PCQNet: A Trainable Feedback Scheme of Precoder for the Uplink Multi-User MIMO Systems
Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative al...
Saved in:
| Published in: | Entropy (Basel, Switzerland) Vol. 24; no. 8; p. 1066 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2022
MDPI |
| Subjects: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation. |
|---|---|
| AbstractList | Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation. Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation.Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the uplink MU-MIMO systems, the optimal precoder design at the base station utilizes the Lagrange multipliers method and the centralized iterative algorithm to minimize the mean squared error (MSE) of all users under the power constraint. The precoding matrices need to be fed back to the user equipment to explore the potential benefits of the joint transceiver design. We propose a CNN-based compression network named PCQNet to minimize the feedback overhead. We first illustrate the effect of the trainable compression ratios and feedback bits on the MSE between the original precoding matrices and the recovered ones. We then evaluate the block error rates as the performance measure of the centralized implementation with an optimal minimum mean-squared error (MMSE) transceiver. Numerical results show that the proposed PCQNet achieves near-optimal performance compared with other quantized feedback schemes and significantly reduces the feedback overhead with negligible performance degradation. |
| Audience | Academic |
| Author | Bao, Xiuwen Zhao, Chunming Fang, Wenhao Jiang, Ming |
| AuthorAffiliation | 2 Purple Mountain Laboratories, Nanjing 211100, China 1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China; xwbao@seu.edu.cn (X.B.); whfang@seu.edu.cn (W.F.); cmzhao@seu.edu.cn (C.Z.) |
| AuthorAffiliation_xml | – name: 2 Purple Mountain Laboratories, Nanjing 211100, China – name: 1 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China; xwbao@seu.edu.cn (X.B.); whfang@seu.edu.cn (W.F.); cmzhao@seu.edu.cn (C.Z.) |
| Author_xml | – sequence: 1 givenname: Xiuwen surname: Bao fullname: Bao, Xiuwen – sequence: 2 givenname: Ming surname: Jiang fullname: Jiang, Ming – sequence: 3 givenname: Wenhao orcidid: 0000-0001-7794-5625 surname: Fang fullname: Fang, Wenhao – sequence: 4 givenname: Chunming surname: Zhao fullname: Zhao, Chunming |
| BookMark | eNplUk1vEzEUXKEi-gEH_oElLnBIa6-_1hyQoohCpIYWteFqee3nxO3uOrU3SP33OKQgWmTJtt6bGb-x5rg6GOIAVfWW4FNKFT6DmuGGYCFeVEcEKzVhFOODf-6H1XHOtxjXtCbiVXVIBSZYUnxU_biaff8G40c0RTfJhMG0HaBzANcae4eu7Rp6QNGjqwQ2OkjIx4TGNaDlpgvDHVpsuzFMlrl0FvPFJbp-yCP0-XX10psuw5vH86Rann--mX2dXFx-mc-mFxPLGj5OGio4sNZLK7z3igE3hpataUhdc9ZSZXkDdS0px85zI5SQhLeWOMY595ieVPO9rovmVm9S6E160NEE_bsQ00qbNAbbgaYADZWGEeda5hRvWKucUcx4oXgrSNH6tNfabNsenIVhTKZ7Ivq0M4S1XsWfWjEsi50i8P5RIMX7LeRR9yFb6DozQNxmXUssBeYNVQX67hn0Nm7TUL5qhxJEKqnqgjrdo1amGAiDj-VdW5aDPtiSAR9KfSoZl1hhuZvgbE-wKeacwGsbRjOGuBs4dJpgvQuM_huYwvjwjPHH7__YX18TvW0 |
| CitedBy_id | crossref_primary_10_3390_e25010023 crossref_primary_10_1109_ACCESS_2023_3280712 crossref_primary_10_1007_s11235_024_01135_4 |
| Cites_doi | 10.1109/TWC.2020.3029051 10.1109/TIT.1960.1057548 10.1007/s11277-022-09469-5 10.1109/LWC.2018.2818160 10.1109/CVPR.2016.90 10.1109/ICASSP40776.2020.9054488 10.1109/TIT.2005.850152 10.1109/TCOM.1982.1095374 10.1109/TSP.2012.2212013 10.1109/TSP.2006.871967 10.1109/TWC.2014.011714.130846 10.3390/electronics7080144 10.1561/2000000093 10.1109/JSAC.2020.3019724 10.1109/TIT.1982.1056489 10.1109/VTC2021-Fall52928.2021.9625354 10.1109/JSAC.2013.130205 10.1109/TWC.2018.2809734 10.1109/TWC.2020.2968430 10.1109/TVT.2019.2951501 10.1109/MCOM.2014.6736761 10.1109/TCOMM.2019.2960361 10.1109/TIT.1983.1056622 10.3390/sym13091737 10.1109/TSP.2003.819988 10.1109/TCOMM.2021.3105569 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e24081066 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_3ee837a41ddb4d9584b9da94af695b61 PMC9407485 A745709075 10_3390_e24081066 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFB1807200 – fundername: Jiangsu Province Basic Research Project grantid: BK20192002 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c485t-8365e4bf7c6fff94e5aa3e5a8812254b39c58e227350df5a696715bc1d4555f03 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845963600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Tue Nov 04 01:58:45 EST 2025 Sun Nov 09 11:46:20 EST 2025 Fri Jul 25 11:52:14 EDT 2025 Tue Nov 04 18:20:02 EST 2025 Sat Nov 29 07:13:20 EST 2025 Tue Nov 18 20:58:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-8365e4bf7c6fff94e5aa3e5a8812254b39c58e227350df5a696715bc1d4555f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7794-5625 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2706179792?pq-origsite=%requestingapplication% |
| PMID | 36010730 |
| PQID | 2706179792 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ee837a41ddb4d9584b9da94af695b61 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407485 proquest_miscellaneous_2707605839 proquest_journals_2706179792 gale_infotracacademiconefile_A745709075 crossref_citationtrail_10_3390_e24081066 crossref_primary_10_3390_e24081066 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Hu (ref_7) 2011; 2011 Khandaker (ref_8) 2012; 60 Hoydis (ref_1) 2013; 31 Lu (ref_4) 2022; 124 ref_14 Love (ref_12) 2005; 51 Ayach (ref_6) 2014; 13 Max (ref_30) 1960; 6 ref_19 ref_17 ref_16 Xia (ref_13) 2006; 54 ref_15 Wen (ref_20) 2018; 7 Guo (ref_21) 2020; 19 Larsson (ref_3) 2014; 52 Hoydis (ref_2) 2017; 11 Lloyd (ref_31) 1982; 28 Serbetli (ref_9) 2004; 52 Xia (ref_5) 2020; 68 ref_25 Shi (ref_18) 2021; 69 Bucklew (ref_29) 1982; 30 ref_22 Kieffer (ref_28) 1983; 29 Chen (ref_10) 2021; 39 ref_27 ref_26 Lee (ref_24) 2018; 17 Li (ref_23) 2015; 7 Yang (ref_11) 2021; 20 |
| References_xml | – volume: 20 start-page: 897 year: 2021 ident: ref_11 article-title: Power-Consumption Outage in Beyond Fifth Generation Mobile Communication Systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3029051 – volume: 6 start-page: 7 year: 1960 ident: ref_30 article-title: Quantizing for minimum distortion publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1960.1057548 – volume: 124 start-page: 2391 year: 2022 ident: ref_4 article-title: Reduced Complexity Hybrid Beamforming for Time-Varying Channels in Millimeter Wave MIMO Systems publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-022-09469-5 – volume: 7 start-page: 748 year: 2018 ident: ref_20 article-title: Deep Learning for Massive MIMO CSI Feedback publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2018.2818160 – ident: ref_26 doi: 10.1109/CVPR.2016.90 – ident: ref_17 doi: 10.1109/ICASSP40776.2020.9054488 – volume: 51 start-page: 2967 year: 2005 ident: ref_12 article-title: Limited feedback unitary precoding for spatial multiplexing systems publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.850152 – volume: 30 start-page: 298 year: 1982 ident: ref_29 article-title: A Note on the Computation of Optimal Minimum Mean-Square Error Quantizers publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1982.1095374 – volume: 60 start-page: 5977 year: 2012 ident: ref_8 article-title: Joint Transceiver Optimization for Multiuser MIMO Relay Communication Systems publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2212013 – volume: 54 start-page: 1853 year: 2006 ident: ref_13 article-title: Design and analysis of transmit-beamforming based on limited-rate feedback publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.871967 – volume: 13 start-page: 1499 year: 2014 ident: ref_6 article-title: Spatially Sparse Precoding in Millimeter Wave MIMO Systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.011714.130846 – ident: ref_14 doi: 10.3390/electronics7080144 – volume: 11 start-page: 154 year: 2017 ident: ref_2 article-title: Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency publication-title: Found. Trends Signal Process. doi: 10.1561/2000000093 – volume: 39 start-page: 615 year: 2021 ident: ref_10 article-title: Massive Access for 5G and Beyond publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3019724 – volume: 28 start-page: 129 year: 1982 ident: ref_31 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – ident: ref_25 – volume: 7 start-page: 1 year: 2015 ident: ref_23 article-title: Multiuser MISO Transceiver Design for Indoor Downlink Visible Light Communication Under Per-LED Optical Power Constraints publication-title: IEEE Photonics J. – ident: ref_27 – ident: ref_22 doi: 10.1109/VTC2021-Fall52928.2021.9625354 – volume: 31 start-page: 160 year: 2013 ident: ref_1 article-title: Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2013.130205 – volume: 17 start-page: 3298 year: 2018 ident: ref_24 article-title: Joint Transceiver Optimization for MISO SWIPT Systems With Time Switching publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2809734 – volume: 19 start-page: 2827 year: 2020 ident: ref_21 article-title: Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2968430 – ident: ref_16 doi: 10.1109/TVT.2019.2951501 – volume: 2011 start-page: 1 year: 2011 ident: ref_7 article-title: Combined Transceiver Optimization for Uplink Multiuser MIMO with Limited CSI publication-title: Int. Sch. Res. Not. – ident: ref_15 – volume: 52 start-page: 186 year: 2014 ident: ref_3 article-title: Massive MIMO for next generation wireless systems publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6736761 – volume: 68 start-page: 1866 year: 2020 ident: ref_5 article-title: A Deep Learning Framework for Optimization of MISO Downlink Beamforming publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2960361 – volume: 29 start-page: 42 year: 1983 ident: ref_28 article-title: Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1983.1056622 – ident: ref_19 doi: 10.3390/sym13091737 – volume: 52 start-page: 214 year: 2004 ident: ref_9 article-title: Transceiver optimization for multiuser MIMO systems publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2003.819988 – volume: 69 start-page: 7429 year: 2021 ident: ref_18 article-title: Deep Learning-Based Robust Precoding for Massive MIMO publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2021.3105569 |
| SSID | ssj0023216 |
| Score | 2.2953992 |
| Snippet | Multi-user multiple-input multiple-output (MU-MIMO) technology can significantly improve the spectral and energy efficiencies of wireless networks. In the... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1066 |
| SubjectTerms | Compression ratio Control convolutional neural networks (CNNs) Decomposition Deep learning Design and construction Efficiency Error analysis Feedback Feedback control systems Iterative algorithms Iterative methods joint transceiver design Lagrange multiplier limited feedback precoding Machine learning Methods MIMO MIMO communication MIMO communications MMSE receivers Neural networks Optimization Performance degradation Sensors Technology application uplink precoding Uplinking Wireless networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VVQ-9VCCoCBTkIqT2EjXxRxxzW6qu4NBlK7pVb5Y_RdWSRdstv59x4l11CxIXLjkkc7Dn2Zl5sucNwAcanJSR1iUGg1hyQ0VpLW_LymPuSpXn3PG-2YScTNrrazV91Oor3Qkb5IEHx52wEJBDGV57b7lXGC-t8kZxExsl7EB8KqlWZCpTLUbrZtARYkjqT0IS8kLy02xEn16k_89f8dPrkY_izfgZ7OVEkYyGAT6HrdC9gKvp6cUkLD-SEblc5LonMsYAZI27Jd8QgB-BzCOZJp7rw4JgSkowxSOzVHh7S_py23KGy46cfzn_SrJe-UuYjc8uTz-XuTNC6XgrlmXLGhG4jdI1MUbFgzCG4aPFcI2MzzLlRBsopiai8lGYRjWyFtbVngshYsX2Ybubd-EVEGlCiAyNJToVnWujRVLlbYxMtY2tCjheeUy7LBueulfcaaQPybl67dwC3q9Nfw5aGX8z-pTcvjZI8tb9CwRdZ9D1v0Av4CiBptMmxME4k2sJcEpJzkqPJBeyQt4vCjhY4arz7rzXVKbETUlFCzhcf8Z9lQ5LTBfmD72NTEfGTBUgN9bDxtA3v3Q333uFboU0GYF6_T_m-gZ2aSq56C8dHsD2cvEQ3sKO-7W8uV-865f9b03QB_4 priority: 102 providerName: Directory of Open Access Journals |
| Title | PCQNet: A Trainable Feedback Scheme of Precoder for the Uplink Multi-User MIMO Systems |
| URI | https://www.proquest.com/docview/2706179792 https://www.proquest.com/docview/2707605839 https://pubmed.ncbi.nlm.nih.gov/PMC9407485 https://doaj.org/article/3ee837a41ddb4d9584b9da94af695b61 |
| Volume | 24 |
| WOSCitedRecordID | wos000845963600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgMXHgJEYIkMQoJL1DzsOOaCuqtW7KElsFtUTpGfsFpol7bLkd_OTOoGCogTFx_ikeJkxvOwZ74h5FnujBA-zxIwBj5hKueJ1qxKUgu-ay4tY4a1zSbEdFrN57IO5dHrkFa504mtot6iPWPeNijhgV0aPDEf5AJNrxQyf3X5NcEeUnjXGhpqHJA-Am-lPdKvTyb1hy4AK_Ks3KILFRDqDxzCe0FIVO7ZpBa6_08F_XvS5C9WaHzr_67_NrkZvFE63IrPHXLNLe6S9_Xx26nbvKRDerYKxVV0DFZOK3NBT4HLXxxdelpjMG3dioLfS8GPpDOs7r2gbU1vMgPZppOTyRsaQNHvkdl4dHb8OgntFxLDKr5JqqLkjmkvTOm9l8xxpQoYKvAJ4P_qQhpeuRz8H55az1UpS5FxbTLLOOc-Le6T3mK5cA8IFco5XwCxUJJVTGuvIXKz2vtCVqVOI_Jix4DGBGxybJHxuYEYBXnVdLyKyNOO9HILyPE3oiPkYkeAGNrtg-XqYxO2ZFM4B9G5Ypm1mlkJnpiWFtanfCm5LrOIPEcZaHCnw2KMCgUL8EmImdUMBeMileBzReRwx_MmqIB185PFEXnSTcPmxRsZtXDLq5ZG4L10ISMi9sRrb-n7M4vzTy0MuIRYHBj18N8vf0Ru5Fix0eYsHpLeZnXlHpPr5tvmfL2KyYGYVzHpH42m9bu4PZCIMf31FMfvozjsoB8L_yga |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuPAQIQ4EFgeBi1d6H14uEUChEjdqEIBJUTmafUBWSkqQg_hS_kVnHCQQQtx64-GCP7F3vt_PN7O7MANyn3koZaJ4iGYSUaypSY3iZZg5tV6oc55bXxSZkv18eHKjBBnxfxsLEY5VLnVgrajexcY18m8pItkoq-vT4cxqrRsXd1WUJjQUs9vy3r-iyzZ50n-P4PqC082K4s5s2VQVSy0sxT0tWCM9NkLYIISjuhdYMLyVSHXpLhikrSk-R1kXmgtCFKmQujM0dF0KEjOF7z8AmR7BnLdgcdHuDtysXj9G8WOQvYkxl2z4mEEOnq1hjvbo4wJ8U8PuxzF94rnPxf_tDl-BCY1GT9mIKXIYNP74CbwY7r_p-_pi0yXDaBIiRDjK10faIvEakfvJkEsggLgg4PyVouxO0hckoRigfkTouOR3h_CS9bu8laRK7X4XRqXTlGrTGk7G_DkRq7wNDYakVL7kxwaD36UwITJWFyRJ4tBziyjb51WOZj48V-lkRDdUKDQncW4keL5KK_E3oWcTJSiDmAa9vTKbvq0atVMz7kknNc-cMdwqtSaMctk-HQglT5Ak8jCirorbCxljdBF1gl2Ler6otuZCZQrsxga0lqqpGjc2qn5BK4O7qMSqguKukx35yUsvIuLfOVAJyDcBrTV9_Mj78UKcyVxxN2FLc-PfH78C53WFvv9rv9vduwnkaI1DqM5hb0JpPT_wtOGu_zA9n09vNfCTw7rQB_gM8xXLQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuPAQIQ4EFgeBixd6H14uEUPqIiEpDgKbqzewTqkJSkhTEX-PXMes4gQDi1gMXH-yRvev9dr6Z3Z0ZgIfUWykDzVMkg5ByTUVqDC_TzKHtSpXj3PK62ITs98vDQzVYg--LWJh4rHKhE2tF7cY2rpG3qYxkq6Si7dAcixhsd5-ffE5jBam407oopzGHyK7_9hXdt-mz3jaO9SNKuzv7Wy_SpsJAankpZmnJCuG5CdIWIQTFvdCa4aVE2kPPyTBlRekpUrzIXBC6UIXMhbG540KIkDF87zlYlwydnhasb-70B2-W7h6jeTHPZcSYyto-JhNDB6xYYcC6UMCfdPD7Ec1fOK97-X_-W1fgUmNpk858alyFNT-6BgeDrdd9P3tKOmR_0gSOkS4yuNH2mLxFBH_yZBzIIC4UOD8haNMTtJHJMEYuH5M6Xjkd4rwle729V6RJ-H4dhmfSlRvQGo1H_iYQqb0PDIWlVrzkxgSDXqkzITBVFiZL4MliuCvb5F2P5T8-Vuh_RWRUS2Qk8GApejJPNvI3oc2ImaVAzA9e3xhP3leNuqmY9yWTmufOGe4UWplGOWyfDoUSpsgTeBwRV0Utho2xugnGwC7FfGBVR3IhM4X2ZAIbC4RVjXqbVj_hlcD95WNUTHG3SY_8-LSWkXHPnakE5AqYV5q--mR09KFOca44mraluPXvj9-DC4jq6mWvv3sbLtIYmFIfzdyA1mxy6u_AeftldjSd3G2mJoF3Z43vH0qae2o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCQNet%3A+A+Trainable+Feedback+Scheme+of+Precoder+for+the+Uplink+Multi-User+MIMO+Systems&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Bao%2C+Xiuwen&rft.au=Jiang%2C+Ming&rft.au=Fang%2C+Wenhao&rft.au=Zhao%2C+Chunming&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=8&rft.spage=1066&rft_id=info:doi/10.3390%2Fe24081066&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |