Distribution network line loss analysis method based on improved clustering algorithm and isolated forest algorithm
The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distr...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 14; H. 1; S. 19554 - 15 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
22.08.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average − 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss. |
|---|---|
| AbstractList | The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average - 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss. The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average − 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss. Abstract The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average − 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss. The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average - 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average - 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss. |
| ArticleNumber | 19554 |
| Author | Li, Shuoyu Zhang, Ke Li, Jiajie Zhao, Wen Jiang, Zetao Li, Jian |
| Author_xml | – sequence: 1 givenname: Jian surname: Li fullname: Li, Jian email: honeyluyawahaha@163.com organization: Metrology Center, Guangdong Power Grid Co.,Ltd – sequence: 2 givenname: Shuoyu surname: Li fullname: Li, Shuoyu organization: Power Supply Service, Dongguan Power Supply Bureau – sequence: 3 givenname: Wen surname: Zhao fullname: Zhao, Wen organization: Metrology Center, Guangdong Power Grid Co.,Ltd – sequence: 4 givenname: Jiajie surname: Li fullname: Li, Jiajie organization: Metrology Center, Guangdong Power Grid Co.,Ltd – sequence: 5 givenname: Ke surname: Zhang fullname: Zhang, Ke organization: Metrology Center, Guangdong Power Grid Co.,Ltd – sequence: 6 givenname: Zetao surname: Jiang fullname: Jiang, Zetao organization: Metrology Center, Guangdong Power Grid Co.,Ltd |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39174587$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHhEvB37CMqX5UqcYGzNXGcrRcnXmynaP893k1pUQ_1xWP7eUczfuclOpnj7BB6TfB7gpn6kDkRWrWY8lYqJmW7f4bOKOaipYzSk__iU3SR8xbXJajmRL9Ap0yTjgvVnaH8yeeSfL8UH-dmduVPTL-a4GfXhJhzAzOEffa5mVy5iUPTQ3ZDU1E_7VK8rbENSy4u-XnTQNjE5MvNVGVD43MMUCoxxuRyeXh9hZ6PELK7uNvP0c8vn39cfmuvv3-9uvx43VquRGmBWKKGQXWixzDWJgepei3cqHtGXT2NjGnonLBEjrVbIhTTTFMpgVkFwM7R1Zp3iLA1u-QnSHsTwZvjRUwbA6l4G5zBWIOwXGgHwInTAEpZkLUEwaTqaM31bs1Vu_691HbM5LN1IcDs4pINw1pShQk-oG8fodu4pPqPR0ooqgiXlXpzRy395Ib78v5ZUwG6AjZVI5Ib7xGCzWEEzDoCpo6AOY6A2VeReiSyvsDB25LAh6elbJXm3cFMlx7KfkL1F5ZHxuw |
| CitedBy_id | crossref_primary_10_2478_amns_2025_0995 crossref_primary_10_1051_e3sconf_202562604003 |
| Cites_doi | 10.3390/en15114158 10.1016/j.jenvman.2021.112808 10.1007/s11269-023-03650-6 10.47852/bonviewJCCE2023512225 10.1007/s41060-020-00238-w 10.3390/su14148611 10.1007/s11047-022-09895-1 10.1504/IJDMB.2022.130345 10.47852/bonviewJCCE2202322 10.1016/j.apenergy.2021.118123 10.1007/s40815-020-00997-5 10.1002/2050-7038.13120 10.47852/bonviewAIA2202524 10.1142/S0218126622502280 10.47852/bonviewJCCE2202144 10.1049/gtd2.12590.Aug 10.1155/2021/8530389 10.1088/1742-6596/2488/1/012057 10.3390/en15062151 10.1007/s42835-021-00958-4 10.47852/bonviewJCCE2202321 10.1016/j.ijepes.2020.106467 10.1016/j.infrared.2021.103856 10.3233/JIFS-189617 10.1007/s11063-020-10298-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-024-68366-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database (subscription) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_009a5c459eaa41e9aa88ca6a1c536872 39174587 10_1038_s41598_024_68366_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: key science and technology projects of China Southern Power Grid Corporation Science and Technology Project Funding grantid: Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254) – fundername: key science and technology projects of China Southern Power Grid Corporation Science and Technology Project Funding grantid: Project No. 035900KK52220006 (GDKJXM20220254) |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c485t-a1c18dd875b0af683d68b95ef9b32e3d6f339a7e5c16f2041583939266a3c8aa3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304514000059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:00:06 EDT 2025 Sun Nov 09 10:46:41 EST 2025 Tue Oct 07 09:20:12 EDT 2025 Mon Jul 21 05:56:01 EDT 2025 Sat Nov 29 05:24:02 EST 2025 Tue Nov 18 22:06:34 EST 2025 Fri Feb 21 02:40:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fuzzy C-Means Data processing Line loss analysis Medium voltage distribution networks Isolated forest algorithm |
| Language | English |
| License | 2024. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-a1c18dd875b0af683d68b95ef9b32e3d6f339a7e5c16f2041583939266a3c8aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3095828146?pq-origsite=%requestingapplication% |
| PMID | 39174587 |
| PQID | 3095828146 |
| PQPubID | 2041939 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_009a5c459eaa41e9aa88ca6a1c536872 proquest_miscellaneous_3096280102 proquest_journals_3095828146 pubmed_primary_39174587 crossref_primary_10_1038_s41598_024_68366_y crossref_citationtrail_10_1038_s41598_024_68366_y springer_journals_10_1038_s41598_024_68366_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-22 |
| PublicationDateYYYYMMDD | 2024-08-22 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Hu, Guo, Wang, Wang, Song (CR6) 2022; 306 Fu, Han, Li, Feng, Zalhaf, Zhou, Yang, Wang (CR24) 2023; 150 Dashtdar, Bajaj, Hosseinimoghadam, Sami, Choudhury, Rehman, Ateeq Ur, Goud (CR27) 2021; 31 Choudhuri, Adeniye, Sen (CR3) 2022; 1 Yastrebov, Kubus, Poczeta (CR17) 2023; 22 Zhang, Yang, Zhao, Xiao (CR7) 2022; 16 Ke, Nguyen, Bui, Bui, Nguyen-Thoi (CR12) 2021; 293 Shi, Wang, Yang, Yu (CR18) 2022; 54 Min, Chai, Huang, Wei, Jia (CR28) 2023; 37 Saeed, Ahmad, Rahman (CR2) 2022; 2 Liang, Li, Zhao, Zhou, Zou (CR22) 2022; 24 Liu (CR25) 2021; 133 Surono, Putri (CR13) 2021; 23 Zhang, Jing, Yang, Tian, Cheng, Liu (CR10) 2023; 2488 Oslund, Washington, So (CR4) 2022; 1 Wang, Zhang (CR14) 2023; 3 Liu, Jia, Kang, Luo (CR9) 2022; 17 Tang, Xiao, Jiao, Li, Zhang, Sun, Wang (CR8) 2022; 31 Liu, Jia, Zhao, Zhang, Hao, Zhang (CR26) 2021; 2021 Shao, Chen (CR21) 2022; 15 Wang, Cheng, Eaton (CR5) 2022; 1 Pan, Jiang, Pan, Liu (CR15) 2021; 40 Danjuma, Yusuf, Yusuf (CR1) 2022; 1 Wang, Zhang, Liu (CR23) 2022; 14 Yang, Gao, Han, Li, Tian, Zhu, Deng (CR19) 2023; 114 Sebastian, Philipp-Jan, Katharina (CR20) 2022; 13 Yi, Tuo, Tu, Zhang (CR11) 2021; 117 Long, Chen, Zhou (CR16) 2022; 1 Liang, Chen, Wang, Ma, Li, Jiang (CR29) 2022; 15 QF Yang (68366_CR19) 2023; 114 N Pan (68366_CR15) 2021; 40 C Liang (68366_CR29) 2022; 15 H Shi (68366_CR18) 2022; 54 N Shao (68366_CR21) 2022; 15 ZY Zhang (68366_CR7) 2022; 16 J Fu (68366_CR24) 2023; 150 Y Wang (68366_CR23) 2022; 14 W Hu (68366_CR6) 2022; 306 X Wang (68366_CR5) 2022; 1 S Choudhuri (68366_CR3) 2022; 1 S Surono (68366_CR13) 2021; 23 B Sebastian (68366_CR20) 2022; 13 K Liu (68366_CR26) 2021; 2021 B Ke (68366_CR12) 2021; 293 L Zhang (68366_CR10) 2023; 2488 AJ Wang (68366_CR14) 2023; 3 XM Long (68366_CR16) 2022; 1 S Oslund (68366_CR4) 2022; 1 M Dashtdar (68366_CR27) 2021; 31 CC Yi (68366_CR11) 2021; 117 A Yastrebov (68366_CR17) 2023; 22 YC Min (68366_CR28) 2023; 37 Z Tang (68366_CR8) 2022; 31 KY Liu (68366_CR9) 2022; 17 X Liu (68366_CR25) 2021; 133 MU Danjuma (68366_CR1) 2022; 1 JF Liang (68366_CR22) 2022; 24 M Saeed (68366_CR2) 2022; 2 |
| References_xml | – volume: 15 start-page: 4158 issue: 11 year: 2022 ident: CR29 article-title: Line loss interval algorithm for distribution network with DG based on linear optimization under abnormal or missing measurement data publication-title: Energies doi: 10.3390/en15114158 – volume: 293 start-page: 214 issue: 9 year: 2021 end-page: 225 ident: CR12 article-title: “Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112808 – volume: 37 start-page: 6183 issue: 15 year: 2023 end-page: 6198 ident: CR28 article-title: Artificial intelligence generated synthetic datasets as the remedy for data scarcity in water quality index estimation publication-title: Water Resour. Manag. doi: 10.1007/s11269-023-03650-6 – volume: 2 start-page: 10 issue: 1 year: 2022 end-page: 16 ident: CR2 article-title: Refined pythagorean fuzzy sets: Properties set-theoretic operations and axiomatic results publication-title: JCCE. doi: 10.47852/bonviewJCCE2023512225 – volume: 13 start-page: 91 issue: 2 year: 2022 end-page: 104 ident: CR20 article-title: Randomized outlier detection with trees publication-title: JDSA doi: 10.1007/s41060-020-00238-w – volume: 150 start-page: 1091121 issue: 8 year: 2023 end-page: 10911216 ident: CR24 article-title: A novel optimization strategy for line loss reduction in distribution networks with large penetration of distributed generation publication-title: Int. J. Elec. Power – volume: 14 start-page: 624 issue: 14 year: 2022 end-page: 647 ident: CR23 article-title: Intelligent identification of the line-transformer relationship in distribution networks based on GAN processing unbalanced data publication-title: Sustainability doi: 10.3390/su14148611 – volume: 3 start-page: 55 issue: 12 year: 2023 end-page: 66 ident: CR14 article-title: A driver abnormal behavior warning method based on isolated forest algorithm publication-title: ATS – volume: 22 start-page: 601 issue: 3 year: 2023 end-page: 611 ident: CR17 article-title: Multiobjective evolutionary algorithm IDEA and k-means clustering for modeling multidimenional medical data based on fuzzy cognitive maps publication-title: Nat. Comput. doi: 10.1007/s11047-022-09895-1 – volume: 24 start-page: 1 issue: 3 year: 2022 end-page: 3 ident: CR22 article-title: A risk identification method for abnormal key data in the whole process of production project publication-title: Int. J. Data Min. Bioin. doi: 10.1504/IJDMB.2022.130345 – volume: 1 start-page: 152 issue: 4 year: 2022 end-page: 158 ident: CR4 article-title: Multiview robust adversarial stickers for arbitrary objects in the physical world publication-title: JCCE. doi: 10.47852/bonviewJCCE2202322 – volume: 306 start-page: 123 issue: 15 year: 2022 end-page: 133 ident: CR6 article-title: “Loss reduction strategy and evaluation system based on reasonable line loss interval of transformer area publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2021.118123 – volume: 23 start-page: 139 issue: 1 year: 2021 end-page: 144 ident: CR13 article-title: Optimization of Fuzzy C-means clustering algorithm with combination of Minkowski and Chebyshev distance using principal component analysis publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00997-5 – volume: 31 start-page: e13120.1 issue: 11 year: 2021 end-page: e13120.29 ident: CR27 article-title: Improving voltage profile and reducing power losses based on reconfiguration and optimal placement of UPQC in the network by considering system reliability indices publication-title: Int. T Electr. Energy doi: 10.1002/2050-7038.13120 – volume: 1 start-page: 43 issue: 1 year: 2022 end-page: 51 ident: CR3 article-title: Distribution alignment using complement entropy objective and adaptive consensus-based label refinement for partial domain adaptation publication-title: AIA. doi: 10.47852/bonviewAIA2202524 – volume: 31 start-page: 135 issue: 13 year: 2022 end-page: 146 ident: CR8 article-title: Research on short-term low-voltage distribution network line loss prediction based on Kmeans-LightGBM publication-title: J. Circuit Syst. Comp. doi: 10.1142/S0218126622502280 – volume: 1 start-page: 193 issue: 4 year: 2022 end-page: 200 ident: CR1 article-title: Reliability, availability, maintainability, and dependability analysis of cold standby series-parallel system publication-title: JCCE. doi: 10.47852/bonviewJCCE2202144 – volume: 16 start-page: 4187 issue: 20 year: 2022 end-page: 4203 ident: CR7 article-title: Prediction method of line loss rate in low-voltage distribution network based on multi-dimensional information matrix and dimensional attention mechanism-long-and short-term time-series network publication-title: IET Gener Transm DIS doi: 10.1049/gtd2.12590.Aug – volume: 2021 start-page: 8530389.1 issue: 33 year: 2021 end-page: 8530389.11 ident: CR26 article-title: Energy loss calculation of low voltage distribution area based on variational mode decomposition and least squares support vector machine publication-title: MPE doi: 10.1155/2021/8530389 – volume: 2488 start-page: 63 issue: 1 year: 2023 end-page: 72 ident: CR10 article-title: Distribution network line loss calculation method considering distributed photovoltaic acces publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2488/1/012057 – volume: 15 start-page: 2151 issue: 6 year: 2022 end-page: 2164 ident: CR21 article-title: Abnormal data detection and identification method of distribution internet of things monitoring terminal based on spatiotemporal correlation publication-title: Energies doi: 10.3390/en15062151 – volume: 17 start-page: 1131 issue: 2 year: 2022 end-page: 1141 ident: CR9 article-title: Anomaly detection method of distribution network line loss based on hybrid clustering and LSTM publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-021-00958-4 – volume: 1 start-page: 165 issue: 4 year: 2022 end-page: 173 ident: CR5 article-title: Fake node attacks on graph convolutional networks publication-title: JCCE. doi: 10.47852/bonviewJCCE2202321 – volume: 133 start-page: 106467.1 issue: 2 year: 2021 end-page: 106467.13 ident: CR25 article-title: Automatic routing of medium voltage distribution network based on load complementary characteristics and power supply unit division publication-title: Int. J. Elec. Power. doi: 10.1016/j.ijepes.2020.106467 – volume: 1 start-page: 52 issue: 1 year: 2022 end-page: 57 ident: CR16 article-title: Development of AR experiment on electric-thermal effect by open framework with simulation-based asset and user-defined input publication-title: Artif. Intell. Appl. – volume: 117 start-page: 214 issue: 9 year: 2021 end-page: 225 ident: CR11 article-title: Improved fuzzy C-means clustering algorithm based on t-SNE for terahertz spectral recognition publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103856 – volume: 40 start-page: 16 issue: 4 year: 2021 end-page: 22 ident: CR15 article-title: Study of the bullet rifling linear traces matching technology based on deep learning publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189617 – volume: 114 start-page: 1 issue: 5 year: 2023 end-page: 14 ident: CR19 article-title: HCDC: A novel hierarchical clustering algorithm based on density-distance cores for data sets with varying density publication-title: Inf. Syst. – volume: 54 start-page: 3537 issue: 5 year: 2022 end-page: 3550 ident: CR18 article-title: An improved mean imputation clustering algorithm for incomplete data publication-title: Neural Process Lett. doi: 10.1007/s11063-020-10298-5 – volume: 22 start-page: 601 issue: 3 year: 2023 ident: 68366_CR17 publication-title: Nat. Comput. doi: 10.1007/s11047-022-09895-1 – volume: 133 start-page: 106467.1 issue: 2 year: 2021 ident: 68366_CR25 publication-title: Int. J. Elec. Power. doi: 10.1016/j.ijepes.2020.106467 – volume: 16 start-page: 4187 issue: 20 year: 2022 ident: 68366_CR7 publication-title: IET Gener Transm DIS doi: 10.1049/gtd2.12590.Aug – volume: 2 start-page: 10 issue: 1 year: 2022 ident: 68366_CR2 publication-title: JCCE. doi: 10.47852/bonviewJCCE2023512225 – volume: 2488 start-page: 63 issue: 1 year: 2023 ident: 68366_CR10 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2488/1/012057 – volume: 114 start-page: 1 issue: 5 year: 2023 ident: 68366_CR19 publication-title: Inf. Syst. – volume: 1 start-page: 165 issue: 4 year: 2022 ident: 68366_CR5 publication-title: JCCE. doi: 10.47852/bonviewJCCE2202321 – volume: 13 start-page: 91 issue: 2 year: 2022 ident: 68366_CR20 publication-title: JDSA doi: 10.1007/s41060-020-00238-w – volume: 24 start-page: 1 issue: 3 year: 2022 ident: 68366_CR22 publication-title: Int. J. Data Min. Bioin. doi: 10.1504/IJDMB.2022.130345 – volume: 37 start-page: 6183 issue: 15 year: 2023 ident: 68366_CR28 publication-title: Water Resour. Manag. doi: 10.1007/s11269-023-03650-6 – volume: 31 start-page: 135 issue: 13 year: 2022 ident: 68366_CR8 publication-title: J. Circuit Syst. Comp. doi: 10.1142/S0218126622502280 – volume: 2021 start-page: 8530389.1 issue: 33 year: 2021 ident: 68366_CR26 publication-title: MPE doi: 10.1155/2021/8530389 – volume: 293 start-page: 214 issue: 9 year: 2021 ident: 68366_CR12 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112808 – volume: 117 start-page: 214 issue: 9 year: 2021 ident: 68366_CR11 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103856 – volume: 15 start-page: 2151 issue: 6 year: 2022 ident: 68366_CR21 publication-title: Energies doi: 10.3390/en15062151 – volume: 15 start-page: 4158 issue: 11 year: 2022 ident: 68366_CR29 publication-title: Energies doi: 10.3390/en15114158 – volume: 150 start-page: 1091121 issue: 8 year: 2023 ident: 68366_CR24 publication-title: Int. J. Elec. Power – volume: 17 start-page: 1131 issue: 2 year: 2022 ident: 68366_CR9 publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-021-00958-4 – volume: 23 start-page: 139 issue: 1 year: 2021 ident: 68366_CR13 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-020-00997-5 – volume: 31 start-page: e13120.1 issue: 11 year: 2021 ident: 68366_CR27 publication-title: Int. T Electr. Energy doi: 10.1002/2050-7038.13120 – volume: 54 start-page: 3537 issue: 5 year: 2022 ident: 68366_CR18 publication-title: Neural Process Lett. doi: 10.1007/s11063-020-10298-5 – volume: 1 start-page: 43 issue: 1 year: 2022 ident: 68366_CR3 publication-title: AIA. doi: 10.47852/bonviewAIA2202524 – volume: 1 start-page: 193 issue: 4 year: 2022 ident: 68366_CR1 publication-title: JCCE. doi: 10.47852/bonviewJCCE2202144 – volume: 40 start-page: 16 issue: 4 year: 2021 ident: 68366_CR15 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189617 – volume: 14 start-page: 624 issue: 14 year: 2022 ident: 68366_CR23 publication-title: Sustainability doi: 10.3390/su14148611 – volume: 1 start-page: 152 issue: 4 year: 2022 ident: 68366_CR4 publication-title: JCCE. doi: 10.47852/bonviewJCCE2202322 – volume: 1 start-page: 52 issue: 1 year: 2022 ident: 68366_CR16 publication-title: Artif. Intell. Appl. – volume: 3 start-page: 55 issue: 12 year: 2023 ident: 68366_CR14 publication-title: ATS – volume: 306 start-page: 123 issue: 15 year: 2022 ident: 68366_CR6 publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2021.118123 |
| SSID | ssj0000529419 |
| Score | 2.4506557 |
| Snippet | The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution... Abstract The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 19554 |
| SubjectTerms | 639/705/1042 639/705/117 639/705/794 Algorithms Clustering Coefficient of variation Data processing Forest management Fuzzy C-Means Humanities and Social Sciences Isolated forest algorithm Line loss analysis Medium voltage distribution networks multidisciplinary Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcUFteoaUyEjeImsSP2Me2tOJUcQCpN8tPWGnJVvtA2n_fsZ3dFvG69JbEdvyYceab2P4G4F1PhW9slLVt-4AOSs9r65SvLW8Y89E2IsYcbKK_upLX1-rzvVBfaU9YoQcuA3eCGMBwx7gKxrA2KGOkdEaY1nEqZJ-_voh67jlThdW7U6xV4ymZhsqTBVqqdJqsY7WQVIh6_YslyoT9f0KZv62QZsNzuQdPR8RITktL9-FRGA7gcYkhuX4Gi4-J-naMWkWGsqubJPBIplgtMSPrCCmxokkyW55g1kn-nYDXbrpKbAlYOTHTb7P5ZPn9BxbzZIJ6iVDUEwS22Ni71Ofw9fLiy_mneoykUDsm-bLG0Wql9-ib2MZE7L8X0ioeorK0C3gXKVWmD9y1Inbp1D7iJkROQhjqpDH0BewMsyG8AmKFkRExDW28ZTY00iOiVMr1nbcoJFtBuxlV7Uaa8RTtYqrzcjeVukhCoyR0loReV_B-W-amkGz8M_dZEtY2ZyLIzg9QbfSoNvp_alPB0UbUepy1C00Rb6IHisajgrfbZJxvaRHFDGG2ynlEJxMTXwUvi4psW0LR92Vc9hV82OjM3cv_3qHXD9GhQ3jSJeVu8MPXHcHOcr4Kb2DX_VxOFvPjPDtuASDAExU priority: 102 providerName: Directory of Open Access Journals |
| Title | Distribution network line loss analysis method based on improved clustering algorithm and isolated forest algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-024-68366-y https://www.ncbi.nlm.nih.gov/pubmed/39174587 https://www.proquest.com/docview/3095828146 https://www.proquest.com/docview/3096280102 https://doaj.org/article/009a5c459eaa41e9aa88ca6a1c536872 |
| Volume | 14 |
| WOSCitedRecordID | wos001304514000059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsjISN4iaxIkfJ0ShFRy6ihBIyynyK-1KS7bdB9L-e8aONysE9MIl2l070Wxmxv48Y38D8JpTZjPdilTn3OEChVepNtKmusrK0rY6Y20bik3w8VhMJrKOAbdl3Fa5HRPDQG3nxsfIjyliAVwdoGO_u7pOfdUon12NJTT24MCzJNCwda8eYiw-i1XmMp6Vyag4XuJ85c-UFWXKBGUs3fw2HwXa_r9hzT_ypGH6Obv_v4I_gHsReJL3vaU8hFuuewR3-lKUm8ew_OgZdGPxK9L1m8OJx6BkhnITFclLSF9ymvjZzxLsOg1RCfxsZmtPuoDSEzW7QAlWlz_wNkumaN6IaC1BfIxi71qfwLez068fPqWxIENqSlGtUpWbXFiLSxydqRZfoGVCy8q1UtPC4beWUqm4q0zO2sIf_kf4hQCMMUWNUIo-hf1u3rlDIJop0SI0opnVpXaZsAhMpTS8sLqSTieQb9XSmMhW7otmzJqQNaei6VXZoCqboMpmk8Cb4Z6rnqvjxt4nXttDT8-zHX6YLy6a6LYNIlBVmRIlUqrMnVRKCKMYvoiKMsGLBI62Sm-i8y-bncYTeDU0o9v6XIzq3Hwd-rBCeEK_BJ71NjZIQnEJXVaCJ_B2a3S7h__7Dz2_WZYXcLfwdp_hyFgcwf5qsXYv4bb5uZouFyPY4xMermIEByen4_rLKMQn8Hpe1KPgWNhSfz6vv_8CAW8oKg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETO3HsA0JAqVq1rHooUm-uX2lX2u6WzS5o_xS_kbGT7AoBvfXALYntxJ58M_78mgF4VTHuMlOL1OSVxwFKVabGSpeaMisKV5uM13UMNlENBuLoSB6swc_-LEzYVtnbxGio3cSGOfJNhlwARweo2O_Pv6UhalRYXe1DaLSw2POLHzhka97tbuH_fU3p9ufDTztpF1UgtYUoZ6nObS6cQ55uMl1zwRwXRpa-loZRj3c1Y1JXvrQ5r2k4wY4cAlkE55pZoTXD916Bq0gjqIhbBQ-Wczph1azIZXc2J2Nis8Hi4QwbLVL8Eufp4rf-L4YJ-Bu3_WNdNnZ327f_N0HdgVsdsSYfWk24C2t-fA-ut6E2F_eh2QoegrvgXmTcbn4ngWOTEcqJ6M45C2lDapPQuzuCWYdx1gWv7WgenEqgtIgenWCLZ6dnWMyRIaovMnZHkP-jmFapD-DrpbT4IayPJ2P_GIjhWtRI_VjmTGF8JhwSbyltRZ0ppTcJ5D0MlO28sYegICMVdwUwoVroKISOitBRiwTeLMuct75ILsz9MaBrmTP4EY8PJtMT1ZklhQxbl7bAGmld5F5qLYTVHAVRMi4qmsBGDzLVGbdGrRCWwMtlMpqlsNakx34yj3k4FcFhYQKPWkwva8IkDoNLUSXwtgf56uX_btCTi-vyAm7sHH7ZV_u7g72ncJMGncuwF6AbsD6bzv0zuGa_z4bN9HlUWgLHlw3-XwT-fXk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8CCxgJTmy0SZw49gEhoFSsFlU9gLQ341eWSiVdmhbUv8avY-w8KgTsbQ_cmsZO7Mnn8Tf2eAbgWUmZTXTFY52WDg2Usoi1ETbWRZLnttIJq6qQbKKcTPjxsZjuwM_-LIx3q-x1YlDUdmH8GvkBRS6A1oFP0FJ1bhHT0fjV6bfYZ5DyO619Oo0WIkdu8wPNt-bl4Qi_9fMsG7_7-PZ93GUYiE3Oi1WsUpNya5Gz60RVjFPLuBaFq4SmmcOrilKhSleYlFWZP82OfAIZBWOKGq4UxedegIulD1oe3Aanw_qO30HLU9Gd00koP2iwuj_PluUxvomxePPbXBhSBvyN5_6xRxumvvH1_1loN-BaR7jJ63aE3IQdV9-Cy20Kzs1taEY-cnCX9IvUrVM88dybzFFmRHVBW0ibapv4Wd8SLDoLqzH428zXPtgESo6o-Qn2ePXlK1azZIbDGpm8JWgXoMi2d-_Ap3Pp8V3YrRe1uw9EM8UrpIQ0sTrXLuEWCbkQpsysLoTTEaQ9JKTporT7ZCFzGbwFKJctjCTCSAYYyU0EL4Y6p22MkjNLv_FIG0r6-OLhj8XyRHbqSiLzVoXJsUVK5akTSnFuFENBFJTxMotgrwec7JReI7doi-DpcBvVld-DUrVbrEMZlnEfyDCCey2-h5ZQgeZxwcsI9nvAbx_-7w49OLstT-AKYl5-OJwcPYSrmR9-CU4O2R7srpZr9wgume-rWbN8HMYvgc_njf1feuCGNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+network+line+loss+analysis+method+based+on+improved+clustering+algorithm+and+isolated+forest+algorithm&rft.jtitle=Scientific+reports&rft.au=Li%2C+Jian&rft.au=Li%2C+Shuoyu&rft.au=Zhao%2C+Wen&rft.au=Li%2C+Jiajie&rft.date=2024-08-22&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=19554&rft_id=info:doi/10.1038%2Fs41598-024-68366-y&rft_id=info%3Apmid%2F39174587&rft.externalDocID=39174587 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |