Galformer: a transformer with generative decoding and a hybrid loss function for multi-step stock market index prediction

The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing predic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 23762 - 18
Hlavní autoři: Ji, Yi, Luo, Yuxuan, Lu, Aixia, Xia, Duanyang, Yang, Lixia, Wee-Chung Liew, Alan
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 10.10.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing prediction accuracy. However, the Transformer faces challenges in multi-step stock market forecasting, including limitations in inference speed for long sequence prediction and the inadequacy of traditional loss functions to capture the characteristics of noisy, nonlinear stock history data. To address these issues, we introduce an innovative transformer-based model with generative decoding and a hybrid loss function, named “Galformer,” tailored for the multi-step prediction of stock market indices. Galformer possesses two distinctive characteristics: (1) a novel generative style decoder that predicts long time-series sequences in a single forward operation, significantly boosting the speed of predicting long sequences; (2) a novel loss function that combines quantitative error and trend accuracy of the predicted results, providing feedback and optimizing the transformer-based model. Experimental results on four typical stock market indices, namely the CSI 300 Index, S&P 500 Index, Dow Jones Industrial Average Index (DJI), and Nasdaq Composite Index (IXIC), affirm that Galformer outperforms other classical methods, effectively optimizing the Transformer model for stock market prediction.
AbstractList The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing prediction accuracy. However, the Transformer faces challenges in multi-step stock market forecasting, including limitations in inference speed for long sequence prediction and the inadequacy of traditional loss functions to capture the characteristics of noisy, nonlinear stock history data. To address these issues, we introduce an innovative transformer-based model with generative decoding and a hybrid loss function, named "Galformer," tailored for the multi-step prediction of stock market indices. Galformer possesses two distinctive characteristics: (1) a novel generative style decoder that predicts long time-series sequences in a single forward operation, significantly boosting the speed of predicting long sequences; (2) a novel loss function that combines quantitative error and trend accuracy of the predicted results, providing feedback and optimizing the transformer-based model. Experimental results on four typical stock market indices, namely the CSI 300 Index, S&P 500 Index, Dow Jones Industrial Average Index (DJI), and Nasdaq Composite Index (IXIC), affirm that Galformer outperforms other classical methods, effectively optimizing the Transformer model for stock market prediction.
The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing prediction accuracy. However, the Transformer faces challenges in multi-step stock market forecasting, including limitations in inference speed for long sequence prediction and the inadequacy of traditional loss functions to capture the characteristics of noisy, nonlinear stock history data. To address these issues, we introduce an innovative transformer-based model with generative decoding and a hybrid loss function, named "Galformer," tailored for the multi-step prediction of stock market indices. Galformer possesses two distinctive characteristics: (1) a novel generative style decoder that predicts long time-series sequences in a single forward operation, significantly boosting the speed of predicting long sequences; (2) a novel loss function that combines quantitative error and trend accuracy of the predicted results, providing feedback and optimizing the transformer-based model. Experimental results on four typical stock market indices, namely the CSI 300 Index, S&P 500 Index, Dow Jones Industrial Average Index (DJI), and Nasdaq Composite Index (IXIC), affirm that Galformer outperforms other classical methods, effectively optimizing the Transformer model for stock market prediction.The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing prediction accuracy. However, the Transformer faces challenges in multi-step stock market forecasting, including limitations in inference speed for long sequence prediction and the inadequacy of traditional loss functions to capture the characteristics of noisy, nonlinear stock history data. To address these issues, we introduce an innovative transformer-based model with generative decoding and a hybrid loss function, named "Galformer," tailored for the multi-step prediction of stock market indices. Galformer possesses two distinctive characteristics: (1) a novel generative style decoder that predicts long time-series sequences in a single forward operation, significantly boosting the speed of predicting long sequences; (2) a novel loss function that combines quantitative error and trend accuracy of the predicted results, providing feedback and optimizing the transformer-based model. Experimental results on four typical stock market indices, namely the CSI 300 Index, S&P 500 Index, Dow Jones Industrial Average Index (DJI), and Nasdaq Composite Index (IXIC), affirm that Galformer outperforms other classical methods, effectively optimizing the Transformer model for stock market prediction.
Abstract The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing prediction accuracy. However, the Transformer faces challenges in multi-step stock market forecasting, including limitations in inference speed for long sequence prediction and the inadequacy of traditional loss functions to capture the characteristics of noisy, nonlinear stock history data. To address these issues, we introduce an innovative transformer-based model with generative decoding and a hybrid loss function, named “Galformer,” tailored for the multi-step prediction of stock market indices. Galformer possesses two distinctive characteristics: (1) a novel generative style decoder that predicts long time-series sequences in a single forward operation, significantly boosting the speed of predicting long sequences; (2) a novel loss function that combines quantitative error and trend accuracy of the predicted results, providing feedback and optimizing the transformer-based model. Experimental results on four typical stock market indices, namely the CSI 300 Index, S&P 500 Index, Dow Jones Industrial Average Index (DJI), and Nasdaq Composite Index (IXIC), affirm that Galformer outperforms other classical methods, effectively optimizing the Transformer model for stock market prediction.
ArticleNumber 23762
Author Ji, Yi
Xia, Duanyang
Yang, Lixia
Luo, Yuxuan
Lu, Aixia
Wee-Chung Liew, Alan
Author_xml – sequence: 1
  givenname: Yi
  surname: Ji
  fullname: Ji, Yi
  organization: School of Electrical Information Engineering, Jiangsu University
– sequence: 2
  givenname: Yuxuan
  surname: Luo
  fullname: Luo, Yuxuan
  email: 2222107005@stmail.ujs.edu.cn
  organization: School of Electrical Information Engineering, Jiangsu University
– sequence: 3
  givenname: Aixia
  surname: Lu
  fullname: Lu, Aixia
  organization: School of Electrical Information Engineering, Jiangsu University
– sequence: 4
  givenname: Duanyang
  surname: Xia
  fullname: Xia, Duanyang
  organization: School of Electrical Information Engineering, Jiangsu University
– sequence: 5
  givenname: Lixia
  surname: Yang
  fullname: Yang, Lixia
  organization: School of Electronic Information Engineering, Anhui University
– sequence: 6
  givenname: Alan
  surname: Wee-Chung Liew
  fullname: Wee-Chung Liew, Alan
  organization: School of Information and Communication Technology, Griffith University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39390029$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CALHHhEvBHnMTcUAWlUiUucLb8Mdl6m7UX2ynsv8dNSkE91D54PHre8XhmXqKjEAMg9JqS95Tw4UNuqZBDQ1jb9Iy0ouHP0MliMM7Y0X_2MTrLeUvqEky2VL5Ax1xySQiTJ-hwoacxph2kj1jjknTI6xX_8uUabyBA0sXfAnZgo_Nhg3VwFb0-mOQdnmLOeJyDLT4GXKV4N0_FN7nAHucS7Q3e6XQDBfvg4DfeJ3B-gV-h56OeMpzdn6fox5fP38-_NlffLi7PP101th1EaSypewBJWjYSMAPhRgPteibF2HFHHJFspNqJTpAeBltdVJiudYMdByIMP0WXa1wX9Vbtk6_5HFTUXi2OmDZKp-LtBKptwRhGGKOat0RKLayRnewdN72hZKyx3q2x9in-nCEXtfPZwjTpAHHOilMqBKE1pYq-fYRu45xC_elCMd6TrqvUm3tqNjtwD-n9bVAF2ArYVCudYHxAKFF3g6DWQVB1ENQyCIpX0fBIZH3Rd0WvDfbT01K-SnN9J2wg_Uv7CdUfzzfGuQ
CitedBy_id crossref_primary_10_1007_s00521_025_11395_z
crossref_primary_10_1016_j_asoc_2025_113783
crossref_primary_10_1007_s13042_025_02740_8
crossref_primary_10_1016_j_iswa_2025_200564
crossref_primary_10_1016_j_eswa_2025_128573
crossref_primary_10_3390_math13172762
Cites_doi 10.1038/s41467-020-19266-y
10.1016/j.physa.2015.12.017
10.1016/j.knosys.2018.10.034
10.1198/jasa.2007.s209
10.1016/j.jclepro.2018.10.128
10.1371/journal.pone.0180944
10.1016/j.eswa.2016.02.006
10.1007/s00607-019-00773-w
10.1016/j.eswa.2021.115537
10.1016/j.dss.2010.08.028
10.1016/j.procs.2019.01.256
10.1109/ACCESS.2021.3056713
10.3115/v1/W14-4012
10.1609/aaai.v33i01.33016706
10.1109/ICACCI.2017.8126078
10.1098/rsta.2020.0209
10.1109/ICMLC56445.2022.9941330
10.1109/SIU53274.2021.9477814
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X5
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BEZIV
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K6~
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-72045-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Entrepreneurship Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Entrepreneurship
Business Premium Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_44ebb20221a34099a5cb9697d3b7b10f
39390029
10_1038_s41598_024_72045_3
Genre Journal Article
GrantInformation_xml – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province
  grantid: SJCX23_2088
– fundername: the Collaborative Innovation Program of Universities in Anhui Province
  grantid: GXXT-2021-028
– fundername: the Natural Science Foundation of Anhui Province
  grantid: 2008085MF186
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7X5
7XB
8FK
BEZIV
K6~
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-c0c0c8e9042f0eb803bae167295f63d0d092f1ad56507e8c3d015b64d8cf805b3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001337092300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:36:07 EDT 2025
Thu Oct 02 05:11:36 EDT 2025
Tue Oct 07 07:36:34 EDT 2025
Mon Jul 21 05:40:00 EDT 2025
Sat Nov 29 05:24:23 EST 2025
Tue Nov 18 20:58:51 EST 2025
Fri Feb 21 02:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Transformer
Stock index prediction
Galformer
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-c0c0c8e9042f0eb803bae167295f63d0d092f1ad56507e8c3d015b64d8cf805b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/44ebb20221a34099a5cb9697d3b7b10f
PMID 39390029
PQID 3115237066
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_44ebb20221a34099a5cb9697d3b7b10f
proquest_miscellaneous_3115501092
proquest_journals_3115237066
pubmed_primary_39390029
crossref_primary_10_1038_s41598_024_72045_3
crossref_citationtrail_10_1038_s41598_024_72045_3
springer_journals_10_1038_s41598_024_72045_3
PublicationCentury 2000
PublicationDate 2024-10-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CR19
CR18
Long, Lu, Cui (CR21) 2019; 164
CR17
CR15
CR14
CR13
Jiang (CR10) 2021; 2021
Anagnostidis, Varsakelis, Emmanouilides (CR1) 2016; 447
CR11
Williams, Zipser (CR30) 1989; 1989
Di Persio, Honchar (CR5) 2016; 10
Zhang, Zhong, Dong, Wang, Wang (CR8) 2019; 147
CR2
Li, Ni, Chang (CR9) 2020; 102
Bao, Yue, Rao (CR7) 2017; 12
Huang, Shen, Liu (CR12) 2019; 209
Goodfellow, Bengio, Courville, Bengio (CR24) 2016
CR6
Cavalcante, Brasileiro, Souza, Nobrega, Oliveira (CR4) 2016; 55
Tetko, Karpov, Van Deursen, Godin (CR16) 2020; 11
Tsai, Hsiao (CR3) 2010; 50
CR29
CR28
CR27
CR26
CR25
CR23
CR22
Lund (CR20) 2007; 102
RC Cavalcante (72045_CR4) 2016; 55
R Lund (72045_CR20) 2007; 102
RJ Williams (72045_CR30) 1989; 1989
Y Li (72045_CR9) 2020; 102
72045_CR15
72045_CR17
72045_CR18
72045_CR11
72045_CR13
P Anagnostidis (72045_CR1) 2016; 447
72045_CR14
K Zhang (72045_CR8) 2019; 147
Y Huang (72045_CR12) 2019; 209
C-F Tsai (72045_CR3) 2010; 50
L Di Persio (72045_CR5) 2016; 10
W Bao (72045_CR7) 2017; 12
72045_CR19
I Goodfellow (72045_CR24) 2016
72045_CR26
72045_CR27
72045_CR6
72045_CR28
72045_CR29
72045_CR22
72045_CR23
72045_CR2
W Long (72045_CR21) 2019; 164
W Jiang (72045_CR10) 2021; 2021
IV Tetko (72045_CR16) 2020; 11
72045_CR25
References_xml – volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR16
  article-title: State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19266-y
– ident: CR22
– ident: CR18
– ident: CR14
– ident: CR2
– volume: 447
  start-page: 116
  year: 2016
  end-page: 128
  ident: CR1
  article-title: Has the 2008 financialcrisis affected stock market efficiency? The case of eurozone
  publication-title: Phys. A
  doi: 10.1016/j.physa.2015.12.017
– volume: 164
  start-page: 163
  year: 2019
  end-page: 173
  ident: CR21
  article-title: Deep learning-based feature engineering for stock price movement prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.034
– volume: 102
  start-page: 1079
  issue: 479
  year: 2007
  ident: CR20
  article-title: Time series analysis and its applications: With r examples
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2007.s209
– ident: CR6
– ident: CR29
– volume: 209
  start-page: 415
  year: 2019
  end-page: 423
  ident: CR12
  article-title: Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.128
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 12
  start-page: e0180944
  year: 2017
  ident: CR7
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180944
– volume: 55
  start-page: 194
  year: 2016
  end-page: 211
  ident: CR4
  article-title: Computational intelligence and financial markets: A survey and future directions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.006
– year: 2016
  ident: CR24
  publication-title: Deep Learning
– ident: CR19
– volume: 102
  start-page: 1305
  year: 2020
  end-page: 1322
  ident: CR9
  article-title: Application of deep reinforcement learning in stock trading strategies and stock forecasting
  publication-title: Computing
  doi: 10.1007/s00607-019-00773-w
– volume: 2021
  start-page: 115537
  year: 2021
  ident: CR10
  article-title: Applications of deep learning in stock market prediction: Recent progress
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115537
– volume: 50
  start-page: 258
  year: 2010
  end-page: 269
  ident: CR3
  article-title: Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.028
– ident: CR15
– volume: 147
  start-page: 400
  year: 2019
  end-page: 406
  ident: CR8
  article-title: Stock market prediction based on generative adversarial network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.256
– ident: CR17
– ident: CR13
– ident: CR11
– volume: 1989
  start-page: 1270
  year: 1989
  end-page: 1280
  ident: CR30
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
– volume: 10
  start-page: 403
  year: 2016
  end-page: 413
  ident: CR5
  article-title: Artificial neural networks architectures for stock price prediction: Comparisons and applications
  publication-title: Int. J. Circ. Syst. Signal Process.
– ident: CR28
– ident: CR26
– ident: 72045_CR11
– volume: 164
  start-page: 163
  year: 2019
  ident: 72045_CR21
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.034
– ident: 72045_CR13
– ident: 72045_CR26
  doi: 10.1109/ACCESS.2021.3056713
– ident: 72045_CR28
– volume: 2021
  start-page: 115537
  year: 2021
  ident: 72045_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115537
– volume: 10
  start-page: 403
  year: 2016
  ident: 72045_CR5
  publication-title: Int. J. Circ. Syst. Signal Process.
– ident: 72045_CR19
– ident: 72045_CR27
  doi: 10.3115/v1/W14-4012
– ident: 72045_CR15
  doi: 10.1609/aaai.v33i01.33016706
– ident: 72045_CR6
  doi: 10.1109/ICACCI.2017.8126078
– volume: 12
  start-page: e0180944
  year: 2017
  ident: 72045_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180944
– ident: 72045_CR2
– ident: 72045_CR25
  doi: 10.1098/rsta.2020.0209
– ident: 72045_CR14
– ident: 72045_CR22
  doi: 10.1109/ICMLC56445.2022.9941330
– volume: 50
  start-page: 258
  year: 2010
  ident: 72045_CR3
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.028
– ident: 72045_CR29
– volume: 102
  start-page: 1079
  issue: 479
  year: 2007
  ident: 72045_CR20
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2007.s209
– ident: 72045_CR23
– ident: 72045_CR17
  doi: 10.1109/SIU53274.2021.9477814
– volume: 147
  start-page: 400
  year: 2019
  ident: 72045_CR8
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.256
– volume: 11
  start-page: 1
  year: 2020
  ident: 72045_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19266-y
– volume-title: Deep Learning
  year: 2016
  ident: 72045_CR24
– volume: 447
  start-page: 116
  year: 2016
  ident: 72045_CR1
  publication-title: Phys. A
  doi: 10.1016/j.physa.2015.12.017
– volume: 55
  start-page: 194
  year: 2016
  ident: 72045_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.006
– ident: 72045_CR18
– volume: 209
  start-page: 415
  year: 2019
  ident: 72045_CR12
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.128
– volume: 102
  start-page: 1305
  year: 2020
  ident: 72045_CR9
  publication-title: Computing
  doi: 10.1007/s00607-019-00773-w
– volume: 1989
  start-page: 1270
  year: 1989
  ident: 72045_CR30
  publication-title: Neural Comput.
SSID ssj0000529419
Score 2.5049858
Snippet The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding...
Abstract The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23762
SubjectTerms 639/166
639/705
Accuracy
Algorithms
Decision making
Deep learning
Experiments
Forecasting
Galformer
Humanities and Social Sciences
multidisciplinary
Natural language processing
Neural networks
Predictions
Science
Science (multidisciplinary)
Securities markets
Stock exchanges
Stock index prediction
Stock market indexes
Time series
Transformer
Trends
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkL70egICNxg6hObCc2F0RRCwe0qhCg3iy_UhDL7pLdIu2_Z8ZxUiGgF5RbMo5szdtjf0PIsy6IxsWuLZmTvhROSbCDIpTWW8kbpdUApP35fTubqZMTfZw33Nb5WOVoE5OhDkuPe-T7iApT8xY85KvVjxK7RmF1NbfQuEx2EakM5Hz34HB2_GHaZcE6lqh0vi3DuNpfg8fCW2W1KLE_iyz5bx4pAff_Ldr8o1KaHNDRjf-d-k1yPYee9PUgK7fIpbi4Ta4OzSi3d8j2rZ1jBBv7l9TSzRjQxp7iXi09TfjUaBxpgJQVXR61iwCkX7Z464vOYXEU3SSymsJQmg4rliBGKwohpv9Gv6cr1jQhNNJVjzUiJL5LPh0dfnzzrsyNGUovlNyUnsGjogaF71h0inFnY9VAnC67hgcWmK67ygYIFlkblYdXlXSNCMp3iknH75GdxXIRHxAK6aJ1mqs21lxoXznIr1QITe0jdzq2BalG5hifUcuxecbcpOo5V2ZgqAGGmsRQwwvyfBqzGjA7LqQ-QJ5PlIi3nV4s-1OT1dcIEZ2rId6pLIeMWFvpnW50G7hrXcW6guyNrDfZCKzNOd8L8nT6DOqLNRm7iMuzgUZiebIuyP1B0qaZcM01Vk0L8mIUvfOf_3tBDy-eyyNyrUbpx1M5bI_sbPqz-Jhc8T83X9f9k6xAvwBKMiGV
  priority: 102
  providerName: ProQuest
Title Galformer: a transformer with generative decoding and a hybrid loss function for multi-step stock market index prediction
URI https://link.springer.com/article/10.1038/s41598-024-72045-3
https://www.ncbi.nlm.nih.gov/pubmed/39390029
https://www.proquest.com/docview/3115237066
https://www.proquest.com/docview/3115501092
https://doaj.org/article/44ebb20221a34099a5cb9697d3b7b10f
Volume 14
WOSCitedRecordID wos001337092300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96p-CL-H3Vc4ngm5ZLm7ZJfPPkTgVvKaKyPoV8VeXW3tLdE_a_dybprid-vUghD-mkJJlJZqaT_IaQx52vGhs6kTNbu7yysoZ9sPK5cabmjVQyAWl_eCOmUzmbqfZCqi88E5bggdPEHVRVsBY89LIwHHwRZWpnVaOE51bYgnW4-zKhLjhTCdW7VFWhxlsyjMuDJWgqvE1WVjnmZalz_pMmioD9v7Myf4mQRsVzfINcHy1G-jz19Ca5FPpb5GrKIbm-TdYvzRwNzzA8o4auNnZoGCj-YqWfIqw07mnUg6eJmoqa3gPp5zVe1qJz6BtF7YYcotCUxjOGOXB_QcEydKf0a7wZTSOwIl0MGNpB4jvk_fHRuxev8jGfQu4qWa9yx-CRQcE67ViwknFrQtGAeV13DffMM1V2hfFg4zERpIOqorZN5aXrJKstv0t2-rM-7BEKXp6xiksRSl4pV1hwi6T3TekCtyqIjBSbudVuBBvHnBdzHYPeXOrEDw380JEfmmfkybbNIkFt_JX6EFm2pUSY7FgBwqNH4dH_Ep6M7G8Yrse1u9SIP1RyAbZYRh5tX8Oqw1CK6cPZeaKpMapYZuReEpRtT7jiCoOdGXm6kZwfH__zgO7_jwE9INdKFHE8csP2yc5qOA8PyRX3bfVlOUzIZTETsZQTsnt4NG3fTuK6gfKkbLEUUO62r0_aj98BrwEY7A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAZUL-xIoYCQ4QVTHzmIjIcRWWnUY9VCq3oy3tIhhZshMQfOn-I285yRTIaC3HtDcMi9Rlu89f89vI-Rx7fPShrpKmS1cmltZgB3MfWqcKUQplWwbae8PquFQHhyo3RXys6-FwbTK3iZGQ-0nDvfIN7ArDBcVrJAvp99SnBqF0dV-hEYLi52w-AEu2-zF9lv4vk8433y392Yr7aYKpC6XxTx1DH4yKEBrzYKVTFgTshJIZlGXwjPPFK8z44HpsCpIB4eywpa5l66WrLACrnuOnAcawVlMFdxd7ulg1CzPVFebw4TcmMH6iDVsPE9xGkyRit_Wvzgm4G_c9o-4bFzuNq_8by_qKrncEWv6qtWEa2QljK-Ti-2ozcUNsnhvRsjPQ_OcGjrv6XpoKO5E08PYfRtNP_XgkOOCTs3Yg-jRAmva6AheJkUSgECmcCqNqZgpKMmUAoF2X-jXWEBOY_9JOm0wAobCN8nHM3nuW2R1PBmHO4SCM2ysErIKXOTKZRa8R-l9yV0QVoUqIVkPBu26nuw4GmSkY26AkLoFkAYA6QggLRLydHnOtO1Icqr0a8TYUhK7iccDk-ZQd8ZJ53mwlgOby4wAf1-ZwllVqsoLW9mM1QlZ76GmOxM30yc4S8ij5d9gnDDiZMZhctzKFBh85Qm53SJ7eSdCCYUx4YQ866F-cvF_P9Dd0-_lIVnb2vsw0IPt4c49comj5mH-EVsnq_PmONwnF9z3-edZ8yCqLiWfzloFfgFMnHy-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKWcSFfQkUMBKcaDSO7SQ2EkJAGahajeYAqDfjLQUxzAyZKWj-Gr-O97JMhYDeekC5JS9RnHxv89sIeVQFWbhYlSlzuU-lUznIQRlS620uCqVV20j7w345GqmDAz3eID_7WhhMq-xlYiOow8zjHvkAu8JwUYKGHFRdWsR4Z_h8_i3FCVIYae3HabQQ2YurH-C-LZ7t7sC_fsz58PW7V2_TbsJA6qXKl6lncKioAbkVi04x4WzMCjA486oQgQWmeZXZAFYPK6PycCrLXSGD8pViuRPw3DPkbIldsTBtkI_X-zsYQZOZ7up0mFCDBehKrGfjMsXJMHkqftOFzciAv9m5f8RoG9U3vPw_f7Qr5FJncNMXLYdcJRtxeo2cb0dwrq6T1Rs7Qbs91k-ppcvejI81xR1qeth05UaVQAM46qjoqZ0GIP20wlo3OoEPS9E4QIBTuJU2KZopMM-cgmHtv9CvTWE5bfpS0nmNkTEkvkHen8q6b5LN6WwabxMKTrJ1WqgyciG1zxx4lSqEgvsonI5lQrIeGMZ3vdpxZMjENDkDQpkWTAbAZBowGZGQJ-t75m2nkhOpXyLe1pTYZbw5MasPTSe0jJTROQ5WXmaFBFfC5t7pQpdBuNJlrErIVg8704m-hTnGXEIeri-D0MJIlJ3G2VFLk2NQlifkVovy9ZsILTTGihOy3cP--OH_XtCdk9_lAbkAyDf7u6O9u-QiRybEtCS2RTaX9VG8R87578vPi_p-w8WUfDxtDvgFIcmFgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Galformer%3A+a+transformer+with+generative+decoding+and+a+hybrid+loss+function+for+multi-step+stock+market+index+prediction&rft.jtitle=Scientific+reports&rft.au=Yi+Ji&rft.au=Yuxuan+Luo&rft.au=Aixia+Lu&rft.au=Duanyang+Xia&rft.date=2024-10-10&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41598-024-72045-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_44ebb20221a34099a5cb9697d3b7b10f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon