GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment
In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication ov...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 19; s. 7113 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
20.09.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved. |
|---|---|
| AbstractList | In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m[sup.2], and it was found to be significantly improved. In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved. In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved. |
| Audience | Academic |
| Author | Chakrabarti, Prasun Nikolovski, Srete Singh, Surjit |
| AuthorAffiliation | 3 School of Computer Science Engineering and Technology, ITM SLS Baroda University, Vadodara 395150, India 1 Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Patiala 147004, India 2 Power Engineering Department, Faculty of Electrical Engineering Computing and Information Technology, 31000 Osijek, Croatia |
| AuthorAffiliation_xml | – name: 2 Power Engineering Department, Faculty of Electrical Engineering Computing and Information Technology, 31000 Osijek, Croatia – name: 1 Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Patiala 147004, India – name: 3 School of Computer Science Engineering and Technology, ITM SLS Baroda University, Vadodara 395150, India |
| Author_xml | – sequence: 1 givenname: Surjit orcidid: 0000-0002-2386-7729 surname: Singh fullname: Singh, Surjit – sequence: 2 givenname: Srete orcidid: 0000-0002-9033-4332 surname: Nikolovski fullname: Nikolovski, Srete – sequence: 3 givenname: Prasun surname: Chakrabarti fullname: Chakrabarti, Prasun |
| BookMark | eNptUktvEzEQXqEi-oAD_8ASFziktT272TUHpHZVQqWIHgLK0XL8CA67dmrvVgq_nklTVbRCtuwZ-5tvHvpOi6MQgy2K94yeAwh6kTlnomYMXhUnrOTlpOGcHv1jHxenOW8o5QDQvCmOYcpx0-ak-D1bzq_az2SW1I4sY-fI7Xbwvf-jBh8DuVLZGjKPyqDZqaDRa7sxDzb5sCYuJrJAT_mgVp0ly8X3THwgi16lgbR-2JHrcO9TDL0Nw9vitVNdtu8e77Pi59frH-23yfx2dtNezie6bKphomjJGrMSjQIwTvCyYQKonlZTK6ihrrGirpyrK6MB6lWtwVUCXeBihXOwcFbcHHhNVBu5TR6r2cmovHx4iGktsTyvOysdp6XRVGlgvMQMTaWUAzw4OG5YiVxfDlzbcdVbo7GNpLpnpM9_gv8l1_FeiqpmVFRI8PGRIMW70eZB9j5r2-EwbRyz5DWvmKDAaoR-eAHdxDEFHNUeVQJlHPaE5wfUWmEDPriIeTUuY3uvURjO4_tlje0Aq6YUAz4dAnSKOSfrnqpnVO71I5_0g9iLF1jthwcpYBLf_SfiL05XxXc |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3345218 crossref_primary_10_3390_fi14120369 crossref_primary_10_1007_s10791_024_09454_5 crossref_primary_10_1016_j_iot_2024_101135 crossref_primary_10_3390_en17020353 crossref_primary_10_3233_JIFS_232295 |
| Cites_doi | 10.1177/003754970107600201 10.1126/science.220.4598.671 10.1016/j.comnet.2014.03.027 10.1016/j.comcom.2008.05.038 10.1016/j.scs.2017.07.012 10.1007/978-981-10-6373-2_16 10.1016/j.scs.2021.102779 10.1016/j.asoc.2017.07.045 10.1049/iet-net.2017.0112 10.1109/MCOM.2016.7588228 10.1016/j.scs.2018.02.017 10.1016/j.scs.2020.102364 10.1145/2905055.2905200 10.1016/j.swevo.2013.04.002 10.1007/s11235-017-0365-5 10.1109/PEDES.2014.7042011 10.1109/SURV.2011.040310.00002 10.1007/s00500-020-05259-y 10.1109/TWC.2002.804190 10.1007/s10922-016-9379-7 10.1016/j.jnca.2014.09.005 10.1109/ACCESS.2019.2944858 10.1016/j.scs.2020.102049 10.1080/03052150802449227 10.1080/17517575.2019.1633691 10.1016/j.advengsoft.2013.12.007 10.1016/j.comnet.2008.04.002 10.1016/j.ins.2009.03.004 10.1049/iet-gtd.2016.0935 10.1016/j.comcom.2007.05.024 10.1109/TII.2019.2930226 10.1016/S1389-1286(01)00302-4 10.7551/mitpress/1290.001.0001 10.1109/JIOT.2022.3189807 10.1007/s12652-020-02146-0 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22197113 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f204dc0ac312465685aaf35aa23f2d14 PMC9571095 A746531560 10_3390_s22197113 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c485t-a0418db98a33df92481930c656e90d0f8e975ff75dc337b7c3f59f75329b219e3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867254800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:50:35 EDT 2025 Tue Nov 04 02:07:13 EST 2025 Thu Oct 02 07:37:21 EDT 2025 Tue Oct 07 07:34:31 EDT 2025 Tue Nov 04 18:17:03 EST 2025 Tue Nov 18 22:21:04 EST 2025 Sat Nov 29 07:09:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-a0418db98a33df92481930c656e90d0f8e975ff75dc337b7c3f59f75329b219e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9033-4332 0000-0002-2386-7729 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2724301235?pq-origsite=%requestingapplication% |
| PMID | 36236208 |
| PQID | 2724301235 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f204dc0ac312465685aaf35aa23f2d14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9571095 proquest_miscellaneous_2725190317 proquest_journals_2724301235 gale_infotracacademiconefile_A746531560 crossref_primary_10_3390_s22197113 crossref_citationtrail_10_3390_s22197113 |
| PublicationCentury | 2000 |
| PublicationDate | 20220920 |
| PublicationDateYYYYMMDD | 2022-09-20 |
| PublicationDate_xml | – month: 9 year: 2022 text: 20220920 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Singh (ref_8) 2017; 67 Akyildiz (ref_2) 2002; 38 Talaat (ref_16) 2020; 55 Naghibi (ref_12) 2020; 25 Faheem (ref_37) 2018; 68 Jiang (ref_41) 2019; 16 Afsar (ref_7) 2014; 46 Haseeb (ref_28) 2021; 68 ref_34 Lin (ref_35) 2016; 54 Abbasi (ref_6) 2007; 30 ref_32 Yick (ref_3) 2008; 52 Kulkarni (ref_31) 2011; 13 Singh (ref_38) 2019; 14 ref_19 Geem (ref_26) 2009; 41 Mirjalili (ref_1) 2014; 69 Padmanaban (ref_11) 2018; 7 ref_17 ref_39 Rashedi (ref_25) 2009; 179 Rajput (ref_14) 2019; 22 Kirkpatrick (ref_18) 1983; 220 Bari (ref_9) 2008; 31 Li (ref_15) 2018; 40 Kuila (ref_10) 2013; 12 Sun (ref_13) 2019; 7 Wan (ref_36) 2016; 16 ref_24 ref_23 Singh (ref_30) 2020; 63 Rault (ref_4) 2014; 67 Yuan (ref_33) 2016; 25 Heinzelman (ref_44) 2002; 1 ref_21 ref_43 Sharma (ref_27) 2019; 23 Mohindru (ref_5) 2019; 23 Geem (ref_20) 2001; 76 Pokhrel (ref_42) 2020; 17 Kumar (ref_22) 2017; 11 Khan (ref_29) 2017; 35 Haque (ref_40) 2021; 25 |
| References_xml | – volume: 76 start-page: 60 year: 2001 ident: ref_20 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – ident: ref_24 – volume: 220 start-page: 671 year: 1983 ident: ref_18 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 67 start-page: 104 year: 2014 ident: ref_4 article-title: Energy efficiency in wireless sensor networks: A top-down survey publication-title: Comput. Netw. doi: 10.1016/j.comnet.2014.03.027 – volume: 31 start-page: 3451 year: 2008 ident: ref_9 article-title: Clustering strategies for improving the lifetime of two-tiered sensor networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2008.05.038 – volume: 35 start-page: 271 year: 2017 ident: ref_29 article-title: Smart city designing and planning based on big data analytics publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.07.012 – ident: ref_34 doi: 10.1007/978-981-10-6373-2_16 – volume: 16 start-page: 7373 year: 2016 ident: ref_36 article-title: Software-Defined Industrial Internet of Things in the Context of Industry 4.0 publication-title: IEEE Sens. J. – volume: 68 start-page: 102779 year: 2021 ident: ref_28 article-title: Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102779 – volume: 68 start-page: 910 year: 2018 ident: ref_37 article-title: Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.045 – volume: 7 start-page: 265 year: 2018 ident: ref_11 article-title: Energy-efficient clustering algorithm for structured wireless sensor networks publication-title: IET Netw. doi: 10.1049/iet-net.2017.0112 – volume: 54 start-page: 46 year: 2016 ident: ref_35 article-title: Key design of driving industry 4.0: Joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7588228 – volume: 40 start-page: 657 year: 2018 ident: ref_15 article-title: A clustering based routing algorithm in IoT aware Wireless Mesh Networks publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.02.017 – volume: 22 start-page: 62 year: 2019 ident: ref_14 article-title: Scalable and sustainable wireless sensor networks for agricultural application of Internet of things using fuzzy c-means algorithm publication-title: Sustain. Comput. Inform. Syst. – volume: 63 start-page: 102364 year: 2020 ident: ref_30 article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102364 – volume: 23 start-page: 158 year: 2019 ident: ref_5 article-title: Reauthentication scheme for mobile wireless sensor networks publication-title: Sustain. Comput. Inform. Syst. – ident: ref_32 doi: 10.1145/2905055.2905200 – volume: 12 start-page: 48 year: 2013 ident: ref_10 article-title: A novel evolutionary approach for load balanced clustering problem for wireless sensor networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.04.002 – volume: 67 start-page: 651 year: 2017 ident: ref_8 article-title: HSCA: A novel harmony search based efficient clustering in heterogeneous WSNs publication-title: Telecommun. Syst. doi: 10.1007/s11235-017-0365-5 – ident: ref_21 doi: 10.1109/PEDES.2014.7042011 – volume: 13 start-page: 68 year: 2011 ident: ref_31 article-title: Computational Intelligence in Wireless Sensor Networks: A Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2011.040310.00002 – volume: 25 start-page: 1859 year: 2021 ident: ref_40 article-title: Ambient self-powered cluster-based wireless sensor networks for industry 4.0 applications publication-title: Soft Comput. doi: 10.1007/s00500-020-05259-y – volume: 17 start-page: 2143 year: 2020 ident: ref_42 article-title: Compound-TCP Performance for Industry 4.0 WiFi: A Cognitive Federated Learning Approach publication-title: IEEE Trans. Ind. Inform. – volume: 1 start-page: 660 year: 2002 ident: ref_44 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2002.804190 – volume: 25 start-page: 21 year: 2016 ident: ref_33 article-title: A Genetic Algorithm-Based, Dynamic Clustering Method Towards Improved WSN Longevity publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-016-9379-7 – volume: 46 start-page: 198 year: 2014 ident: ref_7 article-title: Clustering in sensor networks: A literature survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2014.09.005 – volume: 7 start-page: 144165 year: 2019 ident: ref_13 article-title: An Energy-Efficient Cross-Layer-Sensing Clustering Method Based on Intelligent Fog Computing in WSNs publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944858 – volume: 55 start-page: 102049 year: 2020 ident: ref_16 article-title: Hybrid-cloud-based data processing for power system monitoring in smart grids publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102049 – volume: 41 start-page: 297 year: 2009 ident: ref_26 article-title: Particle-swarm harmony search for water network design publication-title: Eng. Optim. doi: 10.1080/03052150802449227 – volume: 14 start-page: 1325 year: 2019 ident: ref_38 article-title: MH-CACA: Multi-objective harmony search-based coverage aware clustering algorithm in WSNs publication-title: Enterp. Inf. Syst. doi: 10.1080/17517575.2019.1633691 – volume: 69 start-page: 46 year: 2014 ident: ref_1 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 52 start-page: 2292 year: 2008 ident: ref_3 article-title: Wireless sensor network survey publication-title: Comput. Netw. doi: 10.1016/j.comnet.2008.04.002 – volume: 179 start-page: 2232 year: 2009 ident: ref_25 article-title: GSA: A Gravitational Search Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 25 start-page: 100377 year: 2020 ident: ref_12 article-title: EGRPM: Energy efficient geographic routing protocol based on mobile sink in wireless sensor networks publication-title: Sustain. Comput. Inform. Syst. – volume: 11 start-page: 2457 year: 2017 ident: ref_22 article-title: Imposing voltage security and network radiality for reconfiguration of distribution systems using efficient heuristic and meta-heuristic approach publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.0935 – volume: 30 start-page: 2826 year: 2007 ident: ref_6 article-title: A survey on clustering algorithms for wireless sensor networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2007.05.024 – volume: 23 start-page: 144 year: 2019 ident: ref_27 article-title: Sustainable automatic data clustering using hybrid PSO algorithm with mutation publication-title: Sustain. Comput. Inform. Syst. – ident: ref_17 – ident: ref_19 – volume: 16 start-page: 1310 year: 2019 ident: ref_41 article-title: Big Data Analysis Based Network Behavior Insight of Cellular Networks for Industry 4.0 Applications publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2930226 – volume: 38 start-page: 393 year: 2002 ident: ref_2 article-title: Wireless sensor networks: A survey publication-title: Comput. Netw. doi: 10.1016/S1389-1286(01)00302-4 – ident: ref_23 doi: 10.7551/mitpress/1290.001.0001 – ident: ref_43 doi: 10.1109/JIOT.2022.3189807 – ident: ref_39 doi: 10.1007/s12652-020-02146-0 |
| SSID | ssj0023338 |
| Score | 2.4142947 |
| Snippet | In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7113 |
| SubjectTerms | Algorithms Big Data Climate change clustering Communication Energy consumption Energy efficiency Energy management Genetic algorithms improved gray wolf optimization Intelligence Leadership load balancing Optimization techniques performance modeling Sensors Smart cities sustainable WSNs Swarm intelligence Wireless sensor networks Wolves |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFD7I4oM-yHrD0VWiCPoy7DSXZsa3bdldH0oVqnTfQuYkwWJ3Kr0s-O89yUy7rQq--DLMJQPJybmSfF8A3lKQLtEFytwwqFyWEskPcp_3XS9E6CW5wMQzO9LjcXl1VX3eO-or7glr6YFbwZ0GXkiHhUVBkYiSj1JZGwRduAjcpSOseaGrbTHVlVqCKq-WR0hQUX-64mSYutcTB9EnkfT_6Yp_3x65F28ujuFBlyiys7aDD-GObx7B_T36wMfw_XI6Ggw_sMul_cmmi3lgn8gBXHfISjagAOXYaGEd3c7TSj8bzjeRGYF-Z5StssktfIpNJ-MVmzVsck1CYUPKztn5LQruCXy9OP8y_Jh3hyfkKEu1zm0he6Wrq9IK4QJVWRT6RYEkQV8Vrgilr7QKQSuHQuhaowiqokfBq5qE5cVTOGoWjX8GDGWEWNdK-iCkU31LKY_FgNgPunbIM3i_FarBjlk8HnAxN1RhRPmbnfwzeLNr-qOl0_hbo0GcmV2DyICdXpBemE4vzL_0IoN3cV5NtFPqDNoObkBDioxX5kxHZrmII8_gZDv1pjPgleGaS5GAxBm83n0m04vrKbbxi01qQ_kveUWdgT5QmYOuH35pZt8SiXel4i5Y9fx_jPUF3OMRlREXy4oTOFovN_4l3MWb9Wy1fJUs4xdVSBOb priority: 102 providerName: Directory of Open Access Journals |
| Title | GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment |
| URI | https://www.proquest.com/docview/2724301235 https://www.proquest.com/docview/2725190317 https://pubmed.ncbi.nlm.nih.gov/PMC9571095 https://doaj.org/article/f204dc0ac312465685aaf35aa23f2d14 |
| Volume | 22 |
| WOSCitedRecordID | wos000867254800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQc48L0iy1IZhASXqEmc1AkXtK26C1K3VBTUcopcO4Zqu8nStEhc-O3MpG66BcSJi9UmruLU4-cZe94zwAucpGOlDXpuykRuGIcKcTDI3I72DVEvEQIrndmBGA7j6TQZWXp0adMqt5hYAfVG7ZnythGE27pQtGLeDkQQ8orn-ebqm0tnSNFeqz1Q4wCaJLzlNaA5enc--lwHYBzjsY26EMdQv10GOFyF7_O9OamS7v8ToH9Pmrw2C53e_b_tvwd3rDfKTjbmcx9uZPkDuH1No_AhXJxNBt3ea3a2lD_YpFgY9h5R5tLSN1kXZ0HNBoXU-HFRpROw3mJN8gv4c4YuMRvvOFpsMh6WbJ6z8SWaLOthCMD6O6rdI_h02v_Ye-vaExpcFcbRypVe6Md6lsSSc20wlEP_gnsKfcQs8bRn4iwRkTEi0opzMROKmyjBrzxIZvjfZ_wQGnmRZ4-BqZB43LMozAwPddSR6FdJZZTqGDHTKnDg1baPUmXly-kUjUWKYQx1Z1p3pwPP66pXG82Ov1XqUkfXFUhmu7pQLL-kdtSmJvBCrTypOLpB-FZxJKXhWATcBNoPHXhJZpISGGBjlLScBnwlktVKTwTJ1xFZ3YHjrVmkFiXKdGcFDjyrb-P4pk0bmWfFuqqDTjZCr3BA7FngXtP37-Tzr5VSeBJRqm109O-HP4FbAZE6aK_NO4bGarnOnsJN9X01L5ctOBBTUZVxC5rd_nD0oVWtXGB5_rPfsoPsF9dyNB0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRLjgTtaYIBBIHiJltpOnSAhtJZdqmWlUoc6noxrx1DRJaNpQftT_EaO07RdAfG2B16qtnHSuP3Orfb3HYDnGKQjbSxmbtqGPo-4Rj9IU79h6tZRL9EFljqzieh0opOTuLsGP-dcGLetcu4TS0dtcu3-I9-mgnJWMjvfnn3zXdcot7o6b6Exg8Vhev4DS7biTfsd_r4vKN3bPW4d-FVXAV_zKJz4KuD1yAziSDFmLJYfGBNZoDGvSePABDZKYxFaK0KjGRMDoZkNY3zJaDxA804ZXvcKrHMEe1CD9W77qPtxUeIxrPhm-kWMxcF2QfEMUa-zlahXNgf4MwT8vi3zQpzbu_m_fUO34EaVUZOdmQnchrU0uwPXL-gs3oWv-_2k2XpN9sfqnPTzkSXv0VOeVhRU0sRIbkiSK4NPR-WWCNIaTZ2EBJ5OMK0nvSXPjPR7nYIMM9I7RbMjLSxjyO6SLngPPlzKbO9DLcuzdBOI5o6LPgh5ahk3YUNhbqi01bphxcBo6sGrOQqkriTYXSeQkcRSzAFGLgDjwbPF0LOZ7sjfBjUdlBYDnFR4-UY-_iwrzyMtDbjRgdIMUzmcVRQqZRk-UGapqXMPXjogSufQ8Ga0qngZOCUnDSZ3hJPgc4R7D7bmwJOVpyvkEnUePF0cRh_lFp5UlubTcgwWChg-hAdiBeMrt756JBt-KdXO49BtFw4f_PvDn8C1g-OjRCbtzuFD2KCOpOLWDoMtqE3G0_QRXNXfJ8Ni_LgyWQKfLtsGfgGLRn6H |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHULwwDciMMAgELxETeykTpAQWrt2TKtCRYe6t-DYMVR0yWha0P4av47rNElXQLztgZeqbZw0bo_vR33PuQDP0UkHUmmM3KT2bS_wJNpBmtod5WpDvUQTWOrMDnkUBcfH4WgLftZcGFNWWdvE0lCrXJr_yNuUU4-VzM62rsoiRnuDt6ffbNNByuy01u00VhA5TM9-YPpWvDnYw9_6BaWD_lHvnV11GLClF_gLWzieG6gkDARjSmMqgv6RORJjnDR0lKODNOS-1txXkjGecMm0H-JLRsMEl3rK8LqXYJszTHpasN3tR6MPTbrHMPtbaRkxFjrtguIZ3HXZhgcsGwX86Q5-L9E85_MGN_7nb-smXK8ibbK7Whq3YCvNbsO1c_qLd-Dr_mTY7b0m-3NxRib5TJP3aEFPKmoq6aKHV2SYC4VPZ2WpBOnNlkZaAk8nGO6T8Zp_RibjqCDTjIxPcDmSHqY3pL-mEd6Fjxcy23vQyvIsvQ9Eeoajnvheqpmn_I7AmFFILWVH80RJasGrGhGxrKTZTYeQWYwpmgFP3IDHgmfN0NOVHsnfBnUNrJoBRkK8fCOff44rixRr6nhKOkIyDPFwVoEvhGb4QJmmyvUseGlAGRtDhzcjRcXXwCkZybB4lxtpPkPEt2CnBmFcWcAiXiPQgqfNYbRdZkNKZGm-LMdgAoFuhVvAN_C-ceubR7Lpl1IFPfRNGbH_4N8f_gSuIPDj4UF0-BCuUsNdMVuKzg60FvNl-gguy--LaTF_XK1eAp8uegn8AsJIhyE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GWLBC%3A+Gray+Wolf+Optimization+Based+Load+Balanced+Clustering+for+Sustainable+WSNs+in+Smart+City+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Singh%2C+Surjit&rft.au=Nikolovski%2C+Srete&rft.au=Chakrabarti%2C+Prasun&rft.date=2022-09-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=19&rft.spage=7113&rft_id=info:doi/10.3390%2Fs22197113&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |