Optimal Compensation of MEMS Gyroscope Noise Kalman Filter Based on Conv-DAE and MultiTCN-Attention Model in Static Base Environment

Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-laye...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 19; s. 7249
Hlavní autoři: Huo, Zimin, Wang, Fuchao, Shen, Honghai, Sun, Xin, Zhang, Jingzhong, Li, Yaobin, Chu, Hairong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 24.09.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state. In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep learning, the noise features are obtained from the past gyroscope data, and the parameter optimization of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves the filtering and noise reduction accuracy. The experimental results show that, compared with the original data, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes, respectively, reducing the noise impact by nearly three times.
AbstractList Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state. In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep learning, the noise features are obtained from the past gyroscope data, and the parameter optimization of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves the filtering and noise reduction accuracy. The experimental results show that, compared with the original data, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes, respectively, reducing the noise impact by nearly three times.
Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state. In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep learning, the noise features are obtained from the past gyroscope data, and the parameter optimization of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves the filtering and noise reduction accuracy. The experimental results show that, compared with the original data, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes, respectively, reducing the noise impact by nearly three times.Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise reduction and compensation methods based on traditional models are not applicable. This paper proposes a noise reduction method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state. In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep learning, the noise features are obtained from the past gyroscope data, and the parameter optimization of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves the filtering and noise reduction accuracy. The experimental results show that, compared with the original data, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes, respectively, reducing the noise impact by nearly three times.
Audience Academic
Author Wang, Fuchao
Li, Yaobin
Sun, Xin
Zhang, Jingzhong
Chu, Hairong
Huo, Zimin
Shen, Honghai
AuthorAffiliation 4 Forest Protection Research Institute of Heilongjiang Province, Harbin 150040, China
3 Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 2 University of Chinese Academy of Sciences, Beijing 100049, China
– name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– name: 3 Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– name: 4 Forest Protection Research Institute of Heilongjiang Province, Harbin 150040, China
Author_xml – sequence: 1
  givenname: Zimin
  orcidid: 0000-0003-3472-6371
  surname: Huo
  fullname: Huo, Zimin
– sequence: 2
  givenname: Fuchao
  surname: Wang
  fullname: Wang, Fuchao
– sequence: 3
  givenname: Honghai
  orcidid: 0000-0002-8085-9805
  surname: Shen
  fullname: Shen, Honghai
– sequence: 4
  givenname: Xin
  orcidid: 0000-0001-6778-3167
  surname: Sun
  fullname: Sun, Xin
– sequence: 5
  givenname: Jingzhong
  surname: Zhang
  fullname: Zhang, Jingzhong
– sequence: 6
  givenname: Yaobin
  surname: Li
  fullname: Li, Yaobin
– sequence: 7
  givenname: Hairong
  surname: Chu
  fullname: Chu, Hairong
BookMark eNptUstuEzEUHaEi-oAFf2CJDSym9XNmvEEKIS0VTbtoWVuO5zq48tipPYnUPR-Ok1QVrZAXtq7P4177HFcHIQaoqo8EnzIm8VmmlMiWcvmmOiKc8rqjFB_8cz6sjnO-x5gyxrp31SFrKGsYl0fVn5vV6Abt0TQOKwhZjy4GFC2az-a36OIxxWziCtB1dBnQT-0HHdC58yMk9E1n6FGBT2PY1N8nM6RDj-ZrP7q76XU9GUcIO7l57MEjF9DtWPTNjohmYeNSDEPBvK_eWu0zfHjaT6pf57O76Y_66ubicjq5qg3vxFhL3QDuuCZMEMPaRi8wUEmFYdgsODaYtMJaIjoLRgoMwkrWLRrWARDJCu2kutzr9lHfq1Uqg6dHFbVTu0JMS6VTadCDaqWWYGWPNbecYd7ZtgFNoZcLvjUuWl_3Wqv1YoDelDGS9i9EX94E91st40ZJ0TLKRBH4_CSQ4sMa8qgGlw14rwPEdVa0pYJITPHW69Mr6H1cp1Ceaosq7XWSsII63aOWugzggo3F15TVw-BMSYx1pT5peSMY6WhbCF_2BFN-OSewz90TrLbBUs_BKtizV1jjxl1Yionz_2H8Ba6rztQ
CitedBy_id crossref_primary_10_1016_j_engappai_2023_107319
crossref_primary_10_3390_s23010250
crossref_primary_10_1016_j_measurement_2023_114001
crossref_primary_10_3390_machines11121079
crossref_primary_10_3390_s23052763
crossref_primary_10_3390_electronics13214278
crossref_primary_10_1109_TIM_2025_3608316
Cites_doi 10.1007/978-3-642-34396-4_40
10.3390/s19040972
10.1016/j.chaos.2022.112333
10.1364/AO.55.006243
10.1109/MAES.2004.1365016
10.1155/2018/2830686
10.3390/s20061662
10.1109/CCDC52312.2021.9601346
10.1016/j.measurement.2018.08.010
10.18653/v1/D15-1166
10.1145/3308560.3317701
10.1109/JSEN.2021.3079883
10.3788/AOS201535.0207001
10.3390/machines10060426
10.1109/ChiCC.2015.7259955
10.1109/ACCESS.2019.2912871
10.1109/ISOT.2014.23
10.20944/preprints202003.0096.v1
10.1016/0026-2714(95)00143-3
10.1109/CVPR.2015.7298965
10.1109/TIE.2012.2236994
10.1007/978-3-319-95930-6_21
10.3390/s20082203
10.3390/s20020546
10.1109/LRA.2019.2959507
10.3390/sym11010094
10.1007/s00542-015-2645-x
10.1109/ICoOM.2013.6626480
10.3390/s19081799
10.3390/s140100370
10.1109/ICRA40945.2020.9196860
10.3390/mi9050246
10.3390/s18103470
10.1145/3351180.3351220
10.1016/j.sna.2018.04.008
10.1109/NAECON.2018.8556718
10.3390/electronics8080876
10.3390/s21041518
10.1016/j.sna.2016.09.036
10.1016/j.jprocont.2020.01.004
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22197249
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_79a9ef9d0a4f43048f76ea2ed9b46ab0
PMC9573235
A746531827
10_3390_s22197249
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Scientific Research Business Fee Fund of Heilongjiang Provincial Scientific Research Institutes
  grantid: CZKYF2020B009
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c485t-9a6e084a1351c376ab0e2925c30cb40c0175ff158fec950e5f938b638ee193a13
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867056700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:36:56 EDT 2025
Tue Nov 04 02:07:16 EST 2025
Sun Nov 09 14:23:22 EST 2025
Tue Oct 07 07:38:58 EDT 2025
Tue Nov 04 18:17:11 EST 2025
Sat Nov 29 07:17:47 EST 2025
Tue Nov 18 22:10:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-9a6e084a1351c376ab0e2925c30cb40c0175ff158fec950e5f938b638ee193a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6778-3167
0000-0002-8085-9805
0000-0003-3472-6371
OpenAccessLink https://doaj.org/article/79a9ef9d0a4f43048f76ea2ed9b46ab0
PMID 36236349
PQID 2724308913
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_79a9ef9d0a4f43048f76ea2ed9b46ab0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9573235
proquest_miscellaneous_2725190200
proquest_journals_2724308913
gale_infotracacademiconefile_A746531827
crossref_primary_10_3390_s22197249
crossref_citationtrail_10_3390_s22197249
PublicationCentury 2000
PublicationDate 20220924
PublicationDateYYYYMMDD 2022-09-24
PublicationDate_xml – month: 9
  year: 2022
  text: 20220924
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_42) 2016; 55
Auger (ref_37) 2013; 60
ref_14
Meng (ref_26) 2018; 130
ref_36
ref_13
ref_35
ref_12
ref_34
Zhanshe (ref_1) 2015; 21
ref_11
ref_33
ref_32
ref_31
ref_30
Bingbo (ref_9) 2015; 35
Webber (ref_19) 2021; 21
He (ref_43) 2019; 7
Narasimhappa (ref_38) 2016; 251
ref_39
ref_16
Lou (ref_28) 2022; 161
ref_15
Cao (ref_17) 2018; 2018
Awad (ref_45) 1996; 36
Fontanella (ref_18) 2018; 279
Chen (ref_29) 2020; 87
(ref_44) 2015; 26
ref_25
ref_23
ref_22
ref_20
ref_41
ref_40
ref_3
ref_2
ref_27
Brossard (ref_24) 2020; 5
ref_8
ref_5
ref_4
ref_7
Nassar (ref_10) 2004; 19
ref_6
Esfahani (ref_21) 2020; 5
References_xml – ident: ref_16
  doi: 10.1007/978-3-642-34396-4_40
– volume: 5
  start-page: 4796
  year: 2020
  ident: ref_24
  article-title: Denoising IMU Gyroscopes With Deep Learning for Open-Loop Attitude Estimation
  publication-title: IEEE Robot. Autom. Lett.
– ident: ref_27
  doi: 10.3390/s19040972
– volume: 161
  start-page: 2333
  year: 2022
  ident: ref_28
  article-title: Chaotic signal denoising based on simplified convolutional denoising auto-encoder
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112333
– volume: 55
  start-page: 6243
  year: 2016
  ident: ref_42
  article-title: Temperature drift modeling and compensation of fiber optical gyroscope based on improved support vector machine and particle swarm optimization algorithms
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.006243
– volume: 19
  start-page: 32
  year: 2004
  ident: ref_10
  article-title: Wavelet de-noising for IMU alignment
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2004.1365016
– volume: 2018
  start-page: 2830686
  year: 2018
  ident: ref_17
  article-title: Temperature Energy Influence Compensation for MEMS Vibration Gyroscope Based on RBF NN-GA-KF Method
  publication-title: Shock Vib.
  doi: 10.1155/2018/2830686
– ident: ref_15
  doi: 10.3390/s20061662
– ident: ref_7
  doi: 10.1109/CCDC52312.2021.9601346
– volume: 130
  start-page: 448
  year: 2018
  ident: ref_26
  article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.010
– ident: ref_35
  doi: 10.18653/v1/D15-1166
– ident: ref_34
  doi: 10.1145/3308560.3317701
– volume: 21
  start-page: 16979
  year: 2021
  ident: ref_19
  article-title: Human Activity Recognition With Accelerometer and Gyroscope: A Data Fusion Approach
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3079883
– volume: 35
  start-page: 207001
  year: 2015
  ident: ref_9
  article-title: Application of EMD Threshold Filtering for Fiber Optical Gyro Drift Signal De-Noising
  publication-title: Acta Opt. Sin.
  doi: 10.3788/AOS201535.0207001
– ident: ref_4
  doi: 10.3390/machines10060426
– ident: ref_41
  doi: 10.1109/ChiCC.2015.7259955
– ident: ref_14
– volume: 7
  start-page: 55788
  year: 2019
  ident: ref_43
  article-title: Particle Swarm Optimization-Based Gyro Drift Estimation Method for Inertial Navigation System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912871
– ident: ref_8
  doi: 10.1109/ISOT.2014.23
– ident: ref_32
  doi: 10.20944/preprints202003.0096.v1
– volume: 36
  start-page: 457
  year: 1996
  ident: ref_45
  article-title: Properties of the Akaike information criterion
  publication-title: Microelectron. Reliab.
  doi: 10.1016/0026-2714(95)00143-3
– ident: ref_30
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_31
– volume: 60
  start-page: 5458
  year: 2013
  ident: ref_37
  article-title: Industrial Applications of the Kalman Filter: A Review
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2236994
– ident: ref_39
  doi: 10.1007/978-3-319-95930-6_21
– ident: ref_6
  doi: 10.3390/s20082203
– ident: ref_5
  doi: 10.3390/s20020546
– volume: 5
  start-page: 399
  year: 2020
  ident: ref_21
  article-title: OriNet: Robust 3-D Orientation Estimation With a Single Particular IMU
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2959507
– ident: ref_25
  doi: 10.3390/sym11010094
– volume: 21
  start-page: 2053
  year: 2015
  ident: ref_1
  article-title: Research development of silicon MEMS gyroscopes: A review
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-015-2645-x
– volume: 26
  start-page: 3046
  year: 2015
  ident: ref_44
  article-title: Vehicle State Estimation Based on Ant Colony Optimization Algorithm
  publication-title: China Mech. Eng.
– ident: ref_3
  doi: 10.1109/ICoOM.2013.6626480
– ident: ref_13
  doi: 10.3390/s19081799
– ident: ref_36
– ident: ref_12
  doi: 10.3390/s140100370
– ident: ref_20
  doi: 10.1109/ICRA40945.2020.9196860
– ident: ref_11
  doi: 10.3390/mi9050246
– ident: ref_23
  doi: 10.3390/s18103470
– ident: ref_40
  doi: 10.1145/3351180.3351220
– volume: 279
  start-page: 553
  year: 2018
  ident: ref_18
  article-title: MEMS gyros temperature calibration through artificial neural networks
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2018.04.008
– ident: ref_22
  doi: 10.1109/NAECON.2018.8556718
– ident: ref_33
  doi: 10.3390/electronics8080876
– ident: ref_2
  doi: 10.3390/s21041518
– volume: 251
  start-page: 42
  year: 2016
  ident: ref_38
  article-title: ARMA model based adaptive unscented fading Kalman filter for reducing drift of fiber optic gyroscope
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2016.09.036
– volume: 87
  start-page: 54
  year: 2020
  ident: ref_29
  article-title: One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2020.01.004
SSID ssj0023338
Score 2.4096708
Snippet Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are large, complex, nonlinear, and time varying. The traditional noise...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7249
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
attention mechanism
convolutional denoising autoencoder
Deep learning
Kalman filter
Kalman filters
Mathematical optimization
MEMS gyroscope
Microelectromechanical systems
Network topologies
Neural networks
Noise control
Optimization algorithms
Parameter estimation
Particle Swarm Optimization algorithm
Sensors
Support vector machines
temporal convolutional network
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagywEOvBGBBRmEBJdos3bcxCfUlhQk2LCCRdpb5PgBkbpJabIrceeHM-Om2RYQF06RkrHiaGY-z2Tsbwh5kYKhlFy4sBSKhbERJlQiATC0lmtZSmOd55n9kOR5enoqj_sfbm2_rXKDiR6oTaPxH_kBS1jMIyyqvV5-D7FrFFZX-xYaV8keMpXFI7I3zfLjT0PKxSEDW_MJcUjuD1rGsM0WEmdurUKerP9PSP59m-TWujO_9b8zvk1u9hEnnaxN5A65Yuu75MYWD-E98vMjAMcZCCE6QF7rtUUbR4-yo8_07Q9kvGyWluZN1Vr6Xi3OVE3nFRba6RSWQUNBfNbUF-GbSUZVbag_13syy8NJ1603VFLsuragVU0xvq20H0izy3N298mXeXYyexf27RlCHaeiC6Ua2yiNFfb404BTqowsk0xoHukyjjT4unDuUKTOaikiK5zkaQn-bi1EjTDsARnVTW0fEqpYJF2kIVtyMNJEqTOlEXys4eLEYRmQVxt1FbrnLscWGosCchjUbDFoNiDPB9HlmrDjb0JT1PkggBzb_kaz-lr0LlskUknrpIlU7ECRceqSsVXMGlnG-LEBeYkWUyASwGS06g80wCchp1YxSZC7DvK3JCD7Gwspeohoi0vzCMiz4TE4N1ZsVG2bcy8DETZE9PCyZMcYd6a--6SuvnmacCkSzrh49O-XPybXGZ7o8IW2fTLqVuf2CbmmL7qqXT3t_ekXVqUtgA
  priority: 102
  providerName: ProQuest
Title Optimal Compensation of MEMS Gyroscope Noise Kalman Filter Based on Conv-DAE and MultiTCN-Attention Model in Static Base Environment
URI https://www.proquest.com/docview/2724308913
https://www.proquest.com/docview/2725190200
https://pubmed.ncbi.nlm.nih.gov/PMC9573235
https://doaj.org/article/79a9ef9d0a4f43048f76ea2ed9b46ab0
Volume 22
WOSCitedRecordID wos000867056700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxFMElsogJLhEm7XjOj62JQUELRUsUjlFjh8iUjdZbbMrceHED2fGSUsLSFy4OJI9VvyYseeT7W8IeZ6BopRc-LgUmsWpFTbWQsJi6Bw3qlTW-cAz-17O59lyqRY7ob7wTlhHD9wN3JFUWjmvbKJTnwL2zrwcOs2cVWU61GVA6-D1bMBUD7U4IK-OR4gDqD9aM4bhtZAwc2f3CST9fy7Fv1-P3NlvprfJrd5RpKOugXfIFVffJTd36APvkR8fwN5PQQiNGuBoGGTaeDrLZ5_o629IVNmcOTpvqrWj7_TqVNd0WuH5OB3D7mUpiE-a-jJ-Ncqpri0Nz3FPJvN41LbdPUiKwdJWtKopuqWVCRVp_ut53H3yeZqfTN7EfVSF2KSZaGOlhy7JUo2h-QwsLzCGjikmDE9MmSYGTFR4fywy74wSiRNe8awEM3UOnD2o9oAc1E3tHhKqWaJ8YgDkeKhpk8zb0go-NPDx4riMyMvNaBempxzHyBerAqAHTkyxnZiIPNuKnnU8G38TGuOUbQWQGjtkgMIUvcIU_1KYiLzACS_QgKExRvfvEKBLSIVVjCRSzgHskhE53OhE0Vv2umDQEJ7g4W5Enm6LwSbxoEXXrrkIMuAYgyMOP5N7urTX9P2Suvoa2L2VkJxx8eh_9PUxucHwuUY4RTskB-35hXtCrpvLtlqfD8hVuZQhzQbk2jifLz4OghlBOvueQ97i7Wzx5Sd-tSVZ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuCMKAwwCwUs0z47r-AGhrmvZ1AtIFKlvwXHsLVKXlLYb2ju_h9_IOWl6A8TbHniKlBzn-vmzT3zOdwh5FQFQEiF9kEjDgzCVaWCkAjJ0Tlid6NT5Ume2q_r9aDjUn7bIz0UuDIZVLjixJOq0sPiPfJcrHgqGi2rvx98CrBqFq6uLEhpzWHTcxXdw2abvjg7g-77mvN0aNA-DqqpAYMNIzgJt6o5FocHSdBa6l0mY45pLK5hNQmYBotL7PRl5Z7VkTnotogRg6hxMdqAZnPcKuQo8rjCETA1XDp4Af2-uXiSEZrtTzrGoF8p0ro15ZWmAPweA34My10a59u3_7f3cIbeq-TRtzDvAXbLl8nvk5prK4n3y4yPQ4ikYIfeB115ikRae9lq9z_TDBep5FmNH-0U2dbRjRqcmp-0MwwjoPgzyKQXzZpGfBweNFjV5Ssus5UGzHzRms3m4KMWaciOa5RRn75ktG9LWKovwAflyKa_hIdnOi9w9ItRwpj2z4At6aJmyyKdJKkXdwsbLvaRG3i7gEdtKmR0LhIxi8NAQSfESSTXycmk6nsuR_M1oHzG2NEAF8XJHMTmOK0KKlTbaeZ0yE3oAThh5VXeGu1QnIT5sjbxBhMbIc3Az1lTpGvBIqBgWNxQq84F3qmpkZ4HIuCLAabyCY428WB4G6sL1KJO74qy0Af8B_BW4mNoA_8atbx7Js5NSBF1LJbiQj_998efk-uGg1427R_3OE3KDY-5KuaS4Q7ZnkzP3lFyz57NsOnlW9mRKvl521_gFNEGHmg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFiE48EYECiwIBBcr211v7D0glOYBUZoQiSKVk1nvAyyldkjSot75Vfw6ZhwnTQBx64FTpHg2fuSb2f28M98Q8jwGoKRC-iCVmgehlTbQMoJg6JwwKlXW-VJn9iAaDuOjIzXaIj-XtTCYVrmMiWWgtoXBd-R1HvFQMNxUq_sqLWLU7r6ZfAuwgxTutC7baSwg0ndn34G-zV732vBfv-C82zlsvQuqDgOBCWM5D5RuOBaHGtvUGXA1nTLHFZdGMJOGzABcpfd7MvbOKMmc9ErEKUDWOVj4wDD43UtkB5bkIfjYzqg3GH1a0T0B7G-hZSSEYvUZ59jiC0U712bAslHAn9PB7ymaa3Ne98b__LRukuvVSps2F65xi2y5_Da5tqa_eIf8eA8B8xiMMCoCny9RSgtPB53BB_r2DJU-i4mjwyKbOdrX42Od026GCQZ0H6Z_S8G8VeSnQbvZoTq3tKxnPmwNg-Z8vkgkpdhtbkyznOK6PjPlQNo5ry-8Sz5eyGO4R7bzInf3CdWcKc8MsEQPIy2LvU2tFA0DH17upTXyagmVxFSa7dg6ZJwAd0NUJStU1cizlelkIVTyN6N9xNvKALXFyy-K6ZekClVJpLRyXlmmQw8gCmMfNZzmzqo0xJutkZeI1gQjIFyM0VUhB9wSaoklzQg1-4C3RjWyu0RnUoXGWXIOzRp5ujoMQQ13qnTuipPSBpgFMBk4WbThCBuXvnkkz76W8uhKRoIL-eDfJ39CroBHJAe9Yf8hucqxqKXca9wl2_PpiXtELpvTeTabPq7cmpLPF-0bvwCM1ZHp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Compensation+of+MEMS+Gyroscope+Noise+Kalman+Filter+Based+on+Conv-DAE+and+MultiTCN-Attention+Model+in+Static+Base+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huo%2C+Zimin&rft.au=Wang%2C+Fuchao&rft.au=Shen%2C+Honghai&rft.au=Sun%2C+Xin&rft.date=2022-09-24&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=19&rft_id=info:doi/10.3390%2Fs22197249&rft_id=info%3Apmid%2F36236349&rft.externalDocID=PMC9573235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon