Using explainable machine learning and fitbit data to investigate predictors of adolescent obesity

Sociodemographic and lifestyle factors (sleep, physical activity, and sedentary behavior) may predict obesity risk in early adolescence; a critical period during the life course. Analyzing data from 2971 participants (M = 11.94, SD = 0.64 years) wearing Fitbit Charge HR 2 devices in the Adolescent B...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 12563 - 12
Hlavní autoři: Kiss, Orsolya, Baker, Fiona C., Palovics, Robert, Dooley, Erin E., Pettee Gabriel, Kelley, Nagata, Jason M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 31.05.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sociodemographic and lifestyle factors (sleep, physical activity, and sedentary behavior) may predict obesity risk in early adolescence; a critical period during the life course. Analyzing data from 2971 participants (M = 11.94, SD = 0.64 years) wearing Fitbit Charge HR 2 devices in the Adolescent Brain Cognitive Development (ABCD) Study, glass box machine learning models identified obesity predictors from Fitbit-derived measures of sleep, cardiovascular fitness, and sociodemographic status. Key predictors of obesity include identifying as Non-White race, low household income, later bedtime, short sleep duration, variable sleep timing, low daily step counts, and high heart rates (AUC Mean  = 0.726). Findings highlight the importance of inadequate sleep, physical inactivity, and socioeconomic disparities, for obesity risk. Results also show the clinical applicability of wearables for continuous monitoring of sleep and cardiovascular fitness in adolescents. Identifying the tipping points in the predictors of obesity risk can inform interventions and treatment strategies to reduce obesity rates in adolescents.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-60811-2