Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses
Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the es...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 21; p. 8505 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method—typically used to deal with the measurement noise time-correlation—is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated. |
|---|---|
| AbstractList | Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method—typically used to deal with the measurement noise time-correlation—is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated. Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method-typically used to deal with the measurement noise time-correlation-is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method-typically used to deal with the measurement noise time-correlation-is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated. |
| Audience | Academic |
| Author | Hu, Jun Caballero-Águila, Raquel Linares-Pérez, Josefa |
| AuthorAffiliation | 2 Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China 3 Department of Statistics and Operations Research, University of Granada, Av. Fuentenueva, 18071 Granada, Spain 1 Department of Statistics and Operations Research, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain |
| AuthorAffiliation_xml | – name: 1 Department of Statistics and Operations Research, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain – name: 2 Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China – name: 3 Department of Statistics and Operations Research, University of Granada, Av. Fuentenueva, 18071 Granada, Spain |
| Author_xml | – sequence: 1 givenname: Raquel orcidid: 0000-0001-7659-7649 surname: Caballero-Águila fullname: Caballero-Águila, Raquel – sequence: 2 givenname: Jun orcidid: 0000-0002-7852-5064 surname: Hu fullname: Hu, Jun – sequence: 3 givenname: Josefa orcidid: 0000-0002-6853-555X surname: Linares-Pérez fullname: Linares-Pérez, Josefa |
| BookMark | eNptkttuEzEQQFeoiF7ggT-wxAtIpF3f1vYLUhQKVAotgvC88npnU4fddbAdIr6E32WSVBWtkB9sjc-c8WVOi6MxjFAUL2l5zrkpLxJjjGpZyifFCRVMTDRj5dE_6-PiNKVVWTLOuX5WHPOKVxU1-qT4s9gGMgvDGsZksw8j-ZajzbD0kEgXIrlZZz_Ynlym3bwnPEKI4-Y15G2IPxLZ-nxLvtqxDQP5bHP0DtJbsvADTGYhRuhR2ZLr4NMu_h4crPeqac7WYT5mki-4gkzmISH0vHja2T7Bi7v5rPj-4XIx-zSZ33y8mk3nEye0zBPDKS9lK01FG9O0vFFKSOak7oyiwhrFjRacdVS7tqycbYXWptMVSFBCqIafFVcHbxvsql5HvGP8XQfr630gxGVtY_auh7phtlIWVCOACt1hQclK1nSGM-cq49D17uBab5oBWgcjPmX_QPpwZ_S39TL8qk0lhWEGBa_vBDH83EDK9eCTg763I4RNqpniUlfKUIroq0foKmziiE-1o4RCn9wJzw_U0uIF_NgFrOtwtDB4h03UeYxPlagkx6Sd9s0hwUX8hgjd_elpWe96rb7vNWQvHrHO532HYBHf_yfjL2aG1vQ |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104523 crossref_primary_10_3390_s23052852 crossref_primary_10_1016_j_dsp_2024_104529 crossref_primary_10_1016_j_jfranklin_2023_08_033 crossref_primary_10_1016_j_neucom_2024_128491 crossref_primary_10_1016_j_inffus_2025_103044 crossref_primary_10_1080_00207721_2024_2328781 crossref_primary_10_1016_j_jfranklin_2024_107005 crossref_primary_10_1109_TSMC_2025_3547926 |
| Cites_doi | 10.1016/j.inffus.2018.02.006 10.1109/ACCESS.2020.2983122 10.1016/j.ins.2016.08.020 10.1016/j.inffus.2019.06.026 10.3390/s19143112 10.1016/j.automatica.2018.12.027 10.1016/j.inffus.2016.01.001 10.1016/j.inffus.2018.01.004 10.1016/j.sigpro.2018.10.012 10.1109/TSP.2020.2967180 10.1109/ACCESS.2022.3201013 10.1016/j.arcontrol.2019.08.002 10.1109/TCNS.2017.2648508 10.1016/j.cam.2015.10.026 10.1016/j.automatica.2017.07.025 10.3390/s18020321 10.1016/j.inffus.2019.07.008 10.1016/j.sigpro.2018.08.005 10.1016/j.inffus.2017.03.006 10.1109/TAC.2010.2044263 10.1049/cth2.12252 10.1016/j.inffus.2018.01.008 10.1016/j.sigpro.2018.01.015 10.1016/j.dsp.2016.10.003 10.3390/s20226445 10.1016/j.automatica.2007.09.023 10.1049/iet-cta.2017.0425 10.1109/TAC.2008.2010999 10.1016/j.sigpro.2020.107704 10.1002/rnc.4493 10.1109/TAC.2018.2869467 10.1002/asjc.1045 10.1109/TCYB.2019.2900478 10.3390/s19204436 10.1080/21642583.2020.1737846 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22218505 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central - New (Subscription) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b2a67ae7b4e148f1b95202bf932cc69c PMC9654929 A746533471 10_3390_s22218505 |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (Spain); European Regional Development Fund (ERDF) grantid: PID2021-124486NB-I00 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c485t-931305d5961b9bd3b77452c58f9714a97398432f18cd06cad4889f86e5e7447b3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884118900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:32 EDT 2025 Tue Nov 04 02:11:29 EST 2025 Wed Oct 01 14:30:08 EDT 2025 Tue Oct 07 07:36:46 EDT 2025 Tue Nov 04 18:25:41 EST 2025 Sat Nov 29 07:09:03 EST 2025 Tue Nov 18 21:41:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-931305d5961b9bd3b77452c58f9714a97398432f18cd06cad4889f86e5e7447b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7659-7649 0000-0002-6853-555X 0000-0002-7852-5064 |
| OpenAccessLink | https://www.proquest.com/docview/2734749259?pq-origsite=%requestingapplication% |
| PMID | 36366198 |
| PQID | 2734749259 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b2a67ae7b4e148f1b95202bf932cc69c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654929 proquest_miscellaneous_2735867911 proquest_journals_2734749259 gale_infotracacademiconefile_A746533471 crossref_primary_10_3390_s22218505 crossref_citationtrail_10_3390_s22218505 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Liang (ref_13) 2010; 55 Li (ref_30) 2018; 5 Han (ref_31) 2019; 29 (ref_18) 2019; 156 Sun (ref_11) 2008; 44 Gao (ref_14) 2015; 17 Hu (ref_4) 2020; 8 Liu (ref_21) 2017; 85 ref_34 Li (ref_20) 2017; 60 ref_32 Ding (ref_16) 2019; 45 Ma (ref_25) 2022; 10 ref_17 He (ref_3) 2020; 54 Yang (ref_33) 2019; 102 Wang (ref_6) 2017; 11 Rotondo (ref_28) 2019; 48 Yang (ref_5) 2016; 370–371 Sun (ref_10) 2020; 68 Wang (ref_8) 2019; 45 Liu (ref_19) 2016; 298 Liu (ref_9) 2020; 8 Liu (ref_23) 2019; 64 Hu (ref_1) 2016; 31 Cheng (ref_27) 2022; 176 (ref_24) 2020; 54 Sun (ref_2) 2017; 38 Han (ref_7) 2018; 147 Geng (ref_22) 2019; 154 ref_29 Ma (ref_26) 2020; 176 Schenato (ref_12) 2009; 54 Ma (ref_15) 2019; 45 Xiao (ref_35) 2020; 50 |
| References_xml | – volume: 45 start-page: 324 year: 2019 ident: ref_8 article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.02.006 – volume: 8 start-page: 59987 year: 2020 ident: ref_9 article-title: Optimal linear filtering for networked control systems with random matrices, correlated noises, and packet dropouts publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2983122 – volume: 370–371 start-page: 446 year: 2016 ident: ref_5 article-title: Distributed fusion estimation with square-root array implementation for Markovian jump linear systems with random parameter matrices and cross-correlated noises publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.08.020 – volume: 54 start-page: 21 year: 2020 ident: ref_3 article-title: Distributed estimation over a low-cost sensor network: A review of state-of-the-art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.026 – ident: ref_32 doi: 10.3390/s19143112 – volume: 102 start-page: 34 year: 2019 ident: ref_33 article-title: Distributed filtering under false data injection attacks publication-title: Automatica doi: 10.1016/j.automatica.2018.12.027 – volume: 31 start-page: 65 year: 2016 ident: ref_1 article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.01.001 – volume: 45 start-page: 128 year: 2019 ident: ref_15 article-title: A general packet dropout compensation framework for optimal prior filter of networked multi-sensor systems publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.01.004 – volume: 156 start-page: 71 year: 2019 ident: ref_18 article-title: Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.10.012 – volume: 68 start-page: 1064 year: 2020 ident: ref_10 article-title: Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2967180 – volume: 10 start-page: 89011 year: 2022 ident: ref_25 article-title: Globally optimal centralized and sequential fusion filters for uncertain systems with time-correlated measurement noises publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3201013 – volume: 48 start-page: 103 year: 2019 ident: ref_28 article-title: Bibliographical review on cyber attacks from a control oriented perspective publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2019.08.002 – volume: 5 start-page: 846 year: 2018 ident: ref_30 article-title: Detection against linear deception attacks on multi-sensor remote state estimation publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2017.2648508 – volume: 298 start-page: 123 year: 2016 ident: ref_19 article-title: Recursive filtering for discrete-time linear systems with fading measurement and time-correlated channel noise publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.10.026 – volume: 85 start-page: 9 year: 2017 ident: ref_21 article-title: State estimation for discrete-time Markov jump linear systems with time-correlated and mode-dependent measurement noise publication-title: Automatica doi: 10.1016/j.automatica.2017.07.025 – ident: ref_29 doi: 10.3390/s18020321 – volume: 54 start-page: 161 year: 2020 ident: ref_24 article-title: Networked fusion estimation with multiple uncertainties and time-correlated channel noise publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.008 – volume: 154 start-page: 120 year: 2019 ident: ref_22 article-title: State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.08.005 – volume: 38 start-page: 122 year: 2017 ident: ref_2 article-title: Multi-sensor distributed fusion estimation with applications in networked systems: A review paper publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.03.006 – volume: 55 start-page: 1428 year: 2010 ident: ref_13 article-title: Optimal linear state estimator with multiple packet dropouts publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2044263 – volume: 176 start-page: 600 year: 2022 ident: ref_27 article-title: Gaussian estimation for non-linear stochastic uncertain systems with time-correlated additive noises and packet dropout compensations publication-title: IET Control Theory Appl. doi: 10.1049/cth2.12252 – volume: 45 start-page: 138 year: 2019 ident: ref_16 article-title: Fusion estimation for multi-sensor networked systems with packet loss compensation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.01.008 – volume: 147 start-page: 35 year: 2018 ident: ref_7 article-title: Improved Tobit Kalman filtering for systems with random parameters via conditional expectation publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.01.015 – volume: 60 start-page: 211 year: 2017 ident: ref_20 article-title: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.10.003 – ident: ref_34 doi: 10.3390/s20226445 – volume: 44 start-page: 1333 year: 2008 ident: ref_11 article-title: Optimal linear estimation for systems with multiple packet dropouts publication-title: Automatica doi: 10.1016/j.automatica.2007.09.023 – volume: 11 start-page: 3353 year: 2017 ident: ref_6 article-title: Optimal linear filtering design for discrete time systems with cross-correlated stochastic parameter matrices and noises publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2017.0425 – volume: 54 start-page: 1093 year: 2009 ident: ref_12 article-title: To zero or to hold control inputs with lossy links? publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2010999 – volume: 176 start-page: 107704 year: 2020 ident: ref_26 article-title: Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive noises and packet dropout compensations publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107704 – volume: 29 start-page: 2296 year: 2019 ident: ref_31 article-title: Local design of distributed H∞-consensus filtering over sensor networks under multiplicative noises and deception attacks publication-title: Int. J. Robust. Nonlinear Control doi: 10.1002/rnc.4493 – volume: 64 start-page: 2190 year: 2019 ident: ref_23 article-title: Convergence of optimal linear estimator with multiplicative and time-correlated additive measurement noises publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2869467 – volume: 17 start-page: 55 year: 2015 ident: ref_14 article-title: Two schemes of data dropout compensation for LQG control of networked control systems publication-title: Asian J. Control doi: 10.1002/asjc.1045 – volume: 50 start-page: 1200 year: 2020 ident: ref_35 article-title: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2900478 – ident: ref_17 doi: 10.3390/s19204436 – volume: 8 start-page: 189 year: 2020 ident: ref_4 article-title: A survey on distributed filtering, estimation and fusion for nonlinear systems with communication constraints: New advances and prospects publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2020.1737846 |
| SSID | ssj0023338 |
| Score | 2.452059 |
| Snippet | Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 8505 |
| SubjectTerms | Algorithms centralized fusion estimation Deception deception attacks Estimation theory Methods Noise packet dropouts random parameter matrices Sensors Signal processing time-correlated noise Wireless sensor networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxQEOiF-RUpBBSHAgahzbsX1cSisOsFSoSL1ZtmOLldoENSk8Cq_LjJNd7QISF06J4olle2Y8M4nnG0JeJpEqx2tXChl5KSKIsWPJlbFVybdCG12FXGxCLZf6_NycbpX6wjNhEzzwtHCHvnaNclF5EcFzT8wbCfG6T-B3hNCYgLtvpcw6mJpDLQ6R14QjxCGoPxzACoJhwhp1W9Yng_T_uRX_fjxyy96c3CV3ZkeRLqYB3iM3Ynef3N6CD3xAfp796CkqNISieYHpGms2DhScUfoJ9oNL6OR4wGumWAERkEPjcjoAPlD8FEs_u67tL-nHjNgfhzcUc0PKI6zdcQFdtnTZrwZ8_i7OB2HoYhwxQZ_Cm_QU7uJIP_T4D_kh-XJyfHb0vpwLLZRBaDmWhoMlk600DSyvb7kHn1DWQepkFBPOKG604HViOrRVExzwUJukmyijEkJ5_ojsdX0XHxPKGfMOnAzd6CCcDk5xloTxVahCNKwuyOs1A2yYUcixGMaFhWgEeWU3vCrIiw3ptwl6429Eb5GLGwJEy84PQIbsLEP2XzJUkFcoAxZ1GgYT3JyaAFNCdCy7UIhCx8GOF-RgLSZ2VvbBIkKQQpBHU5Dnm2ZQU_z34rrYX2caidiGDLpQO-K1M_Tdlm71NQN-mwZx9Mz-_5jrE3KrxgyOnE55QPbGq-v4lNwM38fVcPUsa9Evcqkl5g priority: 102 providerName: Directory of Open Access Journals |
| Title | Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses |
| URI | https://www.proquest.com/docview/2734749259 https://www.proquest.com/docview/2735867911 https://pubmed.ncbi.nlm.nih.gov/PMC9654929 https://doaj.org/article/b2a67ae7b4e148f1b95202bf932cc69c |
| Volume | 22 |
| WOSCitedRecordID | wos000884118900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medicine (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGBURmEBAeiJbET2yfUjU4g0RBNQyqnyHYcqLQlo8ngxr_Bv8t7btq1gLhwSSv71XXkn9-HP36PkOc1ryPNEh3y1LGQO4CxjmsdukrUpuJSycj6ZBMiz-Vspophwa0bjlWudKJX1FVrcY18H2lYBDLpqdfnX0PMGoW7q0MKjatkF9NmI87F7DLgYhB_LdmEGIT2-x3YQjBPmKluwwZ5qv4_FfLvhyQ3rM7Rrf_t721yc_A36XgJkDvkimvukhsbLIT3yM-T7y1FvQARrR8nuqKsdR0Fn5Z-ALVyBo1MOvz0EnMQAnGozJfnyDuKK7r0WDdVe0annvjfda8oXjEJDzEFyCk0WdG8nXdY_sYN52nouO_xnj-FX9ICvrmevm9xK_o--Xg0OTl8Gw75GkLLZdqHioFBTKtUZbFRpmIGXMs0samslYi5VoIpyVlSx9JWUWY1QEGqWmYudYJzYdgDstO0jXtIKItjo8FXkZm0XEurBYtrrkxkI-tUnATk5WoESzuQmWNOjdMSghoc7HI92AF5thY9XzJ4_E3oAGGwFkDSbV_QLj6XwxwuTaIzoZ0w3EEQWcNLpkmUmBpcYGszZQPyAkFUomqAzlg93HCAV0KSrXIskMwOYBEHZG8FmnLQGV15iZiAPF1Xw2zHLRzduPbCy6RIkRhDE2ILn1td365p5l88b7jKkI5PPfr3nz8m1xO84uHvW-6RnX5x4Z6Qa_ZbP-8WIz_B_FOOyO7BJC-OR34dA57THxMoK95Ni0-_ABMnOec |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuCMCAwwCwQPRktiJ7QeEyi7atK5MqJP6FhzHgUpbMpqMiV_Cv-A3co6TdC0g3vbAU6v41HHSz5_P8eU7hLwoeBFoFmmfx5b53AKMdVho3-aiyHIulQyMSzYhRiM5maiDFfKzPwuD2yp7TnREnVcG58jXUYZFoJKeenfy1cesUbi62qfQaGGxZ7-fQchWv93dhP_3ZRRtb403dvwuq4BvuIwbXzGg7TiPVRJmKstZBg5QHJlYFkqEXCvBlOQsKkJp8iAxGhosVSETG1vBucgY1HuJXAYeFxjsicl5gMcg3mvVixhTwXoNYy8Mh5gZb2HMc6kB_hwAft-UuTDKbd_8397PLXKj86fpoO0At8mKLe-Q6wsqi3fJj_FZRZH3IGJ3OKS9JK-tKfjs9APQ5jFUslXjp7OYghGYQ-Go3SdfU5yxph91mVfHdN8lNrD1G4pHaPwNTHFyBFXmdFRNa7y-abv9QnTQNKhjQOGX9AC-2YYOK1xqv0cOL-TN3CerZVXaB4SyMMw0-GIykYZrabRgYcFVFpjAWBVGHnndIyY1nVg75gw5SiFoQ3Clc3B55Pnc9KRVKPmb0XuE3dwARcXdhWr2Oe04Ks0inQhtRcYtBMkFPGQcBVFWgItvTKKMR14haFOkPmiM0d0JDngkFBFLBwLF-gCGoUfWepCmHSfW6TlCPfJsXgxshktUurTVqbOJUQIyhCrEUn9YavpySTn94nTRVYJyg-rhv2_-lFzdGe8P0-HuaO8RuRbhcRY3pbZGVpvZqX1MrphvzbSePXGdm5JPF91bfgFHTI1k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELdGhxA88H-iMMAgEDwQNYmd2H5AqKyrqLaVCm3SeMocx4ZKWzKajIlPwnfh03GXJqUFxNseeGoUXx0n-d35Lvb9jpBnjjtfs1B7PLLM4xZgrAOnPZsJl2ZcKumbutiEGI_l4aGarJEfbS4MbqtsbWJtqLPC4DfyHtKwCGTSUz3XbIuYDIZvTr94WEEKV1rbchpziOzYb-cQvpWvRwN418_DcLi9v_XOayoMeIbLqPIUAxMeZZGKg1SlGUvBGYpCE0mnRMC1EkxJzkIXSJP5sdEweKmcjG1kBeciZdDvJbIOLjkPO2R9MtqbfFyEewyivzmXEWPK75UwE8PkiHXylmbAulDAn9PB71s0l-a84Y3_-WndJNcbT5v256pxi6zZ_Da5tsS_eId83z8vKFpEiOVrhNKWrNeWFLx5-h4M6gl0sl3iby0xBSEQh8bxfAd9SfFbNv2g86w4oXt1yQNbvqKYXONtYfGTY-gyo-NiWuL5gW12EtF-VSHDAYV_0gkc2YruFrgIf5ccXMiT2SCdvMjtPUJZEKQavDQZS8O1NFqwwHGV-sY3VgVhl7xs0ZOYhsYdq4kcJxDOIdCSBdC65OlC9HTOXfI3obcIwYUA0o3XJ4rZp6SxXkka6lhoK1JuIXx2cJNR6IepA-ffmFiZLnmBAE7QKMJgjG5yO-CWkF4s6Quk8QNIBl2y2QI2aaxlmfxCa5c8WTSDncPFK53b4qyWiZAcMoAuxIpurAx9tSWffq4Z01WMRITq_r8v_phcASVJdkfjnQfkaoh5LnXS6SbpVLMz-5BcNl-raTl71Gg6JUcXrS4_AWAcl7Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Compensation+Strategies+for+Optimal+Estimation+in+Sensor+Networks+with+Random+Matrices%2C+Time-Correlated+Noises%2C+Deception+Attacks+and+Packet+Losses&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Caballero-%C3%81guila%2C+Raquel&rft.au=Hu%2C+Jun&rft.au=Linares-P%C3%A9rez%2C+Josefa&rft.date=2022-11-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=21&rft.spage=8505&rft_id=info:doi/10.3390%2Fs22218505&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22218505 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |