Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses

Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the es...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 21; p. 8505
Main Authors: Caballero-Águila, Raquel, Hu, Jun, Linares-Pérez, Josefa
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method—typically used to deal with the measurement noise time-correlation—is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.
AbstractList Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method—typically used to deal with the measurement noise time-correlation—is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.
Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method-typically used to deal with the measurement noise time-correlation-is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant research area. Networked systems are known to suffer random flaws, which, if not appropriately addressed, can deteriorate the performance of the estimators substantially. Thus, the development of estimation algorithms accounting for these random phenomena has received a lot of research attention. In this paper, the centralized fusion linear estimation problem is discussed under the assumption that the sensor measurements are affected by random parameter matrices, perturbed by time-correlated additive noises, exposed to random deception attacks and subject to random packet dropouts during transmission. A covariance-based methodology and two compensation strategies based on measurement prediction are used to design recursive filtering and fixed-point smoothing algorithms. The measurement differencing method-typically used to deal with the measurement noise time-correlation-is unsuccessful for these kinds of systems with packet losses because some sensor measurements are randomly lost and, consequently, cannot be processed. Therefore, we adopt an alternative approach based on the direct estimation of the measurement noises and the innovation technique. The two proposed compensation scenarios are contrasted through a simulation example, in which the effect of the different uncertainties on the estimation accuracy is also evaluated.
Audience Academic
Author Hu, Jun
Caballero-Águila, Raquel
Linares-Pérez, Josefa
AuthorAffiliation 2 Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
3 Department of Statistics and Operations Research, University of Granada, Av. Fuentenueva, 18071 Granada, Spain
1 Department of Statistics and Operations Research, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
AuthorAffiliation_xml – name: 1 Department of Statistics and Operations Research, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
– name: 2 Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
– name: 3 Department of Statistics and Operations Research, University of Granada, Av. Fuentenueva, 18071 Granada, Spain
Author_xml – sequence: 1
  givenname: Raquel
  orcidid: 0000-0001-7659-7649
  surname: Caballero-Águila
  fullname: Caballero-Águila, Raquel
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-7852-5064
  surname: Hu
  fullname: Hu, Jun
– sequence: 3
  givenname: Josefa
  orcidid: 0000-0002-6853-555X
  surname: Linares-Pérez
  fullname: Linares-Pérez, Josefa
BookMark eNptkttuEzEQQFeoiF7ggT-wxAtIpF3f1vYLUhQKVAotgvC88npnU4fddbAdIr6E32WSVBWtkB9sjc-c8WVOi6MxjFAUL2l5zrkpLxJjjGpZyifFCRVMTDRj5dE_6-PiNKVVWTLOuX5WHPOKVxU1-qT4s9gGMgvDGsZksw8j-ZajzbD0kEgXIrlZZz_Ynlym3bwnPEKI4-Y15G2IPxLZ-nxLvtqxDQP5bHP0DtJbsvADTGYhRuhR2ZLr4NMu_h4crPeqac7WYT5mki-4gkzmISH0vHja2T7Bi7v5rPj-4XIx-zSZ33y8mk3nEye0zBPDKS9lK01FG9O0vFFKSOak7oyiwhrFjRacdVS7tqycbYXWptMVSFBCqIafFVcHbxvsql5HvGP8XQfr630gxGVtY_auh7phtlIWVCOACt1hQclK1nSGM-cq49D17uBab5oBWgcjPmX_QPpwZ_S39TL8qk0lhWEGBa_vBDH83EDK9eCTg763I4RNqpniUlfKUIroq0foKmziiE-1o4RCn9wJzw_U0uIF_NgFrOtwtDB4h03UeYxPlagkx6Sd9s0hwUX8hgjd_elpWe96rb7vNWQvHrHO532HYBHf_yfjL2aG1vQ
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104523
crossref_primary_10_3390_s23052852
crossref_primary_10_1016_j_dsp_2024_104529
crossref_primary_10_1016_j_jfranklin_2023_08_033
crossref_primary_10_1016_j_neucom_2024_128491
crossref_primary_10_1016_j_inffus_2025_103044
crossref_primary_10_1080_00207721_2024_2328781
crossref_primary_10_1016_j_jfranklin_2024_107005
crossref_primary_10_1109_TSMC_2025_3547926
Cites_doi 10.1016/j.inffus.2018.02.006
10.1109/ACCESS.2020.2983122
10.1016/j.ins.2016.08.020
10.1016/j.inffus.2019.06.026
10.3390/s19143112
10.1016/j.automatica.2018.12.027
10.1016/j.inffus.2016.01.001
10.1016/j.inffus.2018.01.004
10.1016/j.sigpro.2018.10.012
10.1109/TSP.2020.2967180
10.1109/ACCESS.2022.3201013
10.1016/j.arcontrol.2019.08.002
10.1109/TCNS.2017.2648508
10.1016/j.cam.2015.10.026
10.1016/j.automatica.2017.07.025
10.3390/s18020321
10.1016/j.inffus.2019.07.008
10.1016/j.sigpro.2018.08.005
10.1016/j.inffus.2017.03.006
10.1109/TAC.2010.2044263
10.1049/cth2.12252
10.1016/j.inffus.2018.01.008
10.1016/j.sigpro.2018.01.015
10.1016/j.dsp.2016.10.003
10.3390/s20226445
10.1016/j.automatica.2007.09.023
10.1049/iet-cta.2017.0425
10.1109/TAC.2008.2010999
10.1016/j.sigpro.2020.107704
10.1002/rnc.4493
10.1109/TAC.2018.2869467
10.1002/asjc.1045
10.1109/TCYB.2019.2900478
10.3390/s19204436
10.1080/21642583.2020.1737846
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22218505
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central - New (Subscription)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b2a67ae7b4e148f1b95202bf932cc69c
PMC9654929
A746533471
10_3390_s22218505
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (Spain); European Regional Development Fund (ERDF)
  grantid: PID2021-124486NB-I00
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c485t-931305d5961b9bd3b77452c58f9714a97398432f18cd06cad4889f86e5e7447b3
IEDL.DBID 7X7
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884118900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:32 EDT 2025
Tue Nov 04 02:11:29 EST 2025
Wed Oct 01 14:30:08 EDT 2025
Tue Oct 07 07:36:46 EDT 2025
Tue Nov 04 18:25:41 EST 2025
Sat Nov 29 07:09:03 EST 2025
Tue Nov 18 21:41:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-931305d5961b9bd3b77452c58f9714a97398432f18cd06cad4889f86e5e7447b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7659-7649
0000-0002-6853-555X
0000-0002-7852-5064
OpenAccessLink https://www.proquest.com/docview/2734749259?pq-origsite=%requestingapplication%
PMID 36366198
PQID 2734749259
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b2a67ae7b4e148f1b95202bf932cc69c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654929
proquest_miscellaneous_2735867911
proquest_journals_2734749259
gale_infotracacademiconefile_A746533471
crossref_primary_10_3390_s22218505
crossref_citationtrail_10_3390_s22218505
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liang (ref_13) 2010; 55
Li (ref_30) 2018; 5
Han (ref_31) 2019; 29
(ref_18) 2019; 156
Sun (ref_11) 2008; 44
Gao (ref_14) 2015; 17
Hu (ref_4) 2020; 8
Liu (ref_21) 2017; 85
ref_34
Li (ref_20) 2017; 60
ref_32
Ding (ref_16) 2019; 45
Ma (ref_25) 2022; 10
ref_17
He (ref_3) 2020; 54
Yang (ref_33) 2019; 102
Wang (ref_6) 2017; 11
Rotondo (ref_28) 2019; 48
Yang (ref_5) 2016; 370–371
Sun (ref_10) 2020; 68
Wang (ref_8) 2019; 45
Liu (ref_19) 2016; 298
Liu (ref_9) 2020; 8
Liu (ref_23) 2019; 64
Hu (ref_1) 2016; 31
Cheng (ref_27) 2022; 176
(ref_24) 2020; 54
Sun (ref_2) 2017; 38
Han (ref_7) 2018; 147
Geng (ref_22) 2019; 154
ref_29
Ma (ref_26) 2020; 176
Schenato (ref_12) 2009; 54
Ma (ref_15) 2019; 45
Xiao (ref_35) 2020; 50
References_xml – volume: 45
  start-page: 324
  year: 2019
  ident: ref_8
  article-title: A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.006
– volume: 8
  start-page: 59987
  year: 2020
  ident: ref_9
  article-title: Optimal linear filtering for networked control systems with random matrices, correlated noises, and packet dropouts
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983122
– volume: 370–371
  start-page: 446
  year: 2016
  ident: ref_5
  article-title: Distributed fusion estimation with square-root array implementation for Markovian jump linear systems with random parameter matrices and cross-correlated noises
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.020
– volume: 54
  start-page: 21
  year: 2020
  ident: ref_3
  article-title: Distributed estimation over a low-cost sensor network: A review of state-of-the-art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.026
– ident: ref_32
  doi: 10.3390/s19143112
– volume: 102
  start-page: 34
  year: 2019
  ident: ref_33
  article-title: Distributed filtering under false data injection attacks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.12.027
– volume: 31
  start-page: 65
  year: 2016
  ident: ref_1
  article-title: Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.01.001
– volume: 45
  start-page: 128
  year: 2019
  ident: ref_15
  article-title: A general packet dropout compensation framework for optimal prior filter of networked multi-sensor systems
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.01.004
– volume: 156
  start-page: 71
  year: 2019
  ident: ref_18
  article-title: Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.10.012
– volume: 68
  start-page: 1064
  year: 2020
  ident: ref_10
  article-title: Distributed optimal linear fusion predictors and filters for systems with random parameter matrices and correlated noises
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2967180
– volume: 10
  start-page: 89011
  year: 2022
  ident: ref_25
  article-title: Globally optimal centralized and sequential fusion filters for uncertain systems with time-correlated measurement noises
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3201013
– volume: 48
  start-page: 103
  year: 2019
  ident: ref_28
  article-title: Bibliographical review on cyber attacks from a control oriented perspective
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2019.08.002
– volume: 5
  start-page: 846
  year: 2018
  ident: ref_30
  article-title: Detection against linear deception attacks on multi-sensor remote state estimation
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2017.2648508
– volume: 298
  start-page: 123
  year: 2016
  ident: ref_19
  article-title: Recursive filtering for discrete-time linear systems with fading measurement and time-correlated channel noise
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.10.026
– volume: 85
  start-page: 9
  year: 2017
  ident: ref_21
  article-title: State estimation for discrete-time Markov jump linear systems with time-correlated and mode-dependent measurement noise
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.07.025
– ident: ref_29
  doi: 10.3390/s18020321
– volume: 54
  start-page: 161
  year: 2020
  ident: ref_24
  article-title: Networked fusion estimation with multiple uncertainties and time-correlated channel noise
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.008
– volume: 154
  start-page: 120
  year: 2019
  ident: ref_22
  article-title: State estimation under non-Gaussian Lévy and time-correlated additive sensor noises: A modified Tobit Kalman filtering approach
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.08.005
– volume: 38
  start-page: 122
  year: 2017
  ident: ref_2
  article-title: Multi-sensor distributed fusion estimation with applications in networked systems: A review paper
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.03.006
– volume: 55
  start-page: 1428
  year: 2010
  ident: ref_13
  article-title: Optimal linear state estimator with multiple packet dropouts
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2044263
– volume: 176
  start-page: 600
  year: 2022
  ident: ref_27
  article-title: Gaussian estimation for non-linear stochastic uncertain systems with time-correlated additive noises and packet dropout compensations
  publication-title: IET Control Theory Appl.
  doi: 10.1049/cth2.12252
– volume: 45
  start-page: 138
  year: 2019
  ident: ref_16
  article-title: Fusion estimation for multi-sensor networked systems with packet loss compensation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.01.008
– volume: 147
  start-page: 35
  year: 2018
  ident: ref_7
  article-title: Improved Tobit Kalman filtering for systems with random parameters via conditional expectation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.01.015
– volume: 60
  start-page: 211
  year: 2017
  ident: ref_20
  article-title: Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2016.10.003
– ident: ref_34
  doi: 10.3390/s20226445
– volume: 44
  start-page: 1333
  year: 2008
  ident: ref_11
  article-title: Optimal linear estimation for systems with multiple packet dropouts
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.09.023
– volume: 11
  start-page: 3353
  year: 2017
  ident: ref_6
  article-title: Optimal linear filtering design for discrete time systems with cross-correlated stochastic parameter matrices and noises
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2017.0425
– volume: 54
  start-page: 1093
  year: 2009
  ident: ref_12
  article-title: To zero or to hold control inputs with lossy links?
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2010999
– volume: 176
  start-page: 107704
  year: 2020
  ident: ref_26
  article-title: Optimal linear recursive estimators for stochastic uncertain systems with time-correlated additive noises and packet dropout compensations
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107704
– volume: 29
  start-page: 2296
  year: 2019
  ident: ref_31
  article-title: Local design of distributed H∞-consensus filtering over sensor networks under multiplicative noises and deception attacks
  publication-title: Int. J. Robust. Nonlinear Control
  doi: 10.1002/rnc.4493
– volume: 64
  start-page: 2190
  year: 2019
  ident: ref_23
  article-title: Convergence of optimal linear estimator with multiplicative and time-correlated additive measurement noises
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2869467
– volume: 17
  start-page: 55
  year: 2015
  ident: ref_14
  article-title: Two schemes of data dropout compensation for LQG control of networked control systems
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1045
– volume: 50
  start-page: 1200
  year: 2020
  ident: ref_35
  article-title: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2900478
– ident: ref_17
  doi: 10.3390/s19204436
– volume: 8
  start-page: 189
  year: 2020
  ident: ref_4
  article-title: A survey on distributed filtering, estimation and fusion for nonlinear systems with communication constraints: New advances and prospects
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2020.1737846
SSID ssj0023338
Score 2.452059
Snippet Due to its great importance in several applied and theoretical fields, the signal estimation problem in multisensor systems has grown into a significant...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8505
SubjectTerms Algorithms
centralized fusion estimation
Deception
deception attacks
Estimation theory
Methods
Noise
packet dropouts
random parameter matrices
Sensors
Signal processing
time-correlated noise
Wireless sensor networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxQEOiF-RUpBBSHAgahzbsX1cSisOsFSoSL1ZtmOLldoENSk8Cq_LjJNd7QISF06J4olle2Y8M4nnG0JeJpEqx2tXChl5KSKIsWPJlbFVybdCG12FXGxCLZf6_NycbpX6wjNhEzzwtHCHvnaNclF5EcFzT8wbCfG6T-B3hNCYgLtvpcw6mJpDLQ6R14QjxCGoPxzACoJhwhp1W9Yng_T_uRX_fjxyy96c3CV3ZkeRLqYB3iM3Ynef3N6CD3xAfp796CkqNISieYHpGms2DhScUfoJ9oNL6OR4wGumWAERkEPjcjoAPlD8FEs_u67tL-nHjNgfhzcUc0PKI6zdcQFdtnTZrwZ8_i7OB2HoYhwxQZ_Cm_QU7uJIP_T4D_kh-XJyfHb0vpwLLZRBaDmWhoMlk600DSyvb7kHn1DWQepkFBPOKG604HViOrRVExzwUJukmyijEkJ5_ojsdX0XHxPKGfMOnAzd6CCcDk5xloTxVahCNKwuyOs1A2yYUcixGMaFhWgEeWU3vCrIiw3ptwl6429Eb5GLGwJEy84PQIbsLEP2XzJUkFcoAxZ1GgYT3JyaAFNCdCy7UIhCx8GOF-RgLSZ2VvbBIkKQQpBHU5Dnm2ZQU_z34rrYX2caidiGDLpQO-K1M_Tdlm71NQN-mwZx9Mz-_5jrE3KrxgyOnE55QPbGq-v4lNwM38fVcPUsa9Evcqkl5g
  priority: 102
  providerName: Directory of Open Access Journals
Title Two Compensation Strategies for Optimal Estimation in Sensor Networks with Random Matrices, Time-Correlated Noises, Deception Attacks and Packet Losses
URI https://www.proquest.com/docview/2734749259
https://www.proquest.com/docview/2735867911
https://pubmed.ncbi.nlm.nih.gov/PMC9654929
https://doaj.org/article/b2a67ae7b4e148f1b95202bf932cc69c
Volume 22
WOSCitedRecordID wos000884118900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medicine (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvhGBURmEBAeiJbET2yfUjU4g0RBNQyqnyHYcqLQlo8ngxr_Bv8t7btq1gLhwSSv71XXkn9-HP36PkOc1ryPNEh3y1LGQO4CxjmsdukrUpuJSycj6ZBMiz-Vspophwa0bjlWudKJX1FVrcY18H2lYBDLpqdfnX0PMGoW7q0MKjatkF9NmI87F7DLgYhB_LdmEGIT2-x3YQjBPmKluwwZ5qv4_FfLvhyQ3rM7Rrf_t721yc_A36XgJkDvkimvukhsbLIT3yM-T7y1FvQARrR8nuqKsdR0Fn5Z-ALVyBo1MOvz0EnMQAnGozJfnyDuKK7r0WDdVe0annvjfda8oXjEJDzEFyCk0WdG8nXdY_sYN52nouO_xnj-FX9ICvrmevm9xK_o--Xg0OTl8Gw75GkLLZdqHioFBTKtUZbFRpmIGXMs0samslYi5VoIpyVlSx9JWUWY1QEGqWmYudYJzYdgDstO0jXtIKItjo8FXkZm0XEurBYtrrkxkI-tUnATk5WoESzuQmWNOjdMSghoc7HI92AF5thY9XzJ4_E3oAGGwFkDSbV_QLj6XwxwuTaIzoZ0w3EEQWcNLpkmUmBpcYGszZQPyAkFUomqAzlg93HCAV0KSrXIskMwOYBEHZG8FmnLQGV15iZiAPF1Xw2zHLRzduPbCy6RIkRhDE2ILn1td365p5l88b7jKkI5PPfr3nz8m1xO84uHvW-6RnX5x4Z6Qa_ZbP-8WIz_B_FOOyO7BJC-OR34dA57THxMoK95Ni0-_ABMnOec
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuCMCAwwCwQPRktiJ7QeEyi7atK5MqJP6FhzHgUpbMpqMiV_Cv-A3co6TdC0g3vbAU6v41HHSz5_P8eU7hLwoeBFoFmmfx5b53AKMdVho3-aiyHIulQyMSzYhRiM5maiDFfKzPwuD2yp7TnREnVcG58jXUYZFoJKeenfy1cesUbi62qfQaGGxZ7-fQchWv93dhP_3ZRRtb403dvwuq4BvuIwbXzGg7TiPVRJmKstZBg5QHJlYFkqEXCvBlOQsKkJp8iAxGhosVSETG1vBucgY1HuJXAYeFxjsicl5gMcg3mvVixhTwXoNYy8Mh5gZb2HMc6kB_hwAft-UuTDKbd_8397PLXKj86fpoO0At8mKLe-Q6wsqi3fJj_FZRZH3IGJ3OKS9JK-tKfjs9APQ5jFUslXjp7OYghGYQ-Go3SdfU5yxph91mVfHdN8lNrD1G4pHaPwNTHFyBFXmdFRNa7y-abv9QnTQNKhjQOGX9AC-2YYOK1xqv0cOL-TN3CerZVXaB4SyMMw0-GIykYZrabRgYcFVFpjAWBVGHnndIyY1nVg75gw5SiFoQ3Clc3B55Pnc9KRVKPmb0XuE3dwARcXdhWr2Oe04Ks0inQhtRcYtBMkFPGQcBVFWgItvTKKMR14haFOkPmiM0d0JDngkFBFLBwLF-gCGoUfWepCmHSfW6TlCPfJsXgxshktUurTVqbOJUQIyhCrEUn9YavpySTn94nTRVYJyg-rhv2_-lFzdGe8P0-HuaO8RuRbhcRY3pbZGVpvZqX1MrphvzbSePXGdm5JPF91bfgFHTI1k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwELdGhxA88H-iMMAgEDwQNYmd2H5AqKyrqLaVCm3SeMocx4ZKWzKajIlPwnfh03GXJqUFxNseeGoUXx0n-d35Lvb9jpBnjjtfs1B7PLLM4xZgrAOnPZsJl2ZcKumbutiEGI_l4aGarJEfbS4MbqtsbWJtqLPC4DfyHtKwCGTSUz3XbIuYDIZvTr94WEEKV1rbchpziOzYb-cQvpWvRwN418_DcLi9v_XOayoMeIbLqPIUAxMeZZGKg1SlGUvBGYpCE0mnRMC1EkxJzkIXSJP5sdEweKmcjG1kBeciZdDvJbIOLjkPO2R9MtqbfFyEewyivzmXEWPK75UwE8PkiHXylmbAulDAn9PB71s0l-a84Y3_-WndJNcbT5v256pxi6zZ_Da5tsS_eId83z8vKFpEiOVrhNKWrNeWFLx5-h4M6gl0sl3iby0xBSEQh8bxfAd9SfFbNv2g86w4oXt1yQNbvqKYXONtYfGTY-gyo-NiWuL5gW12EtF-VSHDAYV_0gkc2YruFrgIf5ccXMiT2SCdvMjtPUJZEKQavDQZS8O1NFqwwHGV-sY3VgVhl7xs0ZOYhsYdq4kcJxDOIdCSBdC65OlC9HTOXfI3obcIwYUA0o3XJ4rZp6SxXkka6lhoK1JuIXx2cJNR6IepA-ffmFiZLnmBAE7QKMJgjG5yO-CWkF4s6Quk8QNIBl2y2QI2aaxlmfxCa5c8WTSDncPFK53b4qyWiZAcMoAuxIpurAx9tSWffq4Z01WMRITq_r8v_phcASVJdkfjnQfkaoh5LnXS6SbpVLMz-5BcNl-raTl71Gg6JUcXrS4_AWAcl7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Compensation+Strategies+for+Optimal+Estimation+in+Sensor+Networks+with+Random+Matrices%2C+Time-Correlated+Noises%2C+Deception+Attacks+and+Packet+Losses&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Caballero-%C3%81guila%2C+Raquel&rft.au=Hu%2C+Jun&rft.au=Linares-P%C3%A9rez%2C+Josefa&rft.date=2022-11-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=21&rft.spage=8505&rft_id=info:doi/10.3390%2Fs22218505&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22218505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon