znse obtained from an energy dependent exchange approximation publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560050706 – ident: CR30 – volume: 59 start-page: 1709 year: 2019 end-page: 1714 ident: CR10 article-title: Biased complement diversity selection for effective exploration of chemical space in hit-finding campaigns publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00048 – volume: 10 start-page: 2206674 year: 2023 ident: CR27 article-title: Molecular generative model via retrosynthetically prepared chemical building block assembly publication-title: Adv. Sci. doi: 10.1002/advs.202206674 – ident: CR33 – volume: 13 year: 2022 ident: CR42 article-title: Inverse design of 3d molecular structures with conditional generative neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-022-28526-y – ident: CR82 – ident: CR6 – volume: 4 year: 2018 ident: CR18 article-title: Deep-learning-based inverse design model for intelligent discovery of organic molecules publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0128-1 – volume: 105 start-page: 9982 year: 1996 end-page: 9985 ident: CR78 article-title: Rationale for mixing exact exchange with density functional approximations publication-title: J. Chem. Phys. doi: 10.1063/1.472933 – ident: CR56 – volume: 49 start-page: 101802 year: 2023 ident: CR22 article-title: Machine learning accelerates the investigation of targeted mofs: Performance prediction, rational design and intelligent synthesis publication-title: Nano Today doi: 10.1016/j.nantod.2023.101802 – ident: CR40 – volume: 7 start-page: 931 year: 2011 end-page: 948 ident: CR75 article-title: DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100684s – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR55 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 43 year: 2018 end-page: 52 ident: CR32 article-title: Conditional molecular design with deep generative models publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00263 – ident: CR44 – volume: 1 start-page: 390 year: 2022 end-page: 404 ident: CR25 article-title: Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design publication-title: Digital Discov. doi: 10.1039/D2DD00003B – volume: 4 start-page: 023004 year: 2022 ident: CR1 article-title: Roadmap on machine learning in electronic structure publication-title: Electron. Struct. doi: 10.1088/2516-1075/ac572f – ident: CR38 – volume: 9 start-page: 513 year: 2018 end-page: 530 ident: CR65 article-title: Moleculenet: a benchmark for molecular machine learning publication-title: Chem. Sci. doi: 10.1039/C7SC02664A – volume: 9 start-page: e1395 year: 2019 ident: CR41 article-title: Advances and challenges in deep generative models for de novo molecule generation publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1395 – ident: CR34 – volume: 25 start-page: 22211 year: 2023 end-page: 22222 ident: CR53 article-title: Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP02256K – volume: 228 start-page: 8367 year: 2009 end-page: 8379 ident: CR81 article-title: Efficient ( ) integration for all-electron electronic structure calculation using numeric basis functions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.08.008 – volume: 10 start-page: 5436 year: 2023 end-page: 5456 ident: CR20 article-title: Machine learning-based inverse design methods considering data characteristics and design space size in materials design and manufacturing: a review publication-title: Mater. Horiz. doi: 10.1039/D3MH00039G – ident: CR83 – volume: 2 start-page: 0121 year: 2018 ident: CR17 article-title: Inverse design in search of materials with target functionalities publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0121 – volume: 32 start-page: 12 year: 2015 end-page: 30 ident: CR71 article-title: Euclidean distance matrices: Essential theory, algorithms, and applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2398954 – ident: CR62 – volume: 54 start-page: 1880 year: 2014 end-page: 91 ident: CR12 article-title: Using information from historical high-throughput screens to predict active compounds publication-title: J. Chem. Inf. Model. doi: 10.1021/ci500190p – volume: 6 year: 2016 ident: CR49 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 5 start-page: 77 year: 1970 ident: 50401_CR57 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560050706 – volume: 13 year: 2022 ident: 50401_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28526-y – ident: 50401_CR58 doi: 10.1109/CVPRW.2018.00071 – volume: 108 start-page: 058301 year: 2012 ident: 50401_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.058301 – volume: 59 start-page: 43 year: 2018 ident: 50401_CR32 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00263 – volume: 140 start-page: 18A508 year: 2014 ident: 50401_CR80 publication-title: J. Chem. Phys. doi: 10.1063/1.4865104 – volume: 8 year: 2017 ident: 50401_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms13890 – ident: 50401_CR44 – ident: 50401_CR40 – volume: 10 start-page: 2206674 year: 2023 ident: 50401_CR27 publication-title: Adv. Sci. doi: 10.1002/advs.202206674 – ident: 50401_CR35 doi: 10.1609/aaai.v33i01.33011110 – volume: 7 start-page: 931 year: 2011 ident: 50401_CR75 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100684s – ident: 50401_CR6 doi: 10.1063/5.0208746 – volume: 26 start-page: 257 year: 2020 ident: 50401_CR9 publication-title: Slas Discov. doi: 10.1177/2472555220949495 – ident: 50401_CR82 – volume: 9 start-page: 513 year: 2018 ident: 50401_CR65 publication-title: Chem. Sci. doi: 10.1039/C7SC02664A – volume: 54 start-page: 1880 year: 2014 ident: 50401_CR12 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci500190p – volume: 126 start-page: 2750 year: 2022 ident: 50401_CR48 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c01266 – volume: 25 start-page: 22211 year: 2023 ident: 50401_CR53 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP02256K – ident: 50401_CR34 – ident: 50401_CR83 doi: 10.5281/zenodo.11537048 – ident: 50401_CR30 – ident: 50401_CR47 – volume: 12 start-page: 6744 year: 2020 ident: 50401_CR50 publication-title: Nanoscale doi: 10.1039/C9NR10687A – volume: 59 start-page: 1709 year: 2019 ident: 50401_CR10 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00048 – volume: 14 start-page: 10702 year: 2023 ident: 50401_CR52 publication-title: Chem. Sci. doi: 10.1039/D3SC03598K – ident: 50401_CR68 – volume: 32 start-page: 12 year: 2015 ident: 50401_CR71 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2398954 – volume: 10 start-page: 5436 year: 2023 ident: 50401_CR20 publication-title: Mater. Horiz. doi: 10.1039/D3MH00039G – ident: 50401_CR43 – volume: 4 start-page: 268 year: 2018 ident: 50401_CR29 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 – volume: 616 start-page: 673 year: 2023 ident: 50401_CR2 publication-title: Nature doi: 10.1038/s41586-023-05905-z – volume: 10 year: 2018 ident: 50401_CR36 publication-title: J. Cheminformatics doi: 10.1186/s13321-018-0287-6 – ident: 50401_CR64 doi: 10.1038/s41597-024-03521-8 – volume: 4 start-page: 347 year: 2020 ident: 50401_CR3 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0189-9 – volume: 4 start-page: 023004 year: 2022 ident: 50401_CR1 publication-title: Electron. Struct. doi: 10.1088/2516-1075/ac572f – volume: 15 start-page: 095003 year: 2013 ident: 50401_CR70 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/9/095003 – volume: 6 year: 2016 ident: 50401_CR49 publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 56 2 start-page: 390 year: 2016 ident: 50401_CR14 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00498 – volume: 19 start-page: 758–770 year: 2014 ident: 50401_CR15 publication-title: J. Biomol. Screen. doi: 10.1177/1087057114522515 – volume: 12 start-page: 8362 year: 2021 ident: 50401_CR28 publication-title: Chem. Sci. doi: 10.1039/D1SC01050F – ident: 50401_CR38 doi: 10.1145/3394486.3403104 – volume: 36 start-page: 1561 year: 2023 ident: 50401_CR67 publication-title: Chem. Res. Toxicol. – volume: 10 year: 2018 ident: 50401_CR13 publication-title: J. Cheminformatics doi: 10.1186/s13321-018-0265-z – volume: 2 start-page: 0121 year: 2018 ident: 50401_CR17 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0121 – ident: 50401_CR33 – volume: 14 year: 2023 ident: 50401_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35692-6 – volume: 8 year: 2021 ident: 50401_CR54 publication-title: Sci. Data doi: 10.1038/s41597-021-00812-2 – volume: 6 year: 2019 ident: 50401_CR66 publication-title: Sci. Data doi: 10.1038/s41597-019-0151-1 – ident: 50401_CR46 – volume: 361 start-page: 360 year: 2018 ident: 50401_CR16 publication-title: Science doi: 10.1126/science.aat2663 – volume: 3 start-page: 1 year: 2011 ident: 50401_CR73 publication-title: J. Cheminformatics doi: 10.1186/1758-2946-3-1 – volume: 4 year: 2018 ident: 50401_CR18 publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0128-1 – volume: 145 start-page: 8736 year: 2023 ident: 50401_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13467 – volume: 110 start-page: 6158 year: 1999 ident: 50401_CR79 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 60 start-page: 3408 year: 2020 ident: 50401_CR5 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00451 – volume: 1 start-page: 390 year: 2022 ident: 50401_CR25 publication-title: Digital Discov. doi: 10.1039/D2DD00003B – volume: 9 start-page: 2579 year: 2008 ident: 50401_CR55 publication-title: J. Mach. Learn. Res. – volume: 13 year: 2022 ident: 50401_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29939-5 – volume: 150 start-page: 164103 year: 2019 ident: 50401_CR63 publication-title: J. Chem. Phys. doi: 10.1063/1.5090303 – volume: 19 start-page: 277 year: 2016 ident: 50401_CR11 publication-title: Brief. Bioinforma. – volume: 9 year: 2017 ident: 50401_CR31 publication-title: J. Cheminformatics doi: 10.1186/s13321-017-0235-x – volume: 150 start-page: 094109 year: 2019 ident: 50401_CR59 publication-title: J. Chem. Phys. doi: 10.1063/1.5064465 – volume: 10 start-page: 393 year: 2023 ident: 50401_CR8 publication-title: Mater. Horiz. doi: 10.1039/D2MH01279K – ident: 50401_CR72 – volume: 12 year: 2021 ident: 50401_CR60 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27504-0 – volume: 3 start-page: 045022 year: 2022 ident: 50401_CR61 publication-title: Mach. Learn.: Sci. Technol. – volume: 58 start-page: 185 year: 1996 ident: 50401_CR74 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U – volume: 12 start-page: 7079 year: 2021 ident: 50401_CR24 publication-title: Chem. Sci. doi: 10.1039/D1SC00231G – ident: 50401_CR45 – volume: 144 start-page: 151101 year: 2016 ident: 50401_CR77 publication-title: J. Chem. Phys. doi: 10.1063/1.4947214 – volume: 15 year: 2023 ident: 50401_CR19 publication-title: J. Cheminformatics doi: 10.1186/s13321-023-00702-2 – volume: 108 start-page: 236402 year: 2012 ident: 50401_CR76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.236402 – volume: 228 start-page: 8367 year: 2009 ident: 50401_CR81 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.08.008 – volume: 9 start-page: e1395 year: 2019 ident: 50401_CR41 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1395 – ident: 50401_CR62 – ident: 50401_CR39 – volume: 3 start-page: 139 year: 2023 ident: 50401_CR51 publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00391-1 – volume: 11 start-page: 4871 year: 2020 ident: 50401_CR23 publication-title: Chem. Sci. doi: 10.1039/D0SC00594K – volume: 12 year: 2019 ident: 50401_CR37 publication-title: J. Cheminformatics doi: 10.1186/s13321-019-0404-1 – ident: 50401_CR56 doi: 10.1063/1.1901564 – volume: 49 start-page: 101802 year: 2023 ident: 50401_CR22 publication-title: Nano Today doi: 10.1016/j.nantod.2023.101802 – volume: 105 start-page: 9982 year: 1996 ident: 50401_CR78 publication-title: J. Chem. Phys. doi: 10.1063/1.472933 |
| SSID | ssj0000391844 |
| Score | 2.5085492 |
| Snippet | Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with tailored... Abstract Computer-driven molecular design combines the principles of chemistry, physics, and artificial intelligence to identify chemical compounds with... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6061 |
| SubjectTerms | 639/638/440/94 639/638/563/606 639/705/1042 639/766/94 Artificial intelligence Chemical compounds Coders Design Design parameters Equilibrium Humanities and Social Sciences Isomers Learning algorithms Machine learning Mapping Materials science Molecular properties Molecular structure multidisciplinary Organic chemistry Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqqpW4INryCLTIlXoDq3bsrO0joFY9VRyo1JvlxwQh7aPd7CLx7xnb2aWI14Wr4-f483gmk3xDyJnvvU1KW5Y0dAxvfM5C1JylZLRtW4AQTUk2oa-vze2t_fgg1Vf-JqzSA1fBnScOPmjEXTBJeR482C7hCDL2GpKHrH25tg-cqaKDpUXXRY1_yXBpzgdVdAJeSaxD4AomfrqJCmH_76zMXyKk5eK5fEIejxYjfVdnekB2YH5I9msOyW9HxGemjOUAdOYz1cJnuujp_RrltZ7Ru_ymfZkpU-lqQStV7Br9a4qWKo0jVQBFnRIhNxtmfjqlNc9TpLOaOBeGp-Tm8uLThys25k1gUZluxaLsjPUCrOQmaM79JKCjgbaFTcmCz5E3EIELr_REB9t6FVIKfRKhi8KmVj4ju_PFHF4Qiu4Tbl2SQfagQGBHMMEucYCgc2FDxEaGLo6k4jm3xdSV4LY0rsrdodxdkbsTDXmzbXNXKTX-Wvt93pptzUyHXQpQGm4EifsXSBpyvNlYN57RwWWiHiWlNl1DTreP8XTlkImfw2Jd60zQwrM4j-cVENuZyByhNUY25O0GIT86__OCXv6PBb0ij9oM5czwaY7JLgIITshe_Lr6Mixfl7PwHT1LDsc priority: 102 providerName: Directory of Open Access Journals |
| Title | Inverse mapping of quantum properties to structures for chemical space of small organic molecules |
| URI | https://link.springer.com/article/10.1038/s41467-024-50401-1 https://www.ncbi.nlm.nih.gov/pubmed/39025883 https://www.proquest.com/docview/3082433785 https://www.proquest.com/docview/3082627391 https://doaj.org/article/d0eab7832b8d4a0bae95dafa3cf7edae |
| Volume | 15 |
| WOSCitedRecordID | wos001275152300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXZC48H4ElspI3MDaOHZq-4RYtCs4UEUIpMLF8isIqW26TYvEv2fsuFkhYC9cfPArtmc8Hs843yD0wrRGeS4U8SLUBE78klgnSuK9FKqqQrBOpmATYjaT87lqssGtz88q9zIxCWrfuWgjP4mwKpwxIevX6wsSo0ZF72oOoXGAjiJKQpWe7jWjjSWin0vO878yJZMnPU-SAQ4mUgP7UkJ_O48SbP_fdM0__KTp-Dm__b8Dv4NuZcUTvxk45S66Flb30I0hFOXP-8hEwI1NH_DSRMSGb7hr8cUOln23xOtosN9E5FW87fCAOLuDazoGhRe7jDiAQTS5EJv1S7NY4CFclMPLIf5u6B-gz-dnn96-Izn8AnFc1lviWC2VoUHBDKwoSzO1cF8BFUV5r4KJDrxAbUkNF1NhVWW49d62ntraUeUr9hAdrrpVeIww3MKAAzyzrA08UOgoTKFL-IAVMbNAdE8E7TI2eQyRsdDJR86kHgingXA6EU7TAr0c26wHZI4ra59G2o41I6p2yoDV0HmTal8GYwXIOCs9N6U1QdUeuJm5VgRvQoGO9yTWeav3-pK-BXo-FsMmjZ4XswrdbqgzBUVRwTgeDRw1joRFR6-UrECv9ix22fm_J_Tk6rE8RTeryOURAlQeo0NgjfAMXXc_tt_7zQQdiLlIqZygo9OzWfNxkqwRk7SBIG3qr1DSvP_QfPkFAUkg6A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKQguvKGBAosEJ7Dqxzq7e0CIV9WobZRDkcppuy-jSkmcxgmof4rfyIwfqRDQWw8cba_X6_U334w93m8AXprCKM-FirwIeYQeP46sE3HkvRQqTUOwTtbFJsRoJI-P1XgDfnZrYei3yo4Ta6L2paNv5Dskq8KzTMj83fwsoqpRlF3tSmg0sNgP5z_wla16O_yEz_dVmu5-Pvq4F7VVBSLHZb6MXJZLZZKgsEcr4tgMLIbh6HmV9yoYykuFxMaJ4WIgrEoNt97bwic2d4nyJHSAlL_JCew92BwPD8df1191SG9dct6uzokzuVPxmovQFUY5GkwSJb95wLpQwN-i2z8ys7XD2739v03VHbjVhtbsfWMLd2EjzO7B9abY5vl9MCQpsqgCmxrSpPjGyoKdrRBYqymbU0piQdqybFmyRlN3tcAtDOmZazUVGJKvC3RaNTWTCWsKYjk2bSoMh-oBfLmS-3sIvVk5C1vA8D0TMe4zmxWBhwQ7CgPsEi9gBe3sQ9I9dO1a9XUqAjLR9V8AmdQNUDQCRddA0UkfXq_PmTfaI5e2_kBYWrck3fB6B86GbmlI-zgYK5DFrfTcxNYElXu018wVIngT-rDdQUq3ZFbpCzz14cX6MNIQ5ZbMLJSrps0AQ2GF43jUIHg9koxS2VJmfXjTQfqi83_f0OPLx_IcbuwdHR7og-Fo_wncTMnCSPBUbkMPYRKewjX3fXlaLZ61Rsrg5KrB_gv7vnfP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWy0NceD8CCxgJTmA1z9o-IAQsFatFVQ8grbgYPyYIqW26TQvav8avYyavFQL2tgeOSRzHSb75ZpxxvmHsqS2tDrnUIkgoBHr8WDgvYxGCkjpNAZxXTbEJOZ2qoyM922E_-39haFllz4kNUYfK0zfyEcmq5FkmVTEqu2URs_3Jq9WxoApSlGnty2m0EDmEkx84fatfHuzju36WppN3H9--F12FAeFzVWyEzwqlbQIae3cyju3YYUiOXliHoMFSjgoSFyc2l2PpdGpzF4IrQ-IKn-hAogdI_xckzjFpOeGs-Dx83yHldZXn3X86caZGdd6wEjpFUaDpJCL5zRc2JQP-Fuf-kaNtXN_k2v_80K6zq13AzV-3FnKD7cDyJrvUluA8ucUsCY2sa-ALS0oVX3lV8uMtwm274CtKVKxJcZZvKt4q7W7XuIWBPved0gJHSvZAp9ULO5_ztkyW54u27jDUt9mnc7m_O2x3WS3hHuM4-0Tkh8xlJeSQYEcwxi7xAk7SzoglPQCM7zTZqTTI3DRrAzJlWtAYBI1pQGOSiD0fzlm1iiRntn5DuBpakpp4swOfhunIyYQYrJPI7U6F3MbOgi4CWnHmSwnBQsT2eniZjuJqc4qtiD0ZDiM5UcbJLqHatm3GGCBrHMfdFs3DSDJKcCuVRexFD-_Tzv99Q_fPHstjdhkRbj4cTA8fsCspGRupoKo9tosogYfsov---VavHzXWytmX80b6L6LEfzI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+mapping+of+quantum+properties+to+structures+for+chemical+space+of+small+organic+molecules&rft.jtitle=Nature+communications&rft.au=Fallani%2C+Alessio&rft.au=Medrano+Sandonas%2C+Leonardo&rft.au=Tkatchenko%2C+Alexandre&rft.date=2024-07-18&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=6061&rft_id=info:doi/10.1038%2Fs41467-024-50401-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |