Federated unsupervised random forest for privacy-preserving patient stratification

Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a fi...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 40; no. Supplement_2; pp. ii198 - ii207
Main Authors: Pfeifer, Bastian, Sirocchi, Christel, Bloice, Marcus D, Kreuzthaler, Markus, Urschler, Martin
Format: Journal Article
Language:English
Published: England Oxford University Press 01.09.2024
Oxford Publishing Limited (England)
Subjects:
ISSN:1367-4803, 1367-4811, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data’s role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing. Results We introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing. Availability and implementation The proposed methods are available as an R-package (https://github.com/pievos101/uRF)
AbstractList In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data's role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing.MOTIVATIONIn the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data's role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing.We introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing.RESULTSWe introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing.The proposed methods are available as an R-package (https://github.com/pievos101/uRF).AVAILABILITY AND IMPLEMENTATIONThe proposed methods are available as an R-package (https://github.com/pievos101/uRF).
Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data’s role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing. Results We introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing. Availability and implementation The proposed methods are available as an R-package (https://github.com/pievos101/uRF)
Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data’s role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing. Results We introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing. Availability and implementation The proposed methods are available as an R-package (https://github.com/pievos101/uRF)
In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a finer-grained understanding of disease variability. Meanwhile, clinical datasets are often small and must be aggregated from multiple hospitals. Online data sharing, however, is seen as a significant challenge due to privacy concerns, potentially impeding big data's role in medical advancements using machine learning. This work establishes a powerful framework for advancing precision medicine through unsupervised random forest-based clustering in combination with federated computing. We introduce a novel multi-omics clustering approach utilizing unsupervised random forests. The unsupervised nature of the random forest enables the determination of cluster-specific feature importance, unraveling key molecular contributors to distinct patient groups. Our methodology is designed for federated execution, a crucial aspect in the medical domain where privacy concerns are paramount. We have validated our approach on machine learning benchmark datasets as well as on cancer data from The Cancer Genome Atlas. Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability. Experiments indicate that local clustering performance can be improved through federated computing. The proposed methods are available as an R-package (https://github.com/pievos101/uRF).
Author Bloice, Marcus D
Pfeifer, Bastian
Urschler, Martin
Kreuzthaler, Markus
Sirocchi, Christel
Author_xml – sequence: 1
  givenname: Bastian
  orcidid: 0000-0001-7035-9535
  surname: Pfeifer
  fullname: Pfeifer, Bastian
  email: bastian.pfeifer@medunigraz.at
– sequence: 2
  givenname: Christel
  orcidid: 0000-0002-5011-3068
  surname: Sirocchi
  fullname: Sirocchi, Christel
– sequence: 3
  givenname: Marcus D
  orcidid: 0000-0002-2468-4086
  surname: Bloice
  fullname: Bloice, Marcus D
– sequence: 4
  givenname: Markus
  orcidid: 0000-0001-9824-9004
  surname: Kreuzthaler
  fullname: Kreuzthaler, Markus
– sequence: 5
  givenname: Martin
  orcidid: 0000-0001-5792-3971
  surname: Urschler
  fullname: Urschler, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39230698$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtq3DAQhkXZklPzCsGQm964K3lsrQ2BUEK3KSwUSnotZB1SLbbkSPZC3j6z3c2S7E17o-P3z_wzc05mPnhDyBWjXxhtYN664LwNsZejU2nejtJAXXwgZwz4Ii9rxmaHM4VTcp7SmlJa0YqfkFNoCqC8qc_Ir6XRJsrR6GzyaRpM3LiElyi9Dn2GGUwat1s2RLeR6jkf8GVL-cdswOTGj1kaMYKzTuEa_Cfy0coumcv9fkF-L7893N3nq5_ff9x9XeWqrKsx59Q2llEra83BQFW1lZWsKtpCK7XQBVS25I02jFu9oFyVXKsWoZqr2krD4ILc7uIOU9sbrdBJlJ1An72MzyJIJ97_ePdHPIaNYAwWUFKOET7vI8TwNGGhondJma6T3oQpCWDYMV42AIheH6HrMEWP9SFVlCU0HLaWrt5aOnh57TcCfAeoGFKKxh4QRsV2sOL9YMV-sCi8ORIqN_5tN5bmun_L2U4epuF_U74Am43Gpg
CitedBy_id crossref_primary_10_1186_s12884_025_07892_7
crossref_primary_10_3390_ijms26052054
Cites_doi 10.1093/nar/gky889
10.1093/bioinformatics/bty1049
10.1016/j.jbi.2023.104406
10.1038/s41591-021-01506-3
10.1007/s00357-014-9161-z
10.1080/01621459.1963.10500845
10.1023/A:1010933404324
10.1038/s42256-022-00601-5
10.1093/bioinformatics/btz058
10.1093/bioinformatics/btac065
10.1038/nrg2611
10.1111/j.1469-1809.1949.tb02451.x
10.1093/bioinformatics/btab109
10.1177/1177932219899051
10.1038/nmeth.2810
10.1016/j.jbi.2020.103636
10.1186/s13059-022-02739-2
10.1016/j.ccell.2022.09.012
10.1007/s11222-007-9033-z
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btae382
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Proceedings of ECCB2024
EISSN 1367-4811
EndPage ii207
ExternalDocumentID PMC11373406
39230698
10_1093_bioinformatics_btae382
10.1093/bioinformatics/btae382
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ECCB2024
– fundername: ;
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c485t-60f9f10fa8d63e355b5fa152b2dcc7d235f469de16fd706c46dcb5b586c8fae13
IEDL.DBID TOX
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305679000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Tue Sep 30 17:08:38 EDT 2025
Thu Sep 04 16:20:27 EDT 2025
Mon Oct 06 17:42:23 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Tue Nov 18 21:03:46 EST 2025
Sat Nov 29 03:49:30 EST 2025
Mon Jun 30 08:34:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_2
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-60f9f10fa8d63e355b5fa152b2dcc7d235f469de16fd706c46dcb5b586c8fae13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5011-3068
0000-0001-5792-3971
0000-0001-9824-9004
0000-0001-7035-9535
0000-0002-2468-4086
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btae382
PMID 39230698
PQID 3124439631
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373406
proquest_miscellaneous_3100564933
proquest_journals_3124439631
pubmed_primary_39230698
crossref_primary_10_1093_bioinformatics_btae382
crossref_citationtrail_10_1093_bioinformatics_btae382
oup_primary_10_1093_bioinformatics_btae382
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wang (2024090413591716100_btae382-B17) 2014; 11
Brauneck (2024090413591716100_btae382-B2) 2023; 5
Rappoport (2024090413591716100_btae382-B14) 2019; 35
Breiman (2024090413591716100_btae382-B3) 2001; 45
Leng (2024090413591716100_btae382-B7) 2022; 23
Wright (2024090413591716100_btae382-B19) 1949; 15
Lipkova (2024090413591716100_btae382-B8) 2022; 40
Pfeifer (2024090413591716100_btae382-B11) 2021; 113
Pfeifer (2024090413591716100_btae382-B12) 2023; 143
Von Luxburg (2024090413591716100_btae382-B16) 2007; 17
Ward (2024090413591716100_btae382-B18) 1963; 58
Holsinger (2024090413591716100_btae382-B6) 2009; 10
Nguyen (2024090413591716100_btae382-B10) 2019; 35
Subramanian (2024090413591716100_btae382-B15) 2020; 14
Bicego (2024090413591716100_btae382-B1) 2021
Rappoport (2024090413591716100_btae382-B13) 2018; 46
Yang (2024090413591716100_btae382-B20) 2021; 37
Dayan (2024090413591716100_btae382-B4) 2021; 27
Hauschild (2024090413591716100_btae382-B5) 2022; 38
Murtagh (2024090413591716100_btae382-B9) 2014; 31
References_xml – volume: 46
  start-page: 10546
  year: 2018
  ident: 2024090413591716100_btae382-B13
  article-title: Multi-omic and multi-view clustering algorithms: review and cancer benchmark
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky889
– volume: 35
  start-page: 2843
  year: 2019
  ident: 2024090413591716100_btae382-B10
  article-title: PINSPlus: a tool for tumor subtype discovery in integrated genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1049
– volume: 143
  start-page: 104406
  year: 2023
  ident: 2024090413591716100_btae382-B12
  article-title: Parea: multi-view ensemble clustering for cancer subtype discovery
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2023.104406
– volume: 27
  start-page: 1735
  year: 2021
  ident: 2024090413591716100_btae382-B4
  article-title: Federated learning for predicting clinical outcomes in patients with COVID-19
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01506-3
– volume: 31
  start-page: 274
  year: 2014
  ident: 2024090413591716100_btae382-B9
  article-title: Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?
  publication-title: J Classif
  doi: 10.1007/s00357-014-9161-z
– volume: 58
  start-page: 236
  year: 1963
  ident: 2024090413591716100_btae382-B18
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Statist Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 45
  start-page: 5
  year: 2001
  ident: 2024090413591716100_btae382-B3
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 5
  start-page: 2
  year: 2023
  ident: 2024090413591716100_btae382-B2
  article-title: Federated machine learning in data-protection-compliant research
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-022-00601-5
– volume: 35
  start-page: 3348
  year: 2019
  ident: 2024090413591716100_btae382-B14
  article-title: NEMO: cancer subtyping by integration of partial multi-omic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz058
– volume: 38
  start-page: 2278
  year: 2022
  ident: 2024090413591716100_btae382-B5
  article-title: Federated random forests can improve local performance of predictive models for various healthcare applications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac065
– volume: 10
  start-page: 639
  year: 2009
  ident: 2024090413591716100_btae382-B6
  article-title: Genetics in geographically structured populations: defining, estimating and interpreting FST
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2611
– volume: 15
  start-page: 323
  year: 1949
  ident: 2024090413591716100_btae382-B19
  article-title: The genetical structure of populations
  publication-title: Ann Eugen
  doi: 10.1111/j.1469-1809.1949.tb02451.x
– volume: 37
  start-page: 2231
  year: 2021
  ident: 2024090413591716100_btae382-B20
  article-title: Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab109
– volume: 14
  start-page: 117793221989905
  year: 2020
  ident: 2024090413591716100_btae382-B15
  article-title: Multi-omics data integration, interpretation, and its application
  publication-title: Bioinform Biol Insights
  doi: 10.1177/1177932219899051
– volume: 11
  start-page: 333
  year: 2014
  ident: 2024090413591716100_btae382-B17
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 113
  start-page: 103636
  year: 2021
  ident: 2024090413591716100_btae382-B11
  article-title: A hierarchical clustering and data fusion approach for disease subtype discovery
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103636
– start-page: 3451
  year: 2021
  ident: 2024090413591716100_btae382-B1
– volume: 23
  start-page: 1
  year: 2022
  ident: 2024090413591716100_btae382-B7
  article-title: A benchmark study of deep learning-based multi-omics data fusion methods for cancer
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02739-2
– volume: 40
  start-page: 1095
  year: 2022
  ident: 2024090413591716100_btae382-B8
  article-title: Artificial intelligence for multimodal data integration in oncology
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.09.012
– volume: 17
  start-page: 395
  year: 2007
  ident: 2024090413591716100_btae382-B16
  article-title: A tutorial on spectral clustering
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9033-z
SSID ssj0005056
Score 2.4876943
Snippet Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics...
In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data....
Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage ii198
SubjectTerms Algorithms
Availability
Big Data
Biological analysis
Cancer
Cluster Analysis
Clustering
Computation
Datasets
Digital Health
Humans
Learning algorithms
Machine Learning
Neoplasms
Patients
Precision medicine
Precision Medicine - methods
Privacy
Random Forest
Subgroups
Unsupervised Machine Learning
Title Federated unsupervised random forest for privacy-preserving patient stratification
URI https://www.ncbi.nlm.nih.gov/pubmed/39230698
https://www.proquest.com/docview/3124439631
https://www.proquest.com/docview/3100564933
https://pubmed.ncbi.nlm.nih.gov/PMC11373406
Volume 40
WOSCitedRecordID wos001305679000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MoeCL90t1jgo-CWXNkrbpo4jDB5kiU_ZW0lx0oN3YDfbvPVm7uQri5amUnKRpzknyJTn5DsCFTNFOuAw8HCCFxyjqQqDmvUgyg-iapTnx_PNd1G7zbjd-qABZ3IX5eoQf00ba6xckopa4uJGOhabcjrok4DZmQee---nU4c_jtVoeMo9xny7uBH9bTGk6Kl1xW0GaXx0mV2ag1vY_6r4DWwXcdK9y-9iFis72YCMPQDnbh8eW5ZJAuKncSTaaDOzAMcIXnMBU_93FIrGC9uEOhr2pkDPP-s1aqezFLShZ3Zx51xSbfwfw1LrpXN96RZQFTzIejL3QN7EhvhFchVQj_EgDI3BWT5tKykg1aWBwCa00CY2K_FCyUMkUhXgouRGa0EOoZv1MH4MrmsrynwVU4CrFcM1TGYU6ZpoFRMY0diBYNHYiCwpyGwnjLcmPwmlSbq-kaC8HGst8g5yE48ccl6jLXwvXFipPih48SqgFPhSHJ-LA-TIZ-549UBGZ7k-sjGVSZTGlDhzlFrL8JOJOXI3F3AFesp2lgOX1Lqdkvdc5vzchNKIItE7-8hOnsNlEvJW7v9WgOh5O9Bmsy-m4NxrWYS3q8vp8w6E-7zEf3W0fKQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+unsupervised+random+forest+for+privacy-preserving+patient+stratification&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Pfeifer%2C+Bastian&rft.au=Sirocchi%2C+Christel&rft.au=Bloice%2C+Marcus+D&rft.au=Kreuzthaler%2C+Markus&rft.date=2024-09-01&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=40&rft.spage=ii198&rft.epage=ii207&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae382&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon