A General Neural Network Model for Complex Refractive Index Extraction of Low-Loss Materials in the Transmission-Mode THz-TDS

The complex refractive index for low-loss materials is conventionally extracted by either approximate analytical formula or numerical iterative algorithm (such as Nelder-Mead and Newton-Raphson) based on the transmission-mode terahertz time domain spectroscopy (THz-TDS). A novel 4-layer neural netwo...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 20; p. 7877
Main Authors: Zhou, Zesen, Jia, Shanshan, Cao, Lei
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The complex refractive index for low-loss materials is conventionally extracted by either approximate analytical formula or numerical iterative algorithm (such as Nelder-Mead and Newton-Raphson) based on the transmission-mode terahertz time domain spectroscopy (THz-TDS). A novel 4-layer neural network model is proposed to obtain optical parameters of low-loss materials with high accuracy in a wide range of parameters (frequency and thickness). Three materials (TPX, z-cut crystal quartz and 6H SiC) with different dispersions and thicknesses are used to validate the robustness of the general model. Without problems of proper initial values and non-convergence, the neural network method shows even smaller errors than the iterative algorithm. Once trained and tested, the proposed method owns both high accuracy and wide generality, which will find application in the multi-class object detection and high-precision characterization of THz materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22207877