Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder

An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) a...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 16; p. 5935
Main Authors: Alwan, Nuha A. S., Hussain, Zahir M.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system.
AbstractList An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system.
An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system.An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) approach to the adaptive inverse control (AIC) problem is shown to outperform the adaptive filtering techniques and algorithms normally used in adaptive control, especially when in nonlinear plants. The deeper the controller, the better the inverse function approximation, provided that the nonlinear plant has an inverse and that this inverse can be approximated. Simulation results prove the feasibility of this DL-based adaptive inverse control scheme. The DL-based AIC system is robust to nonlinear plant parameter changes in that the plant output reassumes the value of the reference signal considerably faster than with the adaptive filter counterpart of the deep neural network. The settling and rise times of the step response are shown to improve in the DL-based AIC system.
Audience Academic
Author Hussain, Zahir M.
Alwan, Nuha A. S.
AuthorAffiliation 2 School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
1 College of Engineering, University of Baghdad, Baghdad 10017, Iraq
AuthorAffiliation_xml – name: 1 College of Engineering, University of Baghdad, Baghdad 10017, Iraq
– name: 2 School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
Author_xml – sequence: 1
  givenname: Nuha A. S.
  orcidid: 0000-0002-4040-9973
  surname: Alwan
  fullname: Alwan, Nuha A. S.
– sequence: 2
  givenname: Zahir M.
  orcidid: 0000-0002-1707-5485
  surname: Hussain
  fullname: Hussain, Zahir M.
BookMark eNplkstuEzEUhkeoiLaBBW9giQ0s0nrGl4xZIEUpl0gRSLSsLY99nLqasYPtCQpPj4cURIu8sHX8_599LufViQ8equpljS8IEfgyNU3NmSDsSXVW04bO26bBJ_-cT6vzlO4wbggh7bPqlHBcMy74WfXzCmCHNqCid36LbIjoa-jGlNHSqF12e0Brv4eYAK2CzzH0KFj0Ofje-WJCVwevBqfR9SFlGNJbtB52MezBoGvIuZ-YN24A9MPlW6Q8Wo45gNfBQHxePbWqT_Difp9V3z68v1l9mm--fFyvlpu5pi3Lc2qoaVrRKaFbqhjhIBgxtjaMqroTvNYdqBJvMe6Y0JwLywyomi6YxkRZMqvWR64J6k7uohtUPMignPwdCHErVcxO9yCtUNYw1QIllJpC5gR3nNFSrIYzIwrr3ZG1G7sBjIZSEtU_gD688e5WbsNeisKgLS6A1_eAGL6PkLIcXNLQ98pDGJNsFnjBa8z4JH31SHoXxuhLqSYVp0QwNv3o4qjaqpKA8zaUd3VZBkpfypxYV-LLBeWMYFH6P6sujwYdQ0oRrNQuq-ym7irXyxrLaajk36EqjjePHH_y_V_7C6GlzQM
CitedBy_id crossref_primary_10_1007_s41365_023_01333_w
Cites_doi 10.1007/s00521-020-05077-1
10.1016/S0005-1098(00)00058-3
10.1109/TNN.2003.809412
10.1016/j.jprocont.2008.04.006
10.1609/aaai.v31i1.10913
10.1002/9780470231616
10.1016/B978-0-12-818778-4.00017-0
10.15388/Informatica.2014.20
10.1109/TAES.2021.3130830
10.20944/preprints202104.0664.v1
10.2514/6.2020-1336
10.1109/72.80202
10.1137/1.9780898718652
10.1109/IC4.2015.7375581
10.1038/323533a0
10.1016/B978-0-08-030565-3.50007-1
10.1007/978-3-319-56393-0
10.1109/MCS.2019.2938121
10.1109/LCSYS.2021.3081361
10.7551/mitpress/7503.003.0024
10.1109/LCSYS.2021.3055454
10.1186/s12911-020-01150-w
10.1007/978-1-4842-2845-6
10.1109/37.387616
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22165935
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f9afd5a8e4344d1cb630b654156265d9
PMC9415480
A746530933
10_3390_s22165935
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Edith Cowan University
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c485t-4d4d289ba9c84a536e953df1d54a1b961cbeaa53800b59c669f5dea1475c03af3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845341500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:58:00 EDT 2025
Tue Nov 04 01:53:33 EST 2025
Thu Sep 04 14:34:59 EDT 2025
Tue Oct 07 07:26:10 EDT 2025
Tue Nov 04 18:17:00 EST 2025
Sat Nov 29 07:15:24 EST 2025
Tue Nov 18 20:45:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-4d4d289ba9c84a536e953df1d54a1b961cbeaa53800b59c669f5dea1475c03af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1707-5485
0000-0002-4040-9973
OpenAccessLink https://doaj.org/article/f9afd5a8e4344d1cb630b654156265d9
PMID 36015696
PQID 2706439559
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f9afd5a8e4344d1cb630b654156265d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415480
proquest_miscellaneous_2707610560
proquest_journals_2706439559
gale_infotracacademiconefile_A746530933
crossref_citationtrail_10_3390_s22165935
crossref_primary_10_3390_s22165935
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hedjar (ref_10) 2007; 19
Plett (ref_6) 2003; 14
ref_14
ref_13
ref_11
Le (ref_17) 2021; 6
Somolinos (ref_31) 2017; 2017
ref_32
ref_30
ref_19
ref_15
Narendra (ref_21) 1990; 1
Narendra (ref_27) 1995; 15
Joshi (ref_18) 2019; 2019
Zaki (ref_16) 2021; 33
ref_25
Deshpande (ref_28) 2009; 19
ref_24
Liu (ref_8) 2022; 58
ref_23
ref_22
Rumelhart (ref_9) 1986; 323
ref_3
ref_2
(ref_12) 2014; 25
ref_26
Sun (ref_20) 2021; 6
Schoukens (ref_29) 2019; 39
ref_5
ref_4
ref_7
Rugh (ref_1) 2000; 36
References_xml – volume: 33
  start-page: 1515
  year: 2021
  ident: ref_16
  article-title: Deep learning controller for nonlinear system based on Lyapunov stability criterion
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05077-1
– ident: ref_30
– ident: ref_26
– volume: 36
  start-page: 1401
  year: 2000
  ident: ref_1
  article-title: A survey of research on gain scheduling
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00058-3
– volume: 14
  start-page: 360
  year: 2003
  ident: ref_6
  article-title: Adaptive inverse control of linear and nonlinear systems using dynamic neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.809412
– volume: 19
  start-page: 187
  year: 2009
  ident: ref_28
  article-title: Intelligent state estimation for fault tolerant nonlinear predictive control
  publication-title: J. Process Control.
  doi: 10.1016/j.jprocont.2008.04.006
– ident: ref_13
  doi: 10.1609/aaai.v31i1.10913
– ident: ref_7
  doi: 10.1002/9780470231616
– ident: ref_32
  doi: 10.1016/B978-0-12-818778-4.00017-0
– volume: 25
  start-page: 401
  year: 2014
  ident: ref_12
  article-title: Adaptive inverse control using an online learning algorithm for neural networks
  publication-title: Informatica
  doi: 10.15388/Informatica.2014.20
– ident: ref_23
– volume: 58
  start-page: 2257
  year: 2022
  ident: ref_8
  article-title: Active disturbance rejection control for delayed electromagnetic docking of spacecraft in elliptical orbits
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3130830
– ident: ref_11
  doi: 10.20944/preprints202104.0664.v1
– volume: 2017
  start-page: 6415876
  year: 2017
  ident: ref_31
  article-title: Integration of sensors in control and automation systems
  publication-title: J. Sens.
– ident: ref_19
  doi: 10.2514/6.2020-1336
– volume: 1
  start-page: 4
  year: 1990
  ident: ref_21
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80202
– ident: ref_5
  doi: 10.1137/1.9780898718652
– ident: ref_15
  doi: 10.1109/IC4.2015.7375581
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_9
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref_3
  doi: 10.1016/B978-0-08-030565-3.50007-1
– ident: ref_2
– ident: ref_4
  doi: 10.1007/978-3-319-56393-0
– volume: 39
  start-page: 28
  year: 2019
  ident: ref_29
  article-title: Non-linear system identification: A user-oriented roadmap
  publication-title: IEEE Control. Syst. Mag.
  doi: 10.1109/MCS.2019.2938121
– volume: 6
  start-page: 476
  year: 2021
  ident: ref_17
  article-title: Real-time modular deep neural network-based adaptive control of nonlinear systems
  publication-title: IEEE Control. Syst. Lett.
  doi: 10.1109/LCSYS.2021.3081361
– ident: ref_24
  doi: 10.7551/mitpress/7503.003.0024
– volume: 6
  start-page: 193
  year: 2021
  ident: ref_20
  article-title: Lyapunov-based real-time and iterative adjustment of deep neural networks
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2021.3055454
– volume: 19
  start-page: 75
  year: 2007
  ident: ref_10
  article-title: Online adaptive control of nonlinear plants using neural networks with application to temperature control system
  publication-title: J. King Saud Univ.—Comput. Inf. Sci.
– ident: ref_25
  doi: 10.1186/s12911-020-01150-w
– ident: ref_22
– volume: 2019
  start-page: 4601
  year: 2019
  ident: ref_18
  article-title: Deep model reference adaptive control
  publication-title: Proc. IEEE Conf. Decis. Control
– ident: ref_14
  doi: 10.1007/978-1-4842-2845-6
– volume: 15
  start-page: 37
  year: 1995
  ident: ref_27
  article-title: Adaptation and learning using multiple models, switching and tuning
  publication-title: IEEE Control. Syst. Mag.
  doi: 10.1109/37.387616
SSID ssj0023338
Score 2.4206617
Snippet An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5935
SubjectTerms adaptive inverse control
Algorithms
autoencoder
Control systems
Controllers
Deep learning
Neural networks
nonlinear plant
Process controls
robust control
sensor control
Signal processing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3ohAQQYhwSVqEj8Sc0HblzitqgJSb5FfKZVQsiRZDvx6Zhxv2gXEhattKbbmPZn5hpA3koNNKQxLReZcyrkzIFKGp0rAhpDMqKoJwybK5bI6P1enMeE2xLLKjU4Mitp1FnPk-0UZjCc4wB9W31OcGoV_V-MIjZtkF5HKgM93D46Xp2dzyMUgApvwhBgE9_tDUeRSqDDb7coKBbD-P1Xy72WS1-zOyb3_vfF9cjd6nHQxscgDcsO3D8mdaziEj8jPI-9XNEKtXlDwY-lZZ9bDSBdOr1AhUsTj6AdPD6fSdto1dDmhbOieHk1j7WmEP39Pp1SFd_STH0dseKfYakIx6Ut1SxfrsUMATef7x-TLyfHnw49pHMqQWl6JMeWOOwjSjFa24low6ZVgrsmd4Do3SubWeA3r4IgaoayUqhHO65yXwmZMN-wJ2Wm71j8l1GqjSy11kXHDRalNA7FNU3Evecas1Al5tyFSbSNiOQ7O-FZD5IL0rGd6JuT1fHQ1wXT87dABUno-gMjaYaHrL-ooqHWjdOOErjxnwLnwGskyg8PSwVGUwqmEvEU-qVH-4TJWxzYGeBIiadWLEhHrME-UkL0NX9RRMQz1FVMk5NW8DSKN_2l067t1OFOCVwu-aELKLRbcuvr2Tnv5NYCDK45BaPbs3x9_Tm4X2McRKhn3yM7Yr_0Lcsv-GC-H_mWUol86SSo8
  priority: 102
  providerName: ProQuest
Title Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder
URI https://www.proquest.com/docview/2706439559
https://www.proquest.com/docview/2707610560
https://pubmed.ncbi.nlm.nih.gov/PMC9415480
https://doaj.org/article/f9afd5a8e4344d1cb630b654156265d9
Volume 22
WOSCitedRecordID wos000845341500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxFMElsogJLhEm8SvmFt3tys4bFUtIJVTZMcOrISSKkn3sAd-OzNOWlpA4sLFB3sU-TFjz-d4viHkteRwpmSWxSJxLubcWTApy2MtoEFIZnVehWQTaj7Pl0u92En1hW_CBnrgYeKOKm0qJ0zuOYMvpaWVLLGYvBoObilcCN1LlN6AqRFqMUBeA48QA1B_1GVZKoUOOd1-nT6BpP_Prfj355E7583ZfXJvdBTpdOjgA3LD1w_J3R36wEfk-tT7FR0ZUr9ScD_pRWPXXU-nzqxwH6NIo9F2np4ML9JpU9H5QI5hWno6ZKOnI2v5OzrcMHhHP_q-xzh1ihEiFO9qqanpdN03yHvpfPuYfD6bfTp5H4-5FOKS56KPueMOsJU1usy5EUx6LZirUie4Sa2WMLHeQD34j1boUkpdCedNypUoE2Yq9oQc1E3tnxJaGmuUkSZLuOVCGVsBJKly7iVPWClNRN5u5rgoR6JxzHfxvQDAgctRbJcjIq-2oquBXeNvQse4UFsBJMQOFaAmxagmxb_UJCJvcJkLNFvoTGnG6AMYEhJgFVOFRHN4vRORw40mFKM9d0WmgusG8CsiL7fNYIn4e8XUvlkHGQXOKLiQEVF7GrTX9f2W-vJb4PTWHLFj8ux_jPU5uZNhkEZ4pnhIDvp27V-Q2-VVf9m1E3JTLVUo8wm5dTybLy4mwXigPP8xg7rFh_PFl5-cziDR
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRLwwB0RGGAQCF6ipbGdxEgIlZVp1baqgk0aT8G3jEqQlCQFjR_Fb-Q4SbsVEG974NW2Ejv5zs32-Q7A04ihTQkV9XlgjM-YUShSivmCYwePqBJJ1hSbiMfj5OhITNbg5yIXxl2rXOjERlGbQrs98s0wbownOsCvZ199VzXKna4uSmi0sNi1J98xZKtejYb4f5-F4fbbg60dv6sq4GuW8NpnhhmMMpQUOmGS08gKTk3WN5zJvhJRXysrsR09KcWFjiKRcWNln8VcB1RmFJ97AdYZgj3owfpktD_5sAzxKEZ8LX8RpSLYrMKwH3HR1JI7tXpNcYA_TcDv1zLP2Lnta__bF7oOVzuPmgxaEbgBaza_CVfO8Czegh9Da2eko5I9Juink3eFmlc1GRg5cwqfOL6RsrJkq726T4qMjFsWEVmS4Ukuv0w16ejdX5J2K8Ya8t7WtUvoJy6VhrhNbSJzMpjXhSMINba8DYfnsvg70MuL3N4FoqWSsYxkGDDFeCxVhrFbljAbsYDqSHrwYgGKVHeM7K4wyOcUIzOHn3SJHw-eLIfOWhqSvw1645C1HOCYw5uGojxOO0WUZkJmhsvEMoqSiauJaKBcMXh0hCNuhAfPHS5Tp99wMlp2aRq4JMcUlg5ix8jn9sE82FjgMO0UX5WegtCDx8tuVFnuHErmtpg3Y2L02tHX9iBegfzK1Fd78umnhvxcMBdkB_f-_fJHcGnnYH8v3RuNd-_D5dDlrDS3NjegV5dz-wAu6m_1tCofdhJM4ON5i8QvD_uINg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAceCMMBRYEgosVx_uwFwmh0FBRFUUVDyk3sy-XSGAH2wGVn8avY8Z2kgYQtx64ele21_7mtTvzDSGPJAebEhsWisi5kHNnQKQMD5WAASGZUWneNptIJpN0OlWHW-TnshYG0yqXOrFV1K60uEc-iJPWeIIDPMj7tIjD8d6L-dcQO0jhSeuynUYHkQN__B3Ct_r5_hj-9eM43nv1fvd12HcYCC1PRRNyxx1EHEYrm3ItmPRKMJcPneB6aJQcWuM1XAevyghlpVS5cF4PeSJsxHTO4L5nyFmkFESlkEzXwR6D2K9jMmJMRYM6jodSqLar3Nr-tW0C_jQGvydonrB4e5f_5291hVzq_Ww66gTjKtnyxTVy8QT74nXyY-z9nPYEs0cUvHf6tjSLuqEjp-doBiiykFS1p7tdQj8tczrpuEV0RcfHhf4ys7QnfX9Guw0a7-g73zRY5k-xwIbiVjfVBR0tmhJpQ52vbpAPp7L4m2S7KAt_i1CrjU601HHEDReJNjlEdHnKveQRs1IH5OkSIJntedqxXcjnDOI1xFK2wlJAHq6mzjtykr9NeokoW01APvH2QlkdZb16ynKlcyd06jkDeYXVSBYZbBEP7rEUTgXkCWI0Q60HL2N1X7wBS0L-sGyUIE8f7o4FZGeJyaxXh3W2BmRAHqyGQZHh6ZQufLlo5yTgy4MHHpBkA_4br745Usw-tZToimPoHd3-98Pvk_MgB9mb_cnBHXIhxkKWNpVzh2w31cLfJefst2ZWV_daUabk42nLwy_9Zo9j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Robust+Adaptive+Inverse+Control+of+Nonlinear+Dynamic+Systems%3A+Improved+Settling+Time+with+an+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alwan%2C+Nuha+A+S&rft.au=Hussain%2C+Zahir+M&rft.date=2022-08-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=16&rft_id=info:doi/10.3390%2Fs22165935&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon