Graph-based normalization and whitening for non-linear data analysis

In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for “global normalization”; we then adapt these meas...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural networks Ročník 19; číslo 6; s. 864 - 876
Hlavný autor: Aaron, Catherine
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.07.2006
Elsevier Science
Elsevier
Predmet:
ISSN:0893-6080, 1879-2782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for “global normalization”; we then adapt these measures using a weighted graph to build a local normalization called “graph-based” normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the “global” and the “local” problem.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2006.05.022