PCQNet: A Trainable Feedback Scheme of Precoder for the Uplink Multi-User MIMO Systems

Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative al...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 24; no. 8; p. 1066
Main Authors: Bao, Xiuwen, Jiang, Ming, Fang, Wenhao, Zhao, Chunming
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2022
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation.
AbstractList Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation.
Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation.Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation.
Audience Academic
Author Bao, Xiuwen
Zhao, Chunming
Fang, Wenhao
Jiang, Ming
AuthorAffiliation 2 Purple Mountain Laboratories, Nanjing 211100, China
1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China; xwbao@seu.edu.cn (X.B.); whfang@seu.edu.cn (W.F.); cmzhao@seu.edu.cn (C.Z.)
AuthorAffiliation_xml – name: 2 Purple Mountain Laboratories, Nanjing 211100, China
– name: 1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China; xwbao@seu.edu.cn (X.B.); whfang@seu.edu.cn (W.F.); cmzhao@seu.edu.cn (C.Z.)
Author_xml – sequence: 1
  givenname: Xiuwen
  surname: Bao
  fullname: Bao, Xiuwen
– sequence: 2
  givenname: Ming
  surname: Jiang
  fullname: Jiang, Ming
– sequence: 3
  givenname: Wenhao
  orcidid: 0000-0001-7794-5625
  surname: Fang
  fullname: Fang, Wenhao
– sequence: 4
  givenname: Chunming
  surname: Zhao
  fullname: Zhao, Chunming
BookMark eNplUk1vEzEUXKEi-gEH_oElLnBIa6-_1hyQoohCpIYWteFqee3nxO3uOrU3SP33OKQgWmTJtt6bGb-x5rg6GOIAVfWW4FNKFT6DmuGGYCFeVEcEKzVhFOODf-6H1XHOtxjXtCbiVXVIBSZYUnxU_biaff8G40c0RTfJhMG0HaBzANcae4eu7Rp6QNGjqwQ2OkjIx4TGNaDlpgvDHVpsuzFMlrl0FvPFJbp-yCP0-XX10psuw5vH86Rann--mX2dXFx-mc-mFxPLGj5OGio4sNZLK7z3igE3hpataUhdc9ZSZXkDdS0px85zI5SQhLeWOMY595ieVPO9rovmVm9S6E160NEE_bsQ00qbNAbbgaYADZWGEeda5hRvWKucUcx4oXgrSNH6tNfabNsenIVhTKZ7Ivq0M4S1XsWfWjEsi50i8P5RIMX7LeRR9yFb6DozQNxmXUssBeYNVQX67hn0Nm7TUL5qhxJEKqnqgjrdo1amGAiDj-VdW5aDPtiSAR9KfSoZl1hhuZvgbE-wKeacwGsbRjOGuBs4dJpgvQuM_huYwvjwjPHH7__YX18TvW0
CitedBy_id crossref_primary_10_3390_e25010023
crossref_primary_10_1109_ACCESS_2023_3280712
crossref_primary_10_1007_s11235_024_01135_4
Cites_doi 10.1109/TWC.2020.3029051
10.1109/TIT.1960.1057548
10.1007/s11277-022-09469-5
10.1109/LWC.2018.2818160
10.1109/CVPR.2016.90
10.1109/ICASSP40776.2020.9054488
10.1109/TIT.2005.850152
10.1109/TCOM.1982.1095374
10.1109/TSP.2012.2212013
10.1109/TSP.2006.871967
10.1109/TWC.2014.011714.130846
10.3390/electronics7080144
10.1561/2000000093
10.1109/JSAC.2020.3019724
10.1109/TIT.1982.1056489
10.1109/VTC2021-Fall52928.2021.9625354
10.1109/JSAC.2013.130205
10.1109/TWC.2018.2809734
10.1109/TWC.2020.2968430
10.1109/TVT.2019.2951501
10.1109/MCOM.2014.6736761
10.1109/TCOMM.2019.2960361
10.1109/TIT.1983.1056622
10.3390/sym13091737
10.1109/TSP.2003.819988
10.1109/TCOMM.2021.3105569
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24081066
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_3ee837a41ddb4d9584b9da94af695b61
PMC9407485
A745709075
10_3390_e24081066
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFB1807200
– fundername: Jiangsu Province Basic Research Project
  grantid: BK20192002
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c485t-8365e4bf7c6fff94e5aa3e5a8812254b39c58e227350df5a696715bc1d4555f03
IEDL.DBID PIMPY
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845963600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:50:48 EDT 2025
Tue Nov 04 01:58:45 EST 2025
Sun Nov 09 11:46:20 EST 2025
Fri Jul 25 11:52:14 EDT 2025
Tue Nov 04 18:20:02 EST 2025
Sat Nov 29 07:13:20 EST 2025
Tue Nov 18 20:58:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-8365e4bf7c6fff94e5aa3e5a8812254b39c58e227350df5a696715bc1d4555f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7794-5625
OpenAccessLink https://www.proquest.com/publiccontent/docview/2706179792?pq-origsite=%requestingapplication%
PMID 36010730
PQID 2706179792
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_3ee837a41ddb4d9584b9da94af695b61
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407485
proquest_miscellaneous_2707605839
proquest_journals_2706179792
gale_infotracacademiconefile_A745709075
crossref_citationtrail_10_3390_e24081066
crossref_primary_10_3390_e24081066
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hu (ref_7) 2011; 2011
Khandaker (ref_8) 2012; 60
Hoydis (ref_1) 2013; 31
Lu (ref_4) 2022; 124
ref_14
Love (ref_12) 2005; 51
Ayach (ref_6) 2014; 13
Max (ref_30) 1960; 6
ref_19
ref_17
ref_16
Xia (ref_13) 2006; 54
ref_15
Wen (ref_20) 2018; 7
Guo (ref_21) 2020; 19
Larsson (ref_3) 2014; 52
Hoydis (ref_2) 2017; 11
Lloyd (ref_31) 1982; 28
Serbetli (ref_9) 2004; 52
Xia (ref_5) 2020; 68
ref_25
Shi (ref_18) 2021; 69
Bucklew (ref_29) 1982; 30
ref_22
Kieffer (ref_28) 1983; 29
Chen (ref_10) 2021; 39
ref_27
ref_26
Lee (ref_24) 2018; 17
Li (ref_23) 2015; 7
Yang (ref_11) 2021; 20
References_xml – volume: 20
  start-page: 897
  year: 2021
  ident: ref_11
  article-title: Power-Consumption Outage in Beyond Fifth Generation Mobile Communication Systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3029051
– volume: 6
  start-page: 7
  year: 1960
  ident: ref_30
  article-title: Quantizing for minimum distortion
  publication-title: IRE Trans. Inf. Theory
  doi: 10.1109/TIT.1960.1057548
– volume: 124
  start-page: 2391
  year: 2022
  ident: ref_4
  article-title: Reduced Complexity Hybrid Beamforming for Time-Varying Channels in Millimeter Wave MIMO Systems
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-022-09469-5
– volume: 7
  start-page: 748
  year: 2018
  ident: ref_20
  article-title: Deep Learning for Massive MIMO CSI Feedback
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2818160
– ident: ref_26
  doi: 10.1109/CVPR.2016.90
– ident: ref_17
  doi: 10.1109/ICASSP40776.2020.9054488
– volume: 51
  start-page: 2967
  year: 2005
  ident: ref_12
  article-title: Limited feedback unitary precoding for spatial multiplexing systems
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.850152
– volume: 30
  start-page: 298
  year: 1982
  ident: ref_29
  article-title: A Note on the Computation of Optimal Minimum Mean-Square Error Quantizers
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1982.1095374
– volume: 60
  start-page: 5977
  year: 2012
  ident: ref_8
  article-title: Joint Transceiver Optimization for Multiuser MIMO Relay Communication Systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2212013
– volume: 54
  start-page: 1853
  year: 2006
  ident: ref_13
  article-title: Design and analysis of transmit-beamforming based on limited-rate feedback
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.871967
– volume: 13
  start-page: 1499
  year: 2014
  ident: ref_6
  article-title: Spatially Sparse Precoding in Millimeter Wave MIMO Systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.011714.130846
– ident: ref_14
  doi: 10.3390/electronics7080144
– volume: 11
  start-page: 154
  year: 2017
  ident: ref_2
  article-title: Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000093
– volume: 39
  start-page: 615
  year: 2021
  ident: ref_10
  article-title: Massive Access for 5G and Beyond
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3019724
– volume: 28
  start-page: 129
  year: 1982
  ident: ref_31
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– ident: ref_25
– volume: 7
  start-page: 1
  year: 2015
  ident: ref_23
  article-title: Multiuser MISO Transceiver Design for Indoor Downlink Visible Light Communication Under Per-LED Optical Power Constraints
  publication-title: IEEE Photonics J.
– ident: ref_27
– ident: ref_22
  doi: 10.1109/VTC2021-Fall52928.2021.9625354
– volume: 31
  start-page: 160
  year: 2013
  ident: ref_1
  article-title: Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2013.130205
– volume: 17
  start-page: 3298
  year: 2018
  ident: ref_24
  article-title: Joint Transceiver Optimization for MISO SWIPT Systems With Time Switching
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2809734
– volume: 19
  start-page: 2827
  year: 2020
  ident: ref_21
  article-title: Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2968430
– ident: ref_16
  doi: 10.1109/TVT.2019.2951501
– volume: 2011
  start-page: 1
  year: 2011
  ident: ref_7
  article-title: Combined Transceiver Optimization for Uplink Multiuser MIMO with Limited CSI
  publication-title: Int. Sch. Res. Not.
– ident: ref_15
– volume: 52
  start-page: 186
  year: 2014
  ident: ref_3
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6736761
– volume: 68
  start-page: 1866
  year: 2020
  ident: ref_5
  article-title: A Deep Learning Framework for Optimization of MISO Downlink Beamforming
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2960361
– volume: 29
  start-page: 42
  year: 1983
  ident: ref_28
  article-title: Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1983.1056622
– ident: ref_19
  doi: 10.3390/sym13091737
– volume: 52
  start-page: 214
  year: 2004
  ident: ref_9
  article-title: Transceiver optimization for multiuser MIMO systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2003.819988
– volume: 69
  start-page: 7429
  year: 2021
  ident: ref_18
  article-title: Deep Learning-Based Robust Precoding for Massive MIMO
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2021.3105569
SSID ssj0023216
Score 2.2953992
Snippet Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1066
SubjectTerms Compression ratio
Control
convolutional neural networks (CNNs)
Decomposition
Deep learning
Design and construction
Efficiency
Error analysis
Feedback
Feedback control systems
Iterative algorithms
Iterative methods
joint transceiver design
Lagrange multiplier
limited feedback precoding
Machine learning
Methods
MIMO
MIMO communication
MIMO communications
MMSE receivers
Neural networks
Optimization
Performance degradation
Sensors
Technology application
uplink precoding
Uplinking
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VVQ-9VCCoCBTkIqT2EjXxRxxzW6qu4NBlK7pVb5Y_RdWSRdstv59x4l11CxIXLjkkc7Dn2Zl5sucNwAcanJSR1iUGg1hyQ0VpLW_LymPuSpXn3PG-2YScTNrrazV91Oor3Qkb5IEHx52wEJBDGV57b7lXGC-t8kZxExsl7EB8KqlWZCpTLUbrZtARYkjqT0IS8kLy02xEn16k_89f8dPrkY_izfgZ7OVEkYyGAT6HrdC9gKvp6cUkLD-SEblc5LonMsYAZI27Jd8QgB-BzCOZJp7rw4JgSkowxSOzVHh7S_py23KGy46cfzn_SrJe-UuYjc8uTz-XuTNC6XgrlmXLGhG4jdI1MUbFgzCG4aPFcI2MzzLlRBsopiai8lGYRjWyFtbVngshYsX2Ybubd-EVEGlCiAyNJToVnWujRVLlbYxMtY2tCjheeUy7LBueulfcaaQPybl67dwC3q9Nfw5aGX8z-pTcvjZI8tb9CwRdZ9D1v0Av4CiBptMmxME4k2sJcEpJzkqPJBeyQt4vCjhY4arz7rzXVKbETUlFCzhcf8Z9lQ5LTBfmD72NTEfGTBUgN9bDxtA3v3Q333uFboU0GYF6_T_m-gZ2aSq56C8dHsD2cvEQ3sKO-7W8uV-865f9b03QB_4
  priority: 102
  providerName: Directory of Open Access Journals
Title PCQNet: A Trainable Feedback Scheme of Precoder for the Uplink Multi-User MIMO Systems
URI https://www.proquest.com/docview/2706179792
https://www.proquest.com/docview/2707605839
https://pubmed.ncbi.nlm.nih.gov/PMC9407485
https://doaj.org/article/3ee837a41ddb4d9584b9da94af695b61
Volume 24
WOSCitedRecordID wos000845963600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgMXHgJEYIkMQoJL1DzsOOaCuqtW7KElsFtUTpGfsFpol7bLkd_OTOoGCogTFx_ikeJkxvOwZ74h5FnujBA-zxIwBj5hKueJ1qxKUgu-ay4tY4a1zSbEdFrN57IO5dHrkFa504mtot6iPWPeNijhgV0aPDEf5AJNrxQyf3X5NcEeUnjXGhpqHJA-Am-lPdKvTyb1hy4AK_Ks3KILFRDqDxzCe0FIVO7ZpBa6_08F_XvS5C9WaHzr_67_NrkZvFE63IrPHXLNLe6S9_Xx26nbvKRDerYKxVV0DFZOK3NBT4HLXxxdelpjMG3dioLfS8GPpDOs7r2gbU1vMgPZppOTyRsaQNHvkdl4dHb8OgntFxLDKr5JqqLkjmkvTOm9l8xxpQoYKvAJ4P_qQhpeuRz8H55az1UpS5FxbTLLOOc-Le6T3mK5cA8IFco5XwCxUJJVTGuvIXKz2vtCVqVOI_Jix4DGBGxybJHxuYEYBXnVdLyKyNOO9HILyPE3oiPkYkeAGNrtg-XqYxO2ZFM4B9G5Ypm1mlkJnpiWFtanfCm5LrOIPEcZaHCnw2KMCgUL8EmImdUMBeMileBzReRwx_MmqIB185PFEXnSTcPmxRsZtXDLq5ZG4L10ISMi9sRrb-n7M4vzTy0MuIRYHBj18N8vf0Ru5Fix0eYsHpLeZnXlHpPr5tvmfL2KyYGYVzHpH42m9bu4PZCIMf31FMfvozjsoB8L_yga
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPAQIQ4EFgeBi1d6H14uEUChEjdqEIBJUTmafUBWSkqQg_hS_kVnHCQQQtx64-GCP7F3vt_PN7O7MANyn3koZaJ4iGYSUaypSY3iZZg5tV6oc55bXxSZkv18eHKjBBnxfxsLEY5VLnVgrajexcY18m8pItkoq-vT4cxqrRsXd1WUJjQUs9vy3r-iyzZ50n-P4PqC082K4s5s2VQVSy0sxT0tWCM9NkLYIISjuhdYMLyVSHXpLhikrSk-R1kXmgtCFKmQujM0dF0KEjOF7z8AmR7BnLdgcdHuDtysXj9G8WOQvYkxl2z4mEEOnq1hjvbo4wJ8U8PuxzF94rnPxf_tDl-BCY1GT9mIKXIYNP74CbwY7r_p-_pi0yXDaBIiRDjK10faIvEakfvJkEsggLgg4PyVouxO0hckoRigfkTouOR3h_CS9bu8laRK7X4XRqXTlGrTGk7G_DkRq7wNDYakVL7kxwaD36UwITJWFyRJ4tBziyjb51WOZj48V-lkRDdUKDQncW4keL5KK_E3oWcTJSiDmAa9vTKbvq0atVMz7kknNc-cMdwqtSaMctk-HQglT5Ak8jCirorbCxljdBF1gl2Ler6otuZCZQrsxga0lqqpGjc2qn5BK4O7qMSqguKukx35yUsvIuLfOVAJyDcBrTV9_Mj78UKcyVxxN2FLc-PfH78C53WFvv9rv9vduwnkaI1DqM5hb0JpPT_wtOGu_zA9n09vNfCTw7rQB_gM8xXLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuPAQIQ4EFgeBixd6H14uEUPqIiEpDgKbqzewTqkJSkhTEX-PXMes4gQDi1gMXH-yRvev9dr6Z3Z0ZgIfUWykDzVMkg5ByTUVqDC_TzKHtSpXj3PK62ITs98vDQzVYg--LWJh4rHKhE2tF7cY2rpG3qYxkq6Si7dAcixhsd5-ffE5jBam407oopzGHyK7_9hXdt-mz3jaO9SNKuzv7Wy_SpsJAankpZmnJCuG5CdIWIQTFvdCa4aVE2kPPyTBlRekpUrzIXBC6UIXMhbG540KIkDF87zlYlwydnhasb-70B2-W7h6jeTHPZcSYyto-JhNDB6xYYcC6UMCfdPD7Ec1fOK97-X_-W1fgUmNpk858alyFNT-6BgeDrdd9P3tKOmR_0gSOkS4yuNH2mLxFBH_yZBzIIC4UOD8haNMTtJHJMEYuH5M6Xjkd4rwle729V6RJ-H4dhmfSlRvQGo1H_iYQqb0PDIWlVrzkxgSDXqkzITBVFiZL4MliuCvb5F2P5T8-Vuh_RWRUS2Qk8GApejJPNvI3oc2ImaVAzA9e3xhP3leNuqmY9yWTmufOGe4UWplGOWyfDoUSpsgTeBwRV0Utho2xugnGwC7FfGBVR3IhM4X2ZAIbC4RVjXqbVj_hlcD95WNUTHG3SY_8-LSWkXHPnakE5AqYV5q--mR09KFOca44mraluPXvj9-DC4jq6mWvv3sbLtIYmFIfzdyA1mxy6u_AeftldjSd3G2mJoF3Z43vH0qae2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCQNet%3A+A+Trainable+Feedback+Scheme+of+Precoder+for+the+Uplink+Multi-User+MIMO+Systems&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Bao%2C+Xiuwen&rft.au=Jiang%2C+Ming&rft.au=Fang%2C+Wenhao&rft.au=Zhao%2C+Chunming&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=8&rft.spage=1066&rft_id=info:doi/10.3390%2Fe24081066&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon