GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment

In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication ov...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 19; s. 7113
Hlavní autoři: Singh, Surjit, Nikolovski, Srete, Chakrabarti, Prasun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 20.09.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.
AbstractList In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m[sup.2], and it was found to be significantly improved.
In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.
In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy-efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.
Audience Academic
Author Chakrabarti, Prasun
Nikolovski, Srete
Singh, Surjit
AuthorAffiliation 3 School of Computer Science Engineering and Technology, ITM SLS Baroda University, Vadodara 395150, India
1 Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Patiala 147004, India
2 Power Engineering Department, Faculty of Electrical Engineering Computing and Information Technology, 31000 Osijek, Croatia
AuthorAffiliation_xml – name: 2 Power Engineering Department, Faculty of Electrical Engineering Computing and Information Technology, 31000 Osijek, Croatia
– name: 1 Computer Science and Engineering Department, Thapar Institute of Engineering & Technology, Patiala 147004, India
– name: 3 School of Computer Science Engineering and Technology, ITM SLS Baroda University, Vadodara 395150, India
Author_xml – sequence: 1
  givenname: Surjit
  orcidid: 0000-0002-2386-7729
  surname: Singh
  fullname: Singh, Surjit
– sequence: 2
  givenname: Srete
  orcidid: 0000-0002-9033-4332
  surname: Nikolovski
  fullname: Nikolovski, Srete
– sequence: 3
  givenname: Prasun
  surname: Chakrabarti
  fullname: Chakrabarti, Prasun
BookMark eNptUktvEzEQXqEi-oAD_8ASFziktT272TUHpHZVQqWIHgLK0XL8CA67dmrvVgq_nklTVbRCtuwZ-5tvHvpOi6MQgy2K94yeAwh6kTlnomYMXhUnrOTlpOGcHv1jHxenOW8o5QDQvCmOYcpx0-ak-D1bzq_az2SW1I4sY-fI7Xbwvf-jBh8DuVLZGjKPyqDZqaDRa7sxDzb5sCYuJrJAT_mgVp0ly8X3THwgi16lgbR-2JHrcO9TDL0Nw9vitVNdtu8e77Pi59frH-23yfx2dtNezie6bKphomjJGrMSjQIwTvCyYQKonlZTK6ihrrGirpyrK6MB6lWtwVUCXeBihXOwcFbcHHhNVBu5TR6r2cmovHx4iGktsTyvOysdp6XRVGlgvMQMTaWUAzw4OG5YiVxfDlzbcdVbo7GNpLpnpM9_gv8l1_FeiqpmVFRI8PGRIMW70eZB9j5r2-EwbRyz5DWvmKDAaoR-eAHdxDEFHNUeVQJlHPaE5wfUWmEDPriIeTUuY3uvURjO4_tlje0Aq6YUAz4dAnSKOSfrnqpnVO71I5_0g9iLF1jthwcpYBLf_SfiL05XxXc
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3345218
crossref_primary_10_3390_fi14120369
crossref_primary_10_1007_s10791_024_09454_5
crossref_primary_10_1016_j_iot_2024_101135
crossref_primary_10_3390_en17020353
crossref_primary_10_3233_JIFS_232295
Cites_doi 10.1177/003754970107600201
10.1126/science.220.4598.671
10.1016/j.comnet.2014.03.027
10.1016/j.comcom.2008.05.038
10.1016/j.scs.2017.07.012
10.1007/978-981-10-6373-2_16
10.1016/j.scs.2021.102779
10.1016/j.asoc.2017.07.045
10.1049/iet-net.2017.0112
10.1109/MCOM.2016.7588228
10.1016/j.scs.2018.02.017
10.1016/j.scs.2020.102364
10.1145/2905055.2905200
10.1016/j.swevo.2013.04.002
10.1007/s11235-017-0365-5
10.1109/PEDES.2014.7042011
10.1109/SURV.2011.040310.00002
10.1007/s00500-020-05259-y
10.1109/TWC.2002.804190
10.1007/s10922-016-9379-7
10.1016/j.jnca.2014.09.005
10.1109/ACCESS.2019.2944858
10.1016/j.scs.2020.102049
10.1080/03052150802449227
10.1080/17517575.2019.1633691
10.1016/j.advengsoft.2013.12.007
10.1016/j.comnet.2008.04.002
10.1016/j.ins.2009.03.004
10.1049/iet-gtd.2016.0935
10.1016/j.comcom.2007.05.024
10.1109/TII.2019.2930226
10.1016/S1389-1286(01)00302-4
10.7551/mitpress/1290.001.0001
10.1109/JIOT.2022.3189807
10.1007/s12652-020-02146-0
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22197113
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f204dc0ac312465685aaf35aa23f2d14
PMC9571095
A746531560
10_3390_s22197113
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c485t-a0418db98a33df92481930c656e90d0f8e975ff75dc337b7c3f59f75329b219e3
IEDL.DBID PIMPY
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867254800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:35 EDT 2025
Tue Nov 04 02:07:13 EST 2025
Thu Oct 02 07:37:21 EDT 2025
Tue Oct 07 07:34:31 EDT 2025
Tue Nov 04 18:17:03 EST 2025
Tue Nov 18 22:21:04 EST 2025
Sat Nov 29 07:09:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-a0418db98a33df92481930c656e90d0f8e975ff75dc337b7c3f59f75329b219e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9033-4332
0000-0002-2386-7729
OpenAccessLink https://www.proquest.com/publiccontent/docview/2724301235?pq-origsite=%requestingapplication%
PMID 36236208
PQID 2724301235
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f204dc0ac312465685aaf35aa23f2d14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9571095
proquest_miscellaneous_2725190317
proquest_journals_2724301235
gale_infotracacademiconefile_A746531560
crossref_primary_10_3390_s22197113
crossref_citationtrail_10_3390_s22197113
PublicationCentury 2000
PublicationDate 20220920
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 9
  year: 2022
  text: 20220920
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Singh (ref_8) 2017; 67
Akyildiz (ref_2) 2002; 38
Talaat (ref_16) 2020; 55
Naghibi (ref_12) 2020; 25
Faheem (ref_37) 2018; 68
Jiang (ref_41) 2019; 16
Afsar (ref_7) 2014; 46
Haseeb (ref_28) 2021; 68
ref_34
Lin (ref_35) 2016; 54
Abbasi (ref_6) 2007; 30
ref_32
Yick (ref_3) 2008; 52
Kulkarni (ref_31) 2011; 13
Singh (ref_38) 2019; 14
ref_19
Geem (ref_26) 2009; 41
Mirjalili (ref_1) 2014; 69
Padmanaban (ref_11) 2018; 7
ref_17
ref_39
Rashedi (ref_25) 2009; 179
Rajput (ref_14) 2019; 22
Kirkpatrick (ref_18) 1983; 220
Bari (ref_9) 2008; 31
Li (ref_15) 2018; 40
Kuila (ref_10) 2013; 12
Sun (ref_13) 2019; 7
Wan (ref_36) 2016; 16
ref_24
ref_23
Singh (ref_30) 2020; 63
Rault (ref_4) 2014; 67
Yuan (ref_33) 2016; 25
Heinzelman (ref_44) 2002; 1
ref_21
ref_43
Sharma (ref_27) 2019; 23
Mohindru (ref_5) 2019; 23
Geem (ref_20) 2001; 76
Pokhrel (ref_42) 2020; 17
Kumar (ref_22) 2017; 11
Khan (ref_29) 2017; 35
Haque (ref_40) 2021; 25
References_xml – volume: 76
  start-page: 60
  year: 2001
  ident: ref_20
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– ident: ref_24
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_18
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 67
  start-page: 104
  year: 2014
  ident: ref_4
  article-title: Energy efficiency in wireless sensor networks: A top-down survey
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2014.03.027
– volume: 31
  start-page: 3451
  year: 2008
  ident: ref_9
  article-title: Clustering strategies for improving the lifetime of two-tiered sensor networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2008.05.038
– volume: 35
  start-page: 271
  year: 2017
  ident: ref_29
  article-title: Smart city designing and planning based on big data analytics
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.07.012
– ident: ref_34
  doi: 10.1007/978-981-10-6373-2_16
– volume: 16
  start-page: 7373
  year: 2016
  ident: ref_36
  article-title: Software-Defined Industrial Internet of Things in the Context of Industry 4.0
  publication-title: IEEE Sens. J.
– volume: 68
  start-page: 102779
  year: 2021
  ident: ref_28
  article-title: Intelligent and secure edge-enabled computing model for sustainable cities using green internet of things
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102779
– volume: 68
  start-page: 910
  year: 2018
  ident: ref_37
  article-title: Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.045
– volume: 7
  start-page: 265
  year: 2018
  ident: ref_11
  article-title: Energy-efficient clustering algorithm for structured wireless sensor networks
  publication-title: IET Netw.
  doi: 10.1049/iet-net.2017.0112
– volume: 54
  start-page: 46
  year: 2016
  ident: ref_35
  article-title: Key design of driving industry 4.0: Joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7588228
– volume: 40
  start-page: 657
  year: 2018
  ident: ref_15
  article-title: A clustering based routing algorithm in IoT aware Wireless Mesh Networks
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.02.017
– volume: 22
  start-page: 62
  year: 2019
  ident: ref_14
  article-title: Scalable and sustainable wireless sensor networks for agricultural application of Internet of things using fuzzy c-means algorithm
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 63
  start-page: 102364
  year: 2020
  ident: ref_30
  article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102364
– volume: 23
  start-page: 158
  year: 2019
  ident: ref_5
  article-title: Reauthentication scheme for mobile wireless sensor networks
  publication-title: Sustain. Comput. Inform. Syst.
– ident: ref_32
  doi: 10.1145/2905055.2905200
– volume: 12
  start-page: 48
  year: 2013
  ident: ref_10
  article-title: A novel evolutionary approach for load balanced clustering problem for wireless sensor networks
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.04.002
– volume: 67
  start-page: 651
  year: 2017
  ident: ref_8
  article-title: HSCA: A novel harmony search based efficient clustering in heterogeneous WSNs
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-017-0365-5
– ident: ref_21
  doi: 10.1109/PEDES.2014.7042011
– volume: 13
  start-page: 68
  year: 2011
  ident: ref_31
  article-title: Computational Intelligence in Wireless Sensor Networks: A Survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2011.040310.00002
– volume: 25
  start-page: 1859
  year: 2021
  ident: ref_40
  article-title: Ambient self-powered cluster-based wireless sensor networks for industry 4.0 applications
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05259-y
– volume: 17
  start-page: 2143
  year: 2020
  ident: ref_42
  article-title: Compound-TCP Performance for Industry 4.0 WiFi: A Cognitive Federated Learning Approach
  publication-title: IEEE Trans. Ind. Inform.
– volume: 1
  start-page: 660
  year: 2002
  ident: ref_44
  article-title: An application-specific protocol architecture for wireless microsensor networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2002.804190
– volume: 25
  start-page: 21
  year: 2016
  ident: ref_33
  article-title: A Genetic Algorithm-Based, Dynamic Clustering Method Towards Improved WSN Longevity
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-016-9379-7
– volume: 46
  start-page: 198
  year: 2014
  ident: ref_7
  article-title: Clustering in sensor networks: A literature survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2014.09.005
– volume: 7
  start-page: 144165
  year: 2019
  ident: ref_13
  article-title: An Energy-Efficient Cross-Layer-Sensing Clustering Method Based on Intelligent Fog Computing in WSNs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944858
– volume: 55
  start-page: 102049
  year: 2020
  ident: ref_16
  article-title: Hybrid-cloud-based data processing for power system monitoring in smart grids
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102049
– volume: 41
  start-page: 297
  year: 2009
  ident: ref_26
  article-title: Particle-swarm harmony search for water network design
  publication-title: Eng. Optim.
  doi: 10.1080/03052150802449227
– volume: 14
  start-page: 1325
  year: 2019
  ident: ref_38
  article-title: MH-CACA: Multi-objective harmony search-based coverage aware clustering algorithm in WSNs
  publication-title: Enterp. Inf. Syst.
  doi: 10.1080/17517575.2019.1633691
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_1
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 52
  start-page: 2292
  year: 2008
  ident: ref_3
  article-title: Wireless sensor network survey
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2008.04.002
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_25
  article-title: GSA: A Gravitational Search Algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 25
  start-page: 100377
  year: 2020
  ident: ref_12
  article-title: EGRPM: Energy efficient geographic routing protocol based on mobile sink in wireless sensor networks
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 11
  start-page: 2457
  year: 2017
  ident: ref_22
  article-title: Imposing voltage security and network radiality for reconfiguration of distribution systems using efficient heuristic and meta-heuristic approach
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.0935
– volume: 30
  start-page: 2826
  year: 2007
  ident: ref_6
  article-title: A survey on clustering algorithms for wireless sensor networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2007.05.024
– volume: 23
  start-page: 144
  year: 2019
  ident: ref_27
  article-title: Sustainable automatic data clustering using hybrid PSO algorithm with mutation
  publication-title: Sustain. Comput. Inform. Syst.
– ident: ref_17
– ident: ref_19
– volume: 16
  start-page: 1310
  year: 2019
  ident: ref_41
  article-title: Big Data Analysis Based Network Behavior Insight of Cellular Networks for Industry 4.0 Applications
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2930226
– volume: 38
  start-page: 393
  year: 2002
  ident: ref_2
  article-title: Wireless sensor networks: A survey
  publication-title: Comput. Netw.
  doi: 10.1016/S1389-1286(01)00302-4
– ident: ref_23
  doi: 10.7551/mitpress/1290.001.0001
– ident: ref_43
  doi: 10.1109/JIOT.2022.3189807
– ident: ref_39
  doi: 10.1007/s12652-020-02146-0
SSID ssj0023338
Score 2.4142947
Snippet In a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7113
SubjectTerms Algorithms
Big Data
Climate change
clustering
Communication
Energy consumption
Energy efficiency
Energy management
Genetic algorithms
improved gray wolf optimization
Intelligence
Leadership
load balancing
Optimization techniques
performance modeling
Sensors
Smart cities
sustainable WSNs
Swarm intelligence
Wireless sensor networks
Wolves
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFD7I4oM-yHrD0VWiCPoy7DSXZsa3bdldH0oVqnTfQuYkwWJ3Kr0s-O89yUy7rQq--DLMJQPJybmSfF8A3lKQLtEFytwwqFyWEskPcp_3XS9E6CW5wMQzO9LjcXl1VX3eO-or7glr6YFbwZ0GXkiHhUVBkYiSj1JZGwRduAjcpSOseaGrbTHVlVqCKq-WR0hQUX-64mSYutcTB9EnkfT_6Yp_3x65F28ujuFBlyiys7aDD-GObx7B_T36wMfw_XI6Ggw_sMul_cmmi3lgn8gBXHfISjagAOXYaGEd3c7TSj8bzjeRGYF-Z5StssktfIpNJ-MVmzVsck1CYUPKztn5LQruCXy9OP8y_Jh3hyfkKEu1zm0he6Wrq9IK4QJVWRT6RYEkQV8Vrgilr7QKQSuHQuhaowiqokfBq5qE5cVTOGoWjX8GDGWEWNdK-iCkU31LKY_FgNgPunbIM3i_FarBjlk8HnAxN1RhRPmbnfwzeLNr-qOl0_hbo0GcmV2DyICdXpBemE4vzL_0IoN3cV5NtFPqDNoObkBDioxX5kxHZrmII8_gZDv1pjPgleGaS5GAxBm83n0m04vrKbbxi01qQ_kveUWdgT5QmYOuH35pZt8SiXel4i5Y9fx_jPUF3OMRlREXy4oTOFovN_4l3MWb9Wy1fJUs4xdVSBOb
  priority: 102
  providerName: Directory of Open Access Journals
Title GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment
URI https://www.proquest.com/docview/2724301235
https://www.proquest.com/docview/2725190317
https://pubmed.ncbi.nlm.nih.gov/PMC9571095
https://doaj.org/article/f204dc0ac312465685aaf35aa23f2d14
Volume 22
WOSCitedRecordID wos000867254800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB2xLQc48L0iy1IZhASXqEmc1AkXtK26C1K3VBTUcopcO4Zqu8nStEhc-O3MpG66BcSJi9UmruLU4-cZe94zwAucpGOlDXpuykRuGIcKcTDI3I72DVEvEQIrndmBGA7j6TQZWXp0adMqt5hYAfVG7ZnythGE27pQtGLeDkQQ8orn-ebqm0tnSNFeqz1Q4wCaJLzlNaA5enc--lwHYBzjsY26EMdQv10GOFyF7_O9OamS7v8ToH9Pmrw2C53e_b_tvwd3rDfKTjbmcx9uZPkDuH1No_AhXJxNBt3ea3a2lD_YpFgY9h5R5tLSN1kXZ0HNBoXU-HFRpROw3mJN8gv4c4YuMRvvOFpsMh6WbJ6z8SWaLOthCMD6O6rdI_h02v_Ye-vaExpcFcbRypVe6Md6lsSSc20wlEP_gnsKfcQs8bRn4iwRkTEi0opzMROKmyjBrzxIZvjfZ_wQGnmRZ4-BqZB43LMozAwPddSR6FdJZZTqGDHTKnDg1baPUmXly-kUjUWKYQx1Z1p3pwPP66pXG82Ov1XqUkfXFUhmu7pQLL-kdtSmJvBCrTypOLpB-FZxJKXhWATcBNoPHXhJZpISGGBjlLScBnwlktVKTwTJ1xFZ3YHjrVmkFiXKdGcFDjyrb-P4pk0bmWfFuqqDTjZCr3BA7FngXtP37-Tzr5VSeBJRqm109O-HP4FbAZE6aK_NO4bGarnOnsJN9X01L5ctOBBTUZVxC5rd_nD0oVWtXGB5_rPfsoPsF9dyNB0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRLjgTtaYIBBIHiJltpOnSAhtJZdqmWlUoc6noxrx1DRJaNpQftT_EaO07RdAfG2B16qtnHSuP3Orfb3HYDnGKQjbSxmbtqGPo-4Rj9IU79h6tZRL9EFljqzieh0opOTuLsGP-dcGLetcu4TS0dtcu3-I9-mgnJWMjvfnn3zXdcot7o6b6Exg8Vhev4DS7biTfsd_r4vKN3bPW4d-FVXAV_zKJz4KuD1yAziSDFmLJYfGBNZoDGvSePABDZKYxFaK0KjGRMDoZkNY3zJaDxA804ZXvcKrHMEe1CD9W77qPtxUeIxrPhm-kWMxcF2QfEMUa-zlahXNgf4MwT8vi3zQpzbu_m_fUO34EaVUZOdmQnchrU0uwPXL-gs3oWv-_2k2XpN9sfqnPTzkSXv0VOeVhRU0sRIbkiSK4NPR-WWCNIaTZ2EBJ5OMK0nvSXPjPR7nYIMM9I7RbMjLSxjyO6SLngPPlzKbO9DLcuzdBOI5o6LPgh5ahk3YUNhbqi01bphxcBo6sGrOQqkriTYXSeQkcRSzAFGLgDjwbPF0LOZ7sjfBjUdlBYDnFR4-UY-_iwrzyMtDbjRgdIMUzmcVRQqZRk-UGapqXMPXjogSufQ8Ga0qngZOCUnDSZ3hJPgc4R7D7bmwJOVpyvkEnUePF0cRh_lFp5UlubTcgwWChg-hAdiBeMrt756JBt-KdXO49BtFw4f_PvDn8C1g-OjRCbtzuFD2KCOpOLWDoMtqE3G0_QRXNXfJ8Ni_LgyWQKfLtsGfgGLRn6H
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHULwwDciMMAgELxETeykTpAQWrt2TKtCRYe6t-DYMVR0yWha0P4av47rNElXQLztgZeqbZw0bo_vR33PuQDP0UkHUmmM3KT2bS_wJNpBmtod5WpDvUQTWOrMDnkUBcfH4WgLftZcGFNWWdvE0lCrXJr_yNuUU4-VzM62rsoiRnuDt6ffbNNByuy01u00VhA5TM9-YPpWvDnYw9_6BaWD_lHvnV11GLClF_gLWzieG6gkDARjSmMqgv6RORJjnDR0lKODNOS-1txXkjGecMm0H-JLRsMEl3rK8LqXYJszTHpasN3tR6MPTbrHMPtbaRkxFjrtguIZ3HXZhgcsGwX86Q5-L9E85_MGN_7nb-smXK8ibbK7Whq3YCvNbsO1c_qLd-Dr_mTY7b0m-3NxRib5TJP3aEFPKmoq6aKHV2SYC4VPZ2WpBOnNlkZaAk8nGO6T8Zp_RibjqCDTjIxPcDmSHqY3pL-mEd6Fjxcy23vQyvIsvQ9Eeoajnvheqpmn_I7AmFFILWVH80RJasGrGhGxrKTZTYeQWYwpmgFP3IDHgmfN0NOVHsnfBnUNrJoBRkK8fCOff44rixRr6nhKOkIyDPFwVoEvhGb4QJmmyvUseGlAGRtDhzcjRcXXwCkZybB4lxtpPkPEt2CnBmFcWcAiXiPQgqfNYbRdZkNKZGm-LMdgAoFuhVvAN_C-ceubR7Lpl1IFPfRNGbH_4N8f_gSuIPDj4UF0-BCuUsNdMVuKzg60FvNl-gguy--LaTF_XK1eAp8uegn8AsJIhyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GWLBC%3A+Gray+Wolf+Optimization+Based+Load+Balanced+Clustering+for+Sustainable+WSNs+in+Smart+City+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Singh%2C+Surjit&rft.au=Nikolovski%2C+Srete&rft.au=Chakrabarti%2C+Prasun&rft.date=2022-09-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=19&rft.spage=7113&rft_id=info:doi/10.3390%2Fs22197113&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon