A Lagrangian–DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems

We propose an efficient computational method for linearly constrained quadratic optimization problems (QOPs) with complementarity constraints based on their Lagrangian and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified Lagrangian–completely positive programming (CPP)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 156; číslo 1-2; s. 161 - 187
Hlavní autoři: Kim, Sunyoung, Kojima, Masakazu, Toh, Kim-Chuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2016
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose an efficient computational method for linearly constrained quadratic optimization problems (QOPs) with complementarity constraints based on their Lagrangian and doubly nonnegative (DNN) relaxation and first-order algorithms. The simplified Lagrangian–completely positive programming (CPP) relaxation of such QOPs proposed by Arima, Kim, and Kojima in 2012 takes one of the simplest forms, an unconstrained conic linear optimization problem with a single Lagrangian parameter in a CPP matrix variable with its upper-left element fixed to 1. Replacing the CPP matrix variable by a DNN matrix variable, we derive the Lagrangian–DNN relaxation, and establish the equivalence between the optimal value of the DNN relaxation of the original QOP and that of the Lagrangian–DNN relaxation. We then propose an efficient numerical method for the Lagrangian–DNN relaxation using a bisection method combined with the proximal alternating direction multiplier and the accelerated proximal gradient methods. Numerical results on binary QOPs, quadratic multiple knapsack problems, maximum stable set problems, and quadratic assignment problems illustrate the superior performance of the proposed method for attaining tight lower bounds in shorter computational time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-015-0874-5