Distribution network line loss analysis method based on improved clustering algorithm and isolated forest algorithm

The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 14; H. 1; S. 19554 - 15
Hauptverfasser: Li, Jian, Li, Shuoyu, Zhao, Wen, Li, Jiajie, Zhang, Ke, Jiang, Zetao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 22.08.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average − 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.
AbstractList The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average - 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.
The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average − 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.
Abstract The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average − 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.
The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average - 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution network. The traditional analysis and calculation methods of distribution network loss can not adapt to the current development environment of distribution network. To improve the accuracy of filling missing values in power load data, particle swarm optimization algorithm is proposed to optimize the clustering center of the clustering algorithm. Furthermore, the original isolated forest anomaly recognition algorithm can be used to detect outliers in the load data, and the coefficient of variation of the load data is used to improve the recognition accuracy of the algorithm. Finally, this paper introduces a breadth-first-based method for calculating line loss in the context of big data. An example is provided using the distribution network system of Yuxi City in Yunnan Province, and a simulation experiment is carried out. And the findings revealed that the error of the enhanced fuzzy C-mean clustering algorithm was on average - 6.35, with a standard deviation of 4.015 in the situation of partially missing data. The area under the characteristic curve of the improved isolated forest algorithm subjects in the case of the abnormal sample fuzzy situation was 0.8586, with the smallest decrease, based on the coefficient of variation, and through the refinement of the analysis, it was discovered that the feeder line loss rate is 7.62%. It is confirmed that the suggested technique can carry out distribution network line loss analysis fast and accurately and can serve as a guide for managing distribution network line loss.
ArticleNumber 19554
Author Li, Shuoyu
Zhang, Ke
Li, Jiajie
Zhao, Wen
Jiang, Zetao
Li, Jian
Author_xml – sequence: 1
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  email: honeyluyawahaha@163.com
  organization: Metrology Center, Guangdong Power Grid Co.,Ltd
– sequence: 2
  givenname: Shuoyu
  surname: Li
  fullname: Li, Shuoyu
  organization: Power Supply Service, Dongguan Power Supply Bureau
– sequence: 3
  givenname: Wen
  surname: Zhao
  fullname: Zhao, Wen
  organization: Metrology Center, Guangdong Power Grid Co.,Ltd
– sequence: 4
  givenname: Jiajie
  surname: Li
  fullname: Li, Jiajie
  organization: Metrology Center, Guangdong Power Grid Co.,Ltd
– sequence: 5
  givenname: Ke
  surname: Zhang
  fullname: Zhang, Ke
  organization: Metrology Center, Guangdong Power Grid Co.,Ltd
– sequence: 6
  givenname: Zetao
  surname: Jiang
  fullname: Jiang, Zetao
  organization: Metrology Center, Guangdong Power Grid Co.,Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39174587$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhEvB37CMqX5UqcYGzNXGcrRcnXmynaP893k1pUQ_1xWP7eUczfuclOpnj7BB6TfB7gpn6kDkRWrWY8lYqJmW7f4bOKOaipYzSk__iU3SR8xbXJajmRL9Ap0yTjgvVnaH8yeeSfL8UH-dmduVPTL-a4GfXhJhzAzOEffa5mVy5iUPTQ3ZDU1E_7VK8rbENSy4u-XnTQNjE5MvNVGVD43MMUCoxxuRyeXh9hZ6PELK7uNvP0c8vn39cfmuvv3-9uvx43VquRGmBWKKGQXWixzDWJgepei3cqHtGXT2NjGnonLBEjrVbIhTTTFMpgVkFwM7R1Zp3iLA1u-QnSHsTwZvjRUwbA6l4G5zBWIOwXGgHwInTAEpZkLUEwaTqaM31bs1Vu_691HbM5LN1IcDs4pINw1pShQk-oG8fodu4pPqPR0ooqgiXlXpzRy395Ib78v5ZUwG6AjZVI5Ib7xGCzWEEzDoCpo6AOY6A2VeReiSyvsDB25LAh6elbJXm3cFMlx7KfkL1F5ZHxuw
CitedBy_id crossref_primary_10_2478_amns_2025_0995
crossref_primary_10_1051_e3sconf_202562604003
Cites_doi 10.3390/en15114158
10.1016/j.jenvman.2021.112808
10.1007/s11269-023-03650-6
10.47852/bonviewJCCE2023512225
10.1007/s41060-020-00238-w
10.3390/su14148611
10.1007/s11047-022-09895-1
10.1504/IJDMB.2022.130345
10.47852/bonviewJCCE2202322
10.1016/j.apenergy.2021.118123
10.1007/s40815-020-00997-5
10.1002/2050-7038.13120
10.47852/bonviewAIA2202524
10.1142/S0218126622502280
10.47852/bonviewJCCE2202144
10.1049/gtd2.12590.Aug
10.1155/2021/8530389
10.1088/1742-6596/2488/1/012057
10.3390/en15062151
10.1007/s42835-021-00958-4
10.47852/bonviewJCCE2202321
10.1016/j.ijepes.2020.106467
10.1016/j.infrared.2021.103856
10.3233/JIFS-189617
10.1007/s11063-020-10298-5
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-68366-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_009a5c459eaa41e9aa88ca6a1c536872
39174587
10_1038_s41598_024_68366_y
Genre Journal Article
GrantInformation_xml – fundername: key science and technology projects of China Southern Power Grid Corporation Science and Technology Project Funding
  grantid: Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254); Project No. 035900KK52220006 (GDKJXM20220254)
– fundername: key science and technology projects of China Southern Power Grid Corporation Science and Technology Project Funding
  grantid: Project No. 035900KK52220006 (GDKJXM20220254)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c485t-a1c18dd875b0af683d68b95ef9b32e3d6f339a7e5c16f2041583939266a3c8aa3
IEDL.DBID M7P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304514000059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:00:06 EDT 2025
Sun Nov 09 10:46:41 EST 2025
Tue Oct 07 09:20:12 EDT 2025
Mon Jul 21 05:56:01 EDT 2025
Sat Nov 29 05:24:02 EST 2025
Tue Nov 18 22:06:34 EST 2025
Fri Feb 21 02:40:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fuzzy C-Means
Data processing
Line loss analysis
Medium voltage distribution networks
Isolated forest algorithm
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-a1c18dd875b0af683d68b95ef9b32e3d6f339a7e5c16f2041583939266a3c8aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3095828146?pq-origsite=%requestingapplication%
PMID 39174587
PQID 3095828146
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_009a5c459eaa41e9aa88ca6a1c536872
proquest_miscellaneous_3096280102
proquest_journals_3095828146
pubmed_primary_39174587
crossref_primary_10_1038_s41598_024_68366_y
crossref_citationtrail_10_1038_s41598_024_68366_y
springer_journals_10_1038_s41598_024_68366_y
PublicationCentury 2000
PublicationDate 2024-08-22
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hu, Guo, Wang, Wang, Song (CR6) 2022; 306
Fu, Han, Li, Feng, Zalhaf, Zhou, Yang, Wang (CR24) 2023; 150
Dashtdar, Bajaj, Hosseinimoghadam, Sami, Choudhury, Rehman, Ateeq Ur, Goud (CR27) 2021; 31
Choudhuri, Adeniye, Sen (CR3) 2022; 1
Yastrebov, Kubus, Poczeta (CR17) 2023; 22
Zhang, Yang, Zhao, Xiao (CR7) 2022; 16
Ke, Nguyen, Bui, Bui, Nguyen-Thoi (CR12) 2021; 293
Shi, Wang, Yang, Yu (CR18) 2022; 54
Min, Chai, Huang, Wei, Jia (CR28) 2023; 37
Saeed, Ahmad, Rahman (CR2) 2022; 2
Liang, Li, Zhao, Zhou, Zou (CR22) 2022; 24
Liu (CR25) 2021; 133
Surono, Putri (CR13) 2021; 23
Zhang, Jing, Yang, Tian, Cheng, Liu (CR10) 2023; 2488
Oslund, Washington, So (CR4) 2022; 1
Wang, Zhang (CR14) 2023; 3
Liu, Jia, Kang, Luo (CR9) 2022; 17
Tang, Xiao, Jiao, Li, Zhang, Sun, Wang (CR8) 2022; 31
Liu, Jia, Zhao, Zhang, Hao, Zhang (CR26) 2021; 2021
Shao, Chen (CR21) 2022; 15
Wang, Cheng, Eaton (CR5) 2022; 1
Pan, Jiang, Pan, Liu (CR15) 2021; 40
Danjuma, Yusuf, Yusuf (CR1) 2022; 1
Wang, Zhang, Liu (CR23) 2022; 14
Yang, Gao, Han, Li, Tian, Zhu, Deng (CR19) 2023; 114
Sebastian, Philipp-Jan, Katharina (CR20) 2022; 13
Yi, Tuo, Tu, Zhang (CR11) 2021; 117
Long, Chen, Zhou (CR16) 2022; 1
Liang, Chen, Wang, Ma, Li, Jiang (CR29) 2022; 15
QF Yang (68366_CR19) 2023; 114
N Pan (68366_CR15) 2021; 40
C Liang (68366_CR29) 2022; 15
H Shi (68366_CR18) 2022; 54
N Shao (68366_CR21) 2022; 15
ZY Zhang (68366_CR7) 2022; 16
J Fu (68366_CR24) 2023; 150
Y Wang (68366_CR23) 2022; 14
W Hu (68366_CR6) 2022; 306
X Wang (68366_CR5) 2022; 1
S Choudhuri (68366_CR3) 2022; 1
S Surono (68366_CR13) 2021; 23
B Sebastian (68366_CR20) 2022; 13
K Liu (68366_CR26) 2021; 2021
B Ke (68366_CR12) 2021; 293
L Zhang (68366_CR10) 2023; 2488
AJ Wang (68366_CR14) 2023; 3
XM Long (68366_CR16) 2022; 1
S Oslund (68366_CR4) 2022; 1
M Dashtdar (68366_CR27) 2021; 31
CC Yi (68366_CR11) 2021; 117
A Yastrebov (68366_CR17) 2023; 22
YC Min (68366_CR28) 2023; 37
Z Tang (68366_CR8) 2022; 31
KY Liu (68366_CR9) 2022; 17
X Liu (68366_CR25) 2021; 133
MU Danjuma (68366_CR1) 2022; 1
JF Liang (68366_CR22) 2022; 24
M Saeed (68366_CR2) 2022; 2
References_xml – volume: 15
  start-page: 4158
  issue: 11
  year: 2022
  ident: CR29
  article-title: Line loss interval algorithm for distribution network with DG based on linear optimization under abnormal or missing measurement data
  publication-title: Energies
  doi: 10.3390/en15114158
– volume: 293
  start-page: 214
  issue: 9
  year: 2021
  end-page: 225
  ident: CR12
  article-title: “Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112808
– volume: 37
  start-page: 6183
  issue: 15
  year: 2023
  end-page: 6198
  ident: CR28
  article-title: Artificial intelligence generated synthetic datasets as the remedy for data scarcity in water quality index estimation
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-023-03650-6
– volume: 2
  start-page: 10
  issue: 1
  year: 2022
  end-page: 16
  ident: CR2
  article-title: Refined pythagorean fuzzy sets: Properties set-theoretic operations and axiomatic results
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2023512225
– volume: 13
  start-page: 91
  issue: 2
  year: 2022
  end-page: 104
  ident: CR20
  article-title: Randomized outlier detection with trees
  publication-title: JDSA
  doi: 10.1007/s41060-020-00238-w
– volume: 150
  start-page: 1091121
  issue: 8
  year: 2023
  end-page: 10911216
  ident: CR24
  article-title: A novel optimization strategy for line loss reduction in distribution networks with large penetration of distributed generation
  publication-title: Int. J. Elec. Power
– volume: 14
  start-page: 624
  issue: 14
  year: 2022
  end-page: 647
  ident: CR23
  article-title: Intelligent identification of the line-transformer relationship in distribution networks based on GAN processing unbalanced data
  publication-title: Sustainability
  doi: 10.3390/su14148611
– volume: 3
  start-page: 55
  issue: 12
  year: 2023
  end-page: 66
  ident: CR14
  article-title: A driver abnormal behavior warning method based on isolated forest algorithm
  publication-title: ATS
– volume: 22
  start-page: 601
  issue: 3
  year: 2023
  end-page: 611
  ident: CR17
  article-title: Multiobjective evolutionary algorithm IDEA and k-means clustering for modeling multidimenional medical data based on fuzzy cognitive maps
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-022-09895-1
– volume: 24
  start-page: 1
  issue: 3
  year: 2022
  end-page: 3
  ident: CR22
  article-title: A risk identification method for abnormal key data in the whole process of production project
  publication-title: Int. J. Data Min. Bioin.
  doi: 10.1504/IJDMB.2022.130345
– volume: 1
  start-page: 152
  issue: 4
  year: 2022
  end-page: 158
  ident: CR4
  article-title: Multiview robust adversarial stickers for arbitrary objects in the physical world
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2202322
– volume: 306
  start-page: 123
  issue: 15
  year: 2022
  end-page: 133
  ident: CR6
  article-title: “Loss reduction strategy and evaluation system based on reasonable line loss interval of transformer area
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2021.118123
– volume: 23
  start-page: 139
  issue: 1
  year: 2021
  end-page: 144
  ident: CR13
  article-title: Optimization of Fuzzy C-means clustering algorithm with combination of Minkowski and Chebyshev distance using principal component analysis
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00997-5
– volume: 31
  start-page: e13120.1
  issue: 11
  year: 2021
  end-page: e13120.29
  ident: CR27
  article-title: Improving voltage profile and reducing power losses based on reconfiguration and optimal placement of UPQC in the network by considering system reliability indices
  publication-title: Int. T Electr. Energy
  doi: 10.1002/2050-7038.13120
– volume: 1
  start-page: 43
  issue: 1
  year: 2022
  end-page: 51
  ident: CR3
  article-title: Distribution alignment using complement entropy objective and adaptive consensus-based label refinement for partial domain adaptation
  publication-title: AIA.
  doi: 10.47852/bonviewAIA2202524
– volume: 31
  start-page: 135
  issue: 13
  year: 2022
  end-page: 146
  ident: CR8
  article-title: Research on short-term low-voltage distribution network line loss prediction based on Kmeans-LightGBM
  publication-title: J. Circuit Syst. Comp.
  doi: 10.1142/S0218126622502280
– volume: 1
  start-page: 193
  issue: 4
  year: 2022
  end-page: 200
  ident: CR1
  article-title: Reliability, availability, maintainability, and dependability analysis of cold standby series-parallel system
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2202144
– volume: 16
  start-page: 4187
  issue: 20
  year: 2022
  end-page: 4203
  ident: CR7
  article-title: Prediction method of line loss rate in low-voltage distribution network based on multi-dimensional information matrix and dimensional attention mechanism-long-and short-term time-series network
  publication-title: IET Gener Transm DIS
  doi: 10.1049/gtd2.12590.Aug
– volume: 2021
  start-page: 8530389.1
  issue: 33
  year: 2021
  end-page: 8530389.11
  ident: CR26
  article-title: Energy loss calculation of low voltage distribution area based on variational mode decomposition and least squares support vector machine
  publication-title: MPE
  doi: 10.1155/2021/8530389
– volume: 2488
  start-page: 63
  issue: 1
  year: 2023
  end-page: 72
  ident: CR10
  article-title: Distribution network line loss calculation method considering distributed photovoltaic acces
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2488/1/012057
– volume: 15
  start-page: 2151
  issue: 6
  year: 2022
  end-page: 2164
  ident: CR21
  article-title: Abnormal data detection and identification method of distribution internet of things monitoring terminal based on spatiotemporal correlation
  publication-title: Energies
  doi: 10.3390/en15062151
– volume: 17
  start-page: 1131
  issue: 2
  year: 2022
  end-page: 1141
  ident: CR9
  article-title: Anomaly detection method of distribution network line loss based on hybrid clustering and LSTM
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-021-00958-4
– volume: 1
  start-page: 165
  issue: 4
  year: 2022
  end-page: 173
  ident: CR5
  article-title: Fake node attacks on graph convolutional networks
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2202321
– volume: 133
  start-page: 106467.1
  issue: 2
  year: 2021
  end-page: 106467.13
  ident: CR25
  article-title: Automatic routing of medium voltage distribution network based on load complementary characteristics and power supply unit division
  publication-title: Int. J. Elec. Power.
  doi: 10.1016/j.ijepes.2020.106467
– volume: 1
  start-page: 52
  issue: 1
  year: 2022
  end-page: 57
  ident: CR16
  article-title: Development of AR experiment on electric-thermal effect by open framework with simulation-based asset and user-defined input
  publication-title: Artif. Intell. Appl.
– volume: 117
  start-page: 214
  issue: 9
  year: 2021
  end-page: 225
  ident: CR11
  article-title: Improved fuzzy C-means clustering algorithm based on t-SNE for terahertz spectral recognition
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103856
– volume: 40
  start-page: 16
  issue: 4
  year: 2021
  end-page: 22
  ident: CR15
  article-title: Study of the bullet rifling linear traces matching technology based on deep learning
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189617
– volume: 114
  start-page: 1
  issue: 5
  year: 2023
  end-page: 14
  ident: CR19
  article-title: HCDC: A novel hierarchical clustering algorithm based on density-distance cores for data sets with varying density
  publication-title: Inf. Syst.
– volume: 54
  start-page: 3537
  issue: 5
  year: 2022
  end-page: 3550
  ident: CR18
  article-title: An improved mean imputation clustering algorithm for incomplete data
  publication-title: Neural Process Lett.
  doi: 10.1007/s11063-020-10298-5
– volume: 22
  start-page: 601
  issue: 3
  year: 2023
  ident: 68366_CR17
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-022-09895-1
– volume: 133
  start-page: 106467.1
  issue: 2
  year: 2021
  ident: 68366_CR25
  publication-title: Int. J. Elec. Power.
  doi: 10.1016/j.ijepes.2020.106467
– volume: 16
  start-page: 4187
  issue: 20
  year: 2022
  ident: 68366_CR7
  publication-title: IET Gener Transm DIS
  doi: 10.1049/gtd2.12590.Aug
– volume: 2
  start-page: 10
  issue: 1
  year: 2022
  ident: 68366_CR2
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2023512225
– volume: 2488
  start-page: 63
  issue: 1
  year: 2023
  ident: 68366_CR10
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2488/1/012057
– volume: 114
  start-page: 1
  issue: 5
  year: 2023
  ident: 68366_CR19
  publication-title: Inf. Syst.
– volume: 1
  start-page: 165
  issue: 4
  year: 2022
  ident: 68366_CR5
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2202321
– volume: 13
  start-page: 91
  issue: 2
  year: 2022
  ident: 68366_CR20
  publication-title: JDSA
  doi: 10.1007/s41060-020-00238-w
– volume: 24
  start-page: 1
  issue: 3
  year: 2022
  ident: 68366_CR22
  publication-title: Int. J. Data Min. Bioin.
  doi: 10.1504/IJDMB.2022.130345
– volume: 37
  start-page: 6183
  issue: 15
  year: 2023
  ident: 68366_CR28
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-023-03650-6
– volume: 31
  start-page: 135
  issue: 13
  year: 2022
  ident: 68366_CR8
  publication-title: J. Circuit Syst. Comp.
  doi: 10.1142/S0218126622502280
– volume: 2021
  start-page: 8530389.1
  issue: 33
  year: 2021
  ident: 68366_CR26
  publication-title: MPE
  doi: 10.1155/2021/8530389
– volume: 293
  start-page: 214
  issue: 9
  year: 2021
  ident: 68366_CR12
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112808
– volume: 117
  start-page: 214
  issue: 9
  year: 2021
  ident: 68366_CR11
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103856
– volume: 15
  start-page: 2151
  issue: 6
  year: 2022
  ident: 68366_CR21
  publication-title: Energies
  doi: 10.3390/en15062151
– volume: 15
  start-page: 4158
  issue: 11
  year: 2022
  ident: 68366_CR29
  publication-title: Energies
  doi: 10.3390/en15114158
– volume: 150
  start-page: 1091121
  issue: 8
  year: 2023
  ident: 68366_CR24
  publication-title: Int. J. Elec. Power
– volume: 17
  start-page: 1131
  issue: 2
  year: 2022
  ident: 68366_CR9
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-021-00958-4
– volume: 23
  start-page: 139
  issue: 1
  year: 2021
  ident: 68366_CR13
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00997-5
– volume: 31
  start-page: e13120.1
  issue: 11
  year: 2021
  ident: 68366_CR27
  publication-title: Int. T Electr. Energy
  doi: 10.1002/2050-7038.13120
– volume: 54
  start-page: 3537
  issue: 5
  year: 2022
  ident: 68366_CR18
  publication-title: Neural Process Lett.
  doi: 10.1007/s11063-020-10298-5
– volume: 1
  start-page: 43
  issue: 1
  year: 2022
  ident: 68366_CR3
  publication-title: AIA.
  doi: 10.47852/bonviewAIA2202524
– volume: 1
  start-page: 193
  issue: 4
  year: 2022
  ident: 68366_CR1
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2202144
– volume: 40
  start-page: 16
  issue: 4
  year: 2021
  ident: 68366_CR15
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189617
– volume: 14
  start-page: 624
  issue: 14
  year: 2022
  ident: 68366_CR23
  publication-title: Sustainability
  doi: 10.3390/su14148611
– volume: 1
  start-page: 152
  issue: 4
  year: 2022
  ident: 68366_CR4
  publication-title: JCCE.
  doi: 10.47852/bonviewJCCE2202322
– volume: 1
  start-page: 52
  issue: 1
  year: 2022
  ident: 68366_CR16
  publication-title: Artif. Intell. Appl.
– volume: 3
  start-page: 55
  issue: 12
  year: 2023
  ident: 68366_CR14
  publication-title: ATS
– volume: 306
  start-page: 123
  issue: 15
  year: 2022
  ident: 68366_CR6
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2021.118123
SSID ssj0000529419
Score 2.4506557
Snippet The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of distribution...
Abstract The long-term loss of distribution network in the process of distribution network development is caused by the backward management mode of...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19554
SubjectTerms 639/705/1042
639/705/117
639/705/794
Algorithms
Clustering
Coefficient of variation
Data processing
Forest management
Fuzzy C-Means
Humanities and Social Sciences
Isolated forest algorithm
Line loss analysis
Medium voltage distribution networks
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcUFteoaUyEjeImsSP2Me2tOJUcQCpN8tPWGnJVvtA2n_fsZ3dFvG69JbEdvyYceab2P4G4F1PhW9slLVt-4AOSs9r65SvLW8Y89E2IsYcbKK_upLX1-rzvVBfaU9YoQcuA3eCGMBwx7gKxrA2KGOkdEaY1nEqZJ-_voh67jlThdW7U6xV4ymZhsqTBVqqdJqsY7WQVIh6_YslyoT9f0KZv62QZsNzuQdPR8RITktL9-FRGA7gcYkhuX4Gi4-J-naMWkWGsqubJPBIplgtMSPrCCmxokkyW55g1kn-nYDXbrpKbAlYOTHTb7P5ZPn9BxbzZIJ6iVDUEwS22Ni71Ofw9fLiy_mneoykUDsm-bLG0Wql9-ib2MZE7L8X0ioeorK0C3gXKVWmD9y1Inbp1D7iJkROQhjqpDH0BewMsyG8AmKFkRExDW28ZTY00iOiVMr1nbcoJFtBuxlV7Uaa8RTtYqrzcjeVukhCoyR0loReV_B-W-amkGz8M_dZEtY2ZyLIzg9QbfSoNvp_alPB0UbUepy1C00Rb6IHisajgrfbZJxvaRHFDGG2ynlEJxMTXwUvi4psW0LR92Vc9hV82OjM3cv_3qHXD9GhQ3jSJeVu8MPXHcHOcr4Kb2DX_VxOFvPjPDtuASDAExU
  priority: 102
  providerName: Directory of Open Access Journals
Title Distribution network line loss analysis method based on improved clustering algorithm and isolated forest algorithm
URI https://link.springer.com/article/10.1038/s41598-024-68366-y
https://www.ncbi.nlm.nih.gov/pubmed/39174587
https://www.proquest.com/docview/3095828146
https://www.proquest.com/docview/3096280102
https://doaj.org/article/009a5c459eaa41e9aa88ca6a1c536872
Volume 14
WOSCitedRecordID wos001304514000059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsjISN4iaxIkfJ0ShFRy6ihBIyynyK-1KS7bdB9L-e8aONysE9MIl2l070Wxmxv48Y38D8JpTZjPdilTn3OEChVepNtKmusrK0rY6Y20bik3w8VhMJrKOAbdl3Fa5HRPDQG3nxsfIjyliAVwdoGO_u7pOfdUon12NJTT24MCzJNCwda8eYiw-i1XmMp6Vyag4XuJ85c-UFWXKBGUs3fw2HwXa_r9hzT_ypGH6Obv_v4I_gHsReJL3vaU8hFuuewR3-lKUm8ew_OgZdGPxK9L1m8OJx6BkhnITFclLSF9ymvjZzxLsOg1RCfxsZmtPuoDSEzW7QAlWlz_wNkumaN6IaC1BfIxi71qfwLez068fPqWxIENqSlGtUpWbXFiLSxydqRZfoGVCy8q1UtPC4beWUqm4q0zO2sIf_kf4hQCMMUWNUIo-hf1u3rlDIJop0SI0opnVpXaZsAhMpTS8sLqSTieQb9XSmMhW7otmzJqQNaei6VXZoCqboMpmk8Cb4Z6rnqvjxt4nXttDT8-zHX6YLy6a6LYNIlBVmRIlUqrMnVRKCKMYvoiKMsGLBI62Sm-i8y-bncYTeDU0o9v6XIzq3Hwd-rBCeEK_BJ71NjZIQnEJXVaCJ_B2a3S7h__7Dz2_WZYXcLfwdp_hyFgcwf5qsXYv4bb5uZouFyPY4xMermIEByen4_rLKMQn8Hpe1KPgWNhSfz6vv_8CAW8oKg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETO3HsA0JAqVq1rHooUm-uX2lX2u6WzS5o_xS_kbGT7AoBvfXALYntxJ58M_78mgF4VTHuMlOL1OSVxwFKVabGSpeaMisKV5uM13UMNlENBuLoSB6swc_-LEzYVtnbxGio3cSGOfJNhlwARweo2O_Pv6UhalRYXe1DaLSw2POLHzhka97tbuH_fU3p9ufDTztpF1UgtYUoZ6nObS6cQ55uMl1zwRwXRpa-loZRj3c1Y1JXvrQ5r2k4wY4cAlkE55pZoTXD916Bq0gjqIhbBQ-Wczph1azIZXc2J2Nis8Hi4QwbLVL8Eufp4rf-L4YJ-Bu3_WNdNnZ327f_N0HdgVsdsSYfWk24C2t-fA-ut6E2F_eh2QoegrvgXmTcbn4ngWOTEcqJ6M45C2lDapPQuzuCWYdx1gWv7WgenEqgtIgenWCLZ6dnWMyRIaovMnZHkP-jmFapD-DrpbT4IayPJ2P_GIjhWtRI_VjmTGF8JhwSbyltRZ0ppTcJ5D0MlO28sYegICMVdwUwoVroKISOitBRiwTeLMuct75ILsz9MaBrmTP4EY8PJtMT1ZklhQxbl7bAGmld5F5qLYTVHAVRMi4qmsBGDzLVGbdGrRCWwMtlMpqlsNakx34yj3k4FcFhYQKPWkwva8IkDoNLUSXwtgf56uX_btCTi-vyAm7sHH7ZV_u7g72ncJMGncuwF6AbsD6bzv0zuGa_z4bN9HlUWgLHlw3-XwT-fXk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8CCxgJTmy0SZw49gEhoFSsFlU9gLQ341eWSiVdmhbUv8avY-w8KgTsbQ_cmsZO7Mnn8Tf2eAbgWUmZTXTFY52WDg2Usoi1ETbWRZLnttIJq6qQbKKcTPjxsZjuwM_-LIx3q-x1YlDUdmH8GvkBRS6A1oFP0FJ1bhHT0fjV6bfYZ5DyO619Oo0WIkdu8wPNt-bl4Qi_9fMsG7_7-PZ93GUYiE3Oi1WsUpNya5Gz60RVjFPLuBaFq4SmmcOrilKhSleYlFWZP82OfAIZBWOKGq4UxedegIulD1oe3Aanw_qO30HLU9Gd00koP2iwuj_PluUxvomxePPbXBhSBvyN5_6xRxumvvH1_1loN-BaR7jJ63aE3IQdV9-Cy20Kzs1taEY-cnCX9IvUrVM88dybzFFmRHVBW0ibapv4Wd8SLDoLqzH428zXPtgESo6o-Qn2ePXlK1azZIbDGpm8JWgXoMi2d-_Ap3Pp8V3YrRe1uw9EM8UrpIQ0sTrXLuEWCbkQpsysLoTTEaQ9JKTporT7ZCFzGbwFKJctjCTCSAYYyU0EL4Y6p22MkjNLv_FIG0r6-OLhj8XyRHbqSiLzVoXJsUVK5akTSnFuFENBFJTxMotgrwec7JReI7doi-DpcBvVld-DUrVbrEMZlnEfyDCCey2-h5ZQgeZxwcsI9nvAbx_-7w49OLstT-AKYl5-OJwcPYSrmR9-CU4O2R7srpZr9wgume-rWbN8HMYvgc_njf1feuCGNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+network+line+loss+analysis+method+based+on+improved+clustering+algorithm+and+isolated+forest+algorithm&rft.jtitle=Scientific+reports&rft.au=Li%2C+Jian&rft.au=Li%2C+Shuoyu&rft.au=Zhao%2C+Wen&rft.au=Li%2C+Jiajie&rft.date=2024-08-22&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=19554&rft_id=info:doi/10.1038%2Fs41598-024-68366-y&rft_id=info%3Apmid%2F39174587&rft.externalDocID=39174587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon