Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder
An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) a...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 16; p. 5935 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system. |
|---|---|
| AbstractList | An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system. An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system.An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system. |
| Audience | Academic |
| Author | Hussain, Zahir M. Alwan, Nuha A. S. |
| AuthorAffiliation | 2 School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia 1 College of Engineering, University of Baghdad, Baghdad 10017, Iraq |
| AuthorAffiliation_xml | – name: 1 College of Engineering, University of Baghdad, Baghdad 10017, Iraq – name: 2 School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia |
| Author_xml | – sequence: 1 givenname: Nuha A. S. orcidid: 0000-0002-4040-9973 surname: Alwan fullname: Alwan, Nuha A. S. – sequence: 2 givenname: Zahir M. orcidid: 0000-0002-1707-5485 surname: Hussain fullname: Hussain, Zahir M. |
| BookMark | eNplkstuEzEUhkeoiLaBBW9giQ0s0nrGl4xZIEUpl0gRSLSsLY99nLqasYPtCQpPj4cURIu8sHX8_599LufViQ8equpljS8IEfgyNU3NmSDsSXVW04bO26bBJ_-cT6vzlO4wbggh7bPqlHBcMy74WfXzCmCHNqCid36LbIjoa-jGlNHSqF12e0Brv4eYAK2CzzH0KFj0Ofje-WJCVwevBqfR9SFlGNJbtB52MezBoGvIuZ-YN24A9MPlW6Q8Wo45gNfBQHxePbWqT_Difp9V3z68v1l9mm--fFyvlpu5pi3Lc2qoaVrRKaFbqhjhIBgxtjaMqroTvNYdqBJvMe6Y0JwLywyomi6YxkRZMqvWR64J6k7uohtUPMignPwdCHErVcxO9yCtUNYw1QIllJpC5gR3nNFSrIYzIwrr3ZG1G7sBjIZSEtU_gD688e5WbsNeisKgLS6A1_eAGL6PkLIcXNLQ98pDGJNsFnjBa8z4JH31SHoXxuhLqSYVp0QwNv3o4qjaqpKA8zaUd3VZBkpfypxYV-LLBeWMYFH6P6sujwYdQ0oRrNQuq-ym7irXyxrLaajk36EqjjePHH_y_V_7C6GlzQM |
| CitedBy_id | crossref_primary_10_1007_s41365_023_01333_w |
| Cites_doi | 10.1007/s00521-020-05077-1 10.1016/S0005-1098(00)00058-3 10.1109/TNN.2003.809412 10.1016/j.jprocont.2008.04.006 10.1609/aaai.v31i1.10913 10.1002/9780470231616 10.1016/B978-0-12-818778-4.00017-0 10.15388/Informatica.2014.20 10.1109/TAES.2021.3130830 10.20944/preprints202104.0664.v1 10.2514/6.2020-1336 10.1109/72.80202 10.1137/1.9780898718652 10.1109/IC4.2015.7375581 10.1038/323533a0 10.1016/B978-0-08-030565-3.50007-1 10.1007/978-3-319-56393-0 10.1109/MCS.2019.2938121 10.1109/LCSYS.2021.3081361 10.7551/mitpress/7503.003.0024 10.1109/LCSYS.2021.3055454 10.1186/s12911-020-01150-w 10.1007/978-1-4842-2845-6 10.1109/37.387616 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22165935 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f9afd5a8e4344d1cb630b654156265d9 PMC9415480 A746530933 10_3390_s22165935 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Edith Cowan University |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c485t-4d4d289ba9c84a536e953df1d54a1b961cbeaa53800b59c669f5dea1475c03af3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845341500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:58:00 EDT 2025 Tue Nov 04 01:53:33 EST 2025 Thu Sep 04 14:34:59 EDT 2025 Tue Oct 07 07:26:10 EDT 2025 Tue Nov 04 18:17:00 EST 2025 Sat Nov 29 07:15:24 EST 2025 Tue Nov 18 20:45:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-4d4d289ba9c84a536e953df1d54a1b961cbeaa53800b59c669f5dea1475c03af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1707-5485 0000-0002-4040-9973 |
| OpenAccessLink | https://doaj.org/article/f9afd5a8e4344d1cb630b654156265d9 |
| PMID | 36015696 |
| PQID | 2706439559 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f9afd5a8e4344d1cb630b654156265d9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415480 proquest_miscellaneous_2707610560 proquest_journals_2706439559 gale_infotracacademiconefile_A746530933 crossref_citationtrail_10_3390_s22165935 crossref_primary_10_3390_s22165935 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Hedjar (ref_10) 2007; 19 Plett (ref_6) 2003; 14 ref_14 ref_13 ref_11 Le (ref_17) 2021; 6 Somolinos (ref_31) 2017; 2017 ref_32 ref_30 ref_19 ref_15 Narendra (ref_21) 1990; 1 Narendra (ref_27) 1995; 15 Joshi (ref_18) 2019; 2019 Zaki (ref_16) 2021; 33 ref_25 Deshpande (ref_28) 2009; 19 ref_24 Liu (ref_8) 2022; 58 ref_23 ref_22 Rumelhart (ref_9) 1986; 323 ref_3 ref_2 (ref_12) 2014; 25 ref_26 Sun (ref_20) 2021; 6 Schoukens (ref_29) 2019; 39 ref_5 ref_4 ref_7 Rugh (ref_1) 2000; 36 |
| References_xml | – volume: 33 start-page: 1515 year: 2021 ident: ref_16 article-title: Deep learning controller for nonlinear system based on Lyapunov stability criterion publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05077-1 – ident: ref_30 – ident: ref_26 – volume: 36 start-page: 1401 year: 2000 ident: ref_1 article-title: A survey of research on gain scheduling publication-title: Automatica doi: 10.1016/S0005-1098(00)00058-3 – volume: 14 start-page: 360 year: 2003 ident: ref_6 article-title: Adaptive inverse control of linear and nonlinear systems using dynamic neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.809412 – volume: 19 start-page: 187 year: 2009 ident: ref_28 article-title: Intelligent state estimation for fault tolerant nonlinear predictive control publication-title: J. Process Control. doi: 10.1016/j.jprocont.2008.04.006 – ident: ref_13 doi: 10.1609/aaai.v31i1.10913 – ident: ref_7 doi: 10.1002/9780470231616 – ident: ref_32 doi: 10.1016/B978-0-12-818778-4.00017-0 – volume: 25 start-page: 401 year: 2014 ident: ref_12 article-title: Adaptive inverse control using an online learning algorithm for neural networks publication-title: Informatica doi: 10.15388/Informatica.2014.20 – ident: ref_23 – volume: 58 start-page: 2257 year: 2022 ident: ref_8 article-title: Active disturbance rejection control for delayed electromagnetic docking of spacecraft in elliptical orbits publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3130830 – ident: ref_11 doi: 10.20944/preprints202104.0664.v1 – volume: 2017 start-page: 6415876 year: 2017 ident: ref_31 article-title: Integration of sensors in control and automation systems publication-title: J. Sens. – ident: ref_19 doi: 10.2514/6.2020-1336 – volume: 1 start-page: 4 year: 1990 ident: ref_21 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – ident: ref_5 doi: 10.1137/1.9780898718652 – ident: ref_15 doi: 10.1109/IC4.2015.7375581 – volume: 323 start-page: 533 year: 1986 ident: ref_9 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref_3 doi: 10.1016/B978-0-08-030565-3.50007-1 – ident: ref_2 – ident: ref_4 doi: 10.1007/978-3-319-56393-0 – volume: 39 start-page: 28 year: 2019 ident: ref_29 article-title: Non-linear system identification: A user-oriented roadmap publication-title: IEEE Control. Syst. Mag. doi: 10.1109/MCS.2019.2938121 – volume: 6 start-page: 476 year: 2021 ident: ref_17 article-title: Real-time modular deep neural network-based adaptive control of nonlinear systems publication-title: IEEE Control. Syst. Lett. doi: 10.1109/LCSYS.2021.3081361 – ident: ref_24 doi: 10.7551/mitpress/7503.003.0024 – volume: 6 start-page: 193 year: 2021 ident: ref_20 article-title: Lyapunov-based real-time and iterative adjustment of deep neural networks publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2021.3055454 – volume: 19 start-page: 75 year: 2007 ident: ref_10 article-title: Online adaptive control of nonlinear plants using neural networks with application to temperature control system publication-title: J. King Saud Univ.—Comput. Inf. Sci. – ident: ref_25 doi: 10.1186/s12911-020-01150-w – ident: ref_22 – volume: 2019 start-page: 4601 year: 2019 ident: ref_18 article-title: Deep model reference adaptive control publication-title: Proc. IEEE Conf. Decis. Control – ident: ref_14 doi: 10.1007/978-1-4842-2845-6 – volume: 15 start-page: 37 year: 1995 ident: ref_27 article-title: Adaptation and learning using multiple models, switching and tuning publication-title: IEEE Control. Syst. Mag. doi: 10.1109/37.387616 |
| SSID | ssj0023338 |
| Score | 2.4206617 |
| Snippet | An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5935 |
| SubjectTerms | adaptive inverse control Algorithms autoencoder Control systems Controllers Deep learning Neural networks nonlinear plant Process controls robust control sensor control Signal processing |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3ohAQQYhwSVqEj8Sc0HblzitqgJSb5FfKZVQsiRZDvx6Zhxv2gXEhattKbbmPZn5hpA3koNNKQxLReZcyrkzIFKGp0rAhpDMqKoJwybK5bI6P1enMeE2xLLKjU4Mitp1FnPk-0UZjCc4wB9W31OcGoV_V-MIjZtkF5HKgM93D46Xp2dzyMUgApvwhBgE9_tDUeRSqDDb7coKBbD-P1Xy72WS1-zOyb3_vfF9cjd6nHQxscgDcsO3D8mdaziEj8jPI-9XNEKtXlDwY-lZZ9bDSBdOr1AhUsTj6AdPD6fSdto1dDmhbOieHk1j7WmEP39Pp1SFd_STH0dseKfYakIx6Ut1SxfrsUMATef7x-TLyfHnw49pHMqQWl6JMeWOOwjSjFa24low6ZVgrsmd4Do3SubWeA3r4IgaoayUqhHO65yXwmZMN-wJ2Wm71j8l1GqjSy11kXHDRalNA7FNU3Evecas1Al5tyFSbSNiOQ7O-FZD5IL0rGd6JuT1fHQ1wXT87dABUno-gMjaYaHrL-ooqHWjdOOErjxnwLnwGskyg8PSwVGUwqmEvEU-qVH-4TJWxzYGeBIiadWLEhHrME-UkL0NX9RRMQz1FVMk5NW8DSKN_2l067t1OFOCVwu-aELKLRbcuvr2Tnv5NYCDK45BaPbs3x9_Tm4X2McRKhn3yM7Yr_0Lcsv-GC-H_mWUol86SSo8 priority: 102 providerName: ProQuest |
| Title | Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder |
| URI | https://www.proquest.com/docview/2706439559 https://www.proquest.com/docview/2707610560 https://pubmed.ncbi.nlm.nih.gov/PMC9415480 https://doaj.org/article/f9afd5a8e4344d1cb630b654156265d9 |
| Volume | 22 |
| WOSCitedRecordID | wos000845341500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxFMElsogJLhEm8SvmFt3tys4bFUtIJVTZMcOrISSKkn3sAd-OzNOWlpA4sLFB3sU-TFjz-d4viHkteRwpmSWxSJxLubcWTApy2MtoEFIZnVehWQTaj7Pl0u92En1hW_CBnrgYeKOKm0qJ0zuOYMvpaWVLLGYvBoObilcCN1LlN6AqRFqMUBeA48QA1B_1GVZKoUOOd1-nT6BpP_Prfj355E7583ZfXJvdBTpdOjgA3LD1w_J3R36wEfk-tT7FR0ZUr9ScD_pRWPXXU-nzqxwH6NIo9F2np4ML9JpU9H5QI5hWno6ZKOnI2v5OzrcMHhHP_q-xzh1ihEiFO9qqanpdN03yHvpfPuYfD6bfTp5H4-5FOKS56KPueMOsJU1usy5EUx6LZirUie4Sa2WMLHeQD34j1boUkpdCedNypUoE2Yq9oQc1E3tnxJaGmuUkSZLuOVCGVsBJKly7iVPWClNRN5u5rgoR6JxzHfxvQDAgctRbJcjIq-2oquBXeNvQse4UFsBJMQOFaAmxagmxb_UJCJvcJkLNFvoTGnG6AMYEhJgFVOFRHN4vRORw40mFKM9d0WmgusG8CsiL7fNYIn4e8XUvlkHGQXOKLiQEVF7GrTX9f2W-vJb4PTWHLFj8ux_jPU5uZNhkEZ4pnhIDvp27V-Q2-VVf9m1E3JTLVUo8wm5dTybLy4mwXigPP8xg7rFh_PFl5-cziDR |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRLwwB0RGGAQCF6ipbGdxEgIlZVp1baqgk0aT8G3jEqQlCQFjR_Fb-Q4SbsVEG974NW2Ejv5zs32-Q7A04ihTQkV9XlgjM-YUShSivmCYwePqBJJ1hSbiMfj5OhITNbg5yIXxl2rXOjERlGbQrs98s0wbownOsCvZ199VzXKna4uSmi0sNi1J98xZKtejYb4f5-F4fbbg60dv6sq4GuW8NpnhhmMMpQUOmGS08gKTk3WN5zJvhJRXysrsR09KcWFjiKRcWNln8VcB1RmFJ97AdYZgj3owfpktD_5sAzxKEZ8LX8RpSLYrMKwH3HR1JI7tXpNcYA_TcDv1zLP2Lnta__bF7oOVzuPmgxaEbgBaza_CVfO8Czegh9Da2eko5I9Juink3eFmlc1GRg5cwqfOL6RsrJkq726T4qMjFsWEVmS4Ukuv0w16ejdX5J2K8Ya8t7WtUvoJy6VhrhNbSJzMpjXhSMINba8DYfnsvg70MuL3N4FoqWSsYxkGDDFeCxVhrFbljAbsYDqSHrwYgGKVHeM7K4wyOcUIzOHn3SJHw-eLIfOWhqSvw1645C1HOCYw5uGojxOO0WUZkJmhsvEMoqSiauJaKBcMXh0hCNuhAfPHS5Tp99wMlp2aRq4JMcUlg5ix8jn9sE82FjgMO0UX5WegtCDx8tuVFnuHErmtpg3Y2L02tHX9iBegfzK1Fd78umnhvxcMBdkB_f-_fJHcGnnYH8v3RuNd-_D5dDlrDS3NjegV5dz-wAu6m_1tCofdhJM4ON5i8QvD_uINg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAceCMMBRYEgosVx_uwFwmh0FBRFUUVDyk3sy-XSGAH2wGVn8avY8Z2kgYQtx64ele21_7mtTvzDSGPJAebEhsWisi5kHNnQKQMD5WAASGZUWneNptIJpN0OlWHW-TnshYG0yqXOrFV1K60uEc-iJPWeIIDPMj7tIjD8d6L-dcQO0jhSeuynUYHkQN__B3Ct_r5_hj-9eM43nv1fvd12HcYCC1PRRNyxx1EHEYrm3ItmPRKMJcPneB6aJQcWuM1XAevyghlpVS5cF4PeSJsxHTO4L5nyFmkFESlkEzXwR6D2K9jMmJMRYM6jodSqLar3Nr-tW0C_jQGvydonrB4e5f_5291hVzq_Ww66gTjKtnyxTVy8QT74nXyY-z9nPYEs0cUvHf6tjSLuqEjp-doBiiykFS1p7tdQj8tczrpuEV0RcfHhf4ys7QnfX9Guw0a7-g73zRY5k-xwIbiVjfVBR0tmhJpQ52vbpAPp7L4m2S7KAt_i1CrjU601HHEDReJNjlEdHnKveQRs1IH5OkSIJntedqxXcjnDOI1xFK2wlJAHq6mzjtykr9NeokoW01APvH2QlkdZb16ynKlcyd06jkDeYXVSBYZbBEP7rEUTgXkCWI0Q60HL2N1X7wBS0L-sGyUIE8f7o4FZGeJyaxXh3W2BmRAHqyGQZHh6ZQufLlo5yTgy4MHHpBkA_4br745Usw-tZToimPoHd3-98Pvk_MgB9mb_cnBHXIhxkKWNpVzh2w31cLfJefst2ZWV_daUabk42nLwy_9Zo9j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Robust+Adaptive+Inverse+Control+of+Nonlinear+Dynamic+Systems%3A+Improved+Settling+Time+with+an+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alwan%2C+Nuha+A+S&rft.au=Hussain%2C+Zahir+M&rft.date=2022-08-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=16&rft_id=info:doi/10.3390%2Fs22165935&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |