Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering

This paper investigates the ability of least square support vector regression (LSSVR) and adaptive neuro-fuzzy embedded fuzzy c-means clustering (ANFIS-FCM) in forecasting and estimation of monthly streamflows. In the first part of the study, the LSSVR and ANFIS-FCM models were tested in 1-month ahe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management Jg. 29; H. 14; S. 5109 - 5127
1. Verfasser: Kisi, Ozgur
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.11.2015
Springer Nature B.V
Schlagworte:
ISSN:0920-4741, 1573-1650
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper investigates the ability of least square support vector regression (LSSVR) and adaptive neuro-fuzzy embedded fuzzy c-means clustering (ANFIS-FCM) in forecasting and estimation of monthly streamflows. In the first part of the study, the LSSVR and ANFIS-FCM models were tested in 1-month ahead streamflow forecasting by using cross-validation method. Monthly streamflow data belonging to two stations, Besiri Station on Garzan Stream and Baykan Station on Bitlis Stream, in Dicle Basin of Turkey were used. The LSSVR and ANFIS-FCM results were compared with autoregressive moving average (ARMA) models. It was found that the LSSVR models performed better than the ANFIS-FCM and ARMA models in 1-month ahead streamflow forecasting. The ANFIS-FCM models are also found to be better than the ARMA models. The effect of periodicity on forecasting performance of the LSSVR models was also investigated. Adding periodicity component as input to the LSSVR models significantly improved the models’ accuracy in forecasting. In the second part of the study, the accuracy of the LSSVR and ANFIS-FCM models was tested in streamflow estimation using data from nearby stream. Based on the results, the LSSVR was found to be better than the ANFIS-FCM and successfully used in estimating monthly streamflows by using nearby station data.
AbstractList This paper investigates the ability of least square support vector regression (LSSVR) and adaptive neuro-fuzzy embedded fuzzy c-means clustering (ANFIS-FCM) in forecasting and estimation of monthly streamflows. In the first part of the study, the LSSVR and ANFIS-FCM models were tested in 1-month ahead streamflow forecasting by using cross-validation method. Monthly streamflow data belonging to two stations, Besiri Station on Garzan Stream and Baykan Station on Bitlis Stream, in Dicle Basin of Turkey were used. The LSSVR and ANFIS-FCM results were compared with autoregressive moving average (ARMA) models. It was found that the LSSVR models performed better than the ANFIS-FCM and ARMA models in 1-month ahead streamflow forecasting. The ANFIS-FCM models are also found to be better than the ARMA models. The effect of periodicity on forecasting performance of the LSSVR models was also investigated. Adding periodicity component as input to the LSSVR models significantly improved the models’ accuracy in forecasting. In the second part of the study, the accuracy of the LSSVR and ANFIS-FCM models was tested in streamflow estimation using data from nearby stream. Based on the results, the LSSVR was found to be better than the ANFIS-FCM and successfully used in estimating monthly streamflows by using nearby station data.
Author Kisi, Ozgur
Author_xml – sequence: 1
  givenname: Ozgur
  surname: Kisi
  fullname: Kisi, Ozgur
  email: okisi@basari.edu.tr
  organization: Architectural and Engineering Faculty, Civil Engineering Department, Canik Basari University
BookMark eNqNkctu3CAUQFGVSp0k_YDukLrphhQMGFhGo5mm0qiVOk23CNvXkSPbOIAbJf_Qfy6us6gi9bHC4HNsrs4pOhn9CAi9YfSCUareR8aK0hDKJGGMKqJeoA2TihNWSnqCNtQUlAgl2Ct0GuMtpdkydIN-HFMAN7S9v8d7H6B2MXXjDXZjg3f5cXCp8yO-jsvhAfJbfLybXQB8nKfJh4S_QZ18wF_gJkCMC7y4l42bUvcd8CeYgyf7-fHxAe-GCpoGGrxuazKAGyPe9nNMEPIfztHL1vURXj-tZ-h6v_u6vSKHzx8-bi8PpBZaJiKM1rKqlHGyoLUxUoOsy7YVrWxNJQrHNbiKU8W1q1SbR6VlJjRQB7TkwM_Qu_W7U_B3M8Rkhy7W0PduBD9Hy7SUXGojy3-jSpSyMEL_D1qoUgvGREbfPkNv_RzGPHOmmBGl5lxmiq1UHXyMAVo7hVwkPFhG7ZLdrtltzm6X7FZlRz1z6i79ipiC6_q_msVqxmlpAeG3O_1R-gmvXsPy
CitedBy_id crossref_primary_10_1007_s41939_023_00312_3
crossref_primary_10_1016_j_jhydrol_2021_126382
crossref_primary_10_1016_j_rser_2017_07_054
crossref_primary_10_1080_19942060_2018_1448896
crossref_primary_10_3390_atmos9120494
crossref_primary_10_1007_s11269_018_1998_1
crossref_primary_10_3390_w12051371
crossref_primary_10_1007_s41939_024_00430_6
crossref_primary_10_1007_s11269_016_1474_8
crossref_primary_10_1007_s41939_023_00222_4
crossref_primary_10_1007_s00477_019_01734_7
crossref_primary_10_1109_ACCESS_2022_3171850
crossref_primary_10_1007_s00704_022_03982_0
crossref_primary_10_1007_s11269_015_1188_3
crossref_primary_10_1080_15715124_2019_1570934
crossref_primary_10_3390_w11020374
crossref_primary_10_1007_s11269_018_1909_5
crossref_primary_10_1016_j_asr_2020_05_032
crossref_primary_10_1155_2017_2391621
crossref_primary_10_1016_j_pce_2025_104035
crossref_primary_10_1007_s41939_023_00365_4
crossref_primary_10_3390_math10162971
crossref_primary_10_2166_nh_2017_076
crossref_primary_10_3390_atmos9070251
crossref_primary_10_1016_j_jhydrol_2019_124371
crossref_primary_10_1016_j_jhydrol_2019_124293
crossref_primary_10_1109_ACCESS_2021_3068215
crossref_primary_10_1007_s11269_022_03216_y
crossref_primary_10_1007_s11600_022_00749_z
crossref_primary_10_1016_j_compeleceng_2024_109783
crossref_primary_10_3390_w13091236
crossref_primary_10_1007_s11269_021_02990_5
crossref_primary_10_1016_j_compag_2018_07_008
crossref_primary_10_1007_s12145_023_01018_3
crossref_primary_10_1080_02626667_2019_1632460
crossref_primary_10_1175_JHM_D_16_0109_1
crossref_primary_10_3390_en12020329
crossref_primary_10_1007_s00521_018_3519_9
crossref_primary_10_1007_s41939_024_00555_8
crossref_primary_10_1155_2020_7345676
crossref_primary_10_1007_s10661_018_7012_9
crossref_primary_10_1061__ASCE_HE_1943_5584_0002164
crossref_primary_10_1007_s11269_025_04304_5
crossref_primary_10_3390_w15040694
crossref_primary_10_1007_s00704_021_03681_2
crossref_primary_10_1007_s12145_024_01354_y
crossref_primary_10_1016_j_agwat_2016_02_026
crossref_primary_10_1080_02626667_2020_1755436
crossref_primary_10_1088_1742_6596_1529_3_032004
crossref_primary_10_1007_s40899_024_01048_9
crossref_primary_10_1007_s10489_022_04029_7
crossref_primary_10_1007_s00477_018_1560_y
crossref_primary_10_1007_s10706_024_02945_8
crossref_primary_10_1007_s00704_023_04624_9
crossref_primary_10_1080_23080477_2024_2412338
crossref_primary_10_2166_wst_2024_222
crossref_primary_10_1016_j_jhydrol_2019_124435
crossref_primary_10_3390_atmos9030083
crossref_primary_10_1680_jwama_16_00075
crossref_primary_10_3389_fenvs_2022_821079
crossref_primary_10_1016_j_watcyc_2025_07_001
crossref_primary_10_7717_peerj_8882
crossref_primary_10_1080_02626667_2019_1661417
crossref_primary_10_1007_s11356_022_20385_w
crossref_primary_10_1007_s41939_023_00325_y
crossref_primary_10_1016_j_jclepro_2019_119724
crossref_primary_10_1088_1742_6596_1551_1_012009
crossref_primary_10_1016_j_asoc_2022_109623
crossref_primary_10_1016_j_jher_2017_10_005
crossref_primary_10_3390_w13233379
crossref_primary_10_1007_s11269_020_02746_7
Cites_doi 10.1007/s12040-009-0022-9
10.1016/j.fuel.2013.07.072
10.1007/s11269-014-0516-3
10.1029/95WR01955
10.1007/s00271-012-0336-2
10.1016/j.jhydrol.2008.12.006
10.1155/2007/64270
10.1007/s11269-013-0382-4
10.1023/A:1018628609742
10.1109/ICISE.2009.846
10.1142/5089
10.3233/IFS-1994-2306
10.1007/s11269-005-6811-2
10.1016/j.jhydrol.2011.10.039
10.1016/j.jhydrol.2012.06.019
10.1016/j.jhydrol.2007.06.018
10.2166/hydro.2013.134
10.1007/s11269-012-9992-5
10.1007/s00521-014-1553-9
10.1002/hyp.5942
10.1016/j.eswa.2014.09.062
10.1111/j.1752-1688.2002.tb01544.x
10.1007/s11269-011-9926-7
10.1016/j.jhydrol.2010.12.030
10.1007/s11269-012-9982-7
10.1109/TGRS.2008.919819
10.1623/hysj.51.4.599
10.1016/j.fuel.2013.04.036
10.1109/21.256541
10.1002/clen.201000003
10.1016/S1006-1266(08)60037-1
10.1016/j.jhydrol.2010.01.021
10.2166/nh.2011.072
10.1623/hysj.53.3.656
10.1002/hyp.6403
10.1016/j.eswa.2010.05.038
10.1016/j.jngse.2014.12.003
10.1109/ICNC.2008.413
10.1016/j.asoc.2011.10.016
10.2166/hydro.2001.0014
10.1061/(ASCE)1084-0699(2006)11:3(199)
10.1016/j.jhydrol.2013.11.054
10.1623/hysj.54.5.918
10.1016/j.enconman.2009.03.009
10.2478/johh-2013-0015
10.1007/s12205-012-1519-3
10.1016/j.jhydrol.2006.03.015
10.1007/s00521-013-1443-6
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.0
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-015-1107-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global (OCUL)
Science Database
Biological Science Database
Engineering Database (subscription)
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 5127
ExternalDocumentID 3829153121
10_1007_s11269_015_1107_7
Genre Feature
GeographicLocations MED, Turkey
GeographicLocations_xml – name: MED, Turkey
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.0
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c485t-49885bb79a520c9958e5c6ff4f5f9b42a38eab30738ab7f10006e5c8e0ae063e3
IEDL.DBID 7WY
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362422100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Thu Oct 02 05:39:04 EDT 2025
Fri Sep 05 13:45:47 EDT 2025
Tue Oct 07 10:08:21 EDT 2025
Tue Nov 04 21:58:14 EST 2025
Tue Nov 18 21:16:51 EST 2025
Sat Nov 29 02:11:42 EST 2025
Fri Feb 21 02:26:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Least square support vector regression
Streamflow
Forecasting
Estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-49885bb79a520c9958e5c6ff4f5f9b42a38eab30738ab7f10006e5c8e0ae063e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1719468335
PQPubID 54174
PageCount 19
ParticipantIDs proquest_miscellaneous_1855358956
proquest_miscellaneous_1746529486
proquest_miscellaneous_1727684114
proquest_journals_1719468335
crossref_primary_10_1007_s11269_015_1107_7
crossref_citationtrail_10_1007_s11269_015_1107_7
springer_journals_10_1007_s11269_015_1107_7
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References ChiuSFuzzy model identification based on cluster estimationJ Intell Fuzzy Syst199423267278
DengSYehTHApplying least squares support vector machines to the airframe wing-box structural design cost estimationExp Syst Appl201037128417842310.1016/j.eswa.2010.05.038
KisiOLeast squares support vector machine for modeling daily reference evapotranspirationIrrig Sci201331461161910.1007/s00271-012-0336-2
HsuKGuptaHVSorooshianSArtificial neural network modeling of the rainfall-runoff processWater Resour Res199531102517253010.1029/95WR01955
ChenSTYuPSTangYHStatistical downscaling of daily precipitation using support vector statistical downscaling of daily precipitation using support vector machines and multivariate analysisJ Hydrol20103851–4132210.1016/j.jhydrol.2010.01.021
KisiODaily pan evaporation modeling using a neuro-fuzzy computing techniqueJ Hydrol200632963664610.1016/j.jhydrol.2006.03.015
JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice Hall
KaheilYHRoseroEGillMKMc KeeMBasatidasLADownscaling and forecasting of evapotranspiration using a synthetic model of wavelets and support vector machinesIEEE Trans Geosci Remote Sens20084692692270710.1109/TGRS.2008.919819
Tao B, Xu WJ, Pang GB et al (2008) Prediction of bearing raceways superfinishing based on least squares support vector machines. Proceedings of the 4th International Conference on Natural Computation (ICNC) 2, 125–129
Hemmati-SarapardehAShokrollahiATatarAGharagheiziFMohammadiAHNaseriAReservoir oil viscosity determination using a rigorous approachFuel2014116394810.1016/j.fuel.2013.07.072
Huang Z, Luo J, Li X et al (2009) Prediction of effluent parameters of wastewater treatment plant based on improved least square support vector machine with PSO. 1st International Conference on Information Science and Engineering (ICISE), Nanjing, pp 4058–4061, No. 54546060 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5454606
YararAOnucyıldızMCoptyNKModelling level changes in lakes using neuro-fuzzy and artificial neural networksJ Hydrol200936532933410.1016/j.jhydrol.2008.12.006
LiongSSivapragasamCFlood stage forecasting with support vector machinesJ Am Water Resour Assoc200238117318610.1111/j.1752-1688.2002.tb01544.x
Awad M, Jiang X, Motai Y (2007) Incremental support vector machine framework for visual sensor networks. EURASIP J. Adv. Signal Process 2007, Article ID 64270, doi:10.1155/2007/64270
KisiOEvapotranspiration modeling from climate data using a neural computing techniqueHydrol Process20072161925193410.1002/hyp.6403
EsfahaniSBaselizadehSHemmati-SarapardehAOn determination of natural gas density: least square support vector machine modeling approachJ Nat Gas Sci Eng20152234835810.1016/j.jngse.2014.12.003
SharmaSSrivastavaPFangXKalinLPerformance comparison of adoptive neuro fuzzy inference system (ANFIS) with loading simulation program C++ (LSPC) model for streamflow simulation in El Nino southern oscillation (ENSO)-affected watershedExp Syst Appl20154242213222310.1016/j.eswa.2014.09.062
RasouliKHsiehWWCannonAJDaily streamflow forecasting by machine learning methods with weather and climate inputsJ Hydrol2012414–41528429310.1016/j.jhydrol.2011.10.039
HeZWenXLiuHDuJA comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain regionJ Hydrol201450937938610.1016/j.jhydrol.2013.11.054
AwchiTARiver discharges forecasting in northern Iraq using different ANN techniquesWater Resour Manag20142880181410.1007/s11269-014-0516-3
GuoXSunXMaJPrediction of daily crop reference evapotranspiration (ET0) values through a least-squares support vector machine modelHydrol Res201142426827410.2166/nh.2011.072
AyvazaMTKarahanaHAralMMAquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithmJ Hydrol20073433–424025310.1016/j.jhydrol.2007.06.018
KumarMKarINNon-linear HVAC computations using least square support vector machinesEnergy Convers Manag2009501411141810.1016/j.enconman.2009.03.009
MaierHRDandyGNeural networks for prediction and forecasting of water resources variables: a review of modeling issues and applicationsEnviron Model Softw200015101124
KhanMSCoulibalyPApplication of support vector machine in lake water level predictionJ Hydrol Eng200611319920510.1061/(ASCE)1084-0699(2006)11:3(199)
KisiONiaAMGoshehMGTajabadiMRJAhmadiAIntermittent streamflow forecasting by using several data driven techniquesWater Resour Manag201226245747410.1007/s11269-011-9926-7
CimenMEstimation of daily suspended sediments using support vector machinesHydrol Sci J200853365666610.1623/hysj.53.3.656
KamariANikookarMSahranavardLMohammadiAEfficient screening of enhanced oil recovery methods and predictive economic analysisNeural Comput Applic20142581582410.1007/s00521-014-1553-9
KumarARSOjhaCSPGoyalMKSinghRDSwameePKModelling of suspended sediment concentration at Kasol in India using ANN, fuzzy logic and decision tree algorithmsJ Hydrol Eng2011163394404
Suykens JA, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Suykens J, Van Gestel T (2002) Least squares support vector machines. World Sci
KisiOCimenMEvapotranspiration modelling using support vector machinesHydrol Sci J200954591892810.1623/hysj.54.5.918
ChenSHLinYHChangLCChangFJThe strategy of building a flood forecast model by neuro-fuzzy networkHydrol Process2006201525154010.1002/hyp.5942
SivapragasamCMuttilNDischarge rating curve extension: a new approachWater Resour Manag200519550552010.1007/s11269-005-6811-2
RezaeianzadehMTabariHYazdiAAIsikSKalinLFlood flow forecasting using ANN, ANFIS and regression modelsNeural Comput Applic201425253710.1007/s00521-013-1443-6
PahasaJNgamrooIA heuristic training-based least squares support vector machines for power system stabilization by SMESExp Syst Appl201138111398713993
HwangSHHamDHKimJHForecasting performance of LS-SVM for nonlinear hydrological time seriesKSCE J Civ Eng201216587088210.1007/s12205-012-1519-3
HipniAEl-shafieANajahAKarimOAHussainAMukhlisinMDaily forecasting of Dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)Water Resour Manag2013273803382310.1007/s11269-013-0382-4
OkkanUSerbesZAThe combined use of wavelet transform and black box models in reservoir inflow modelingJ Hydrol Hydromechanics2013612112119
WangHHuDComparison of SVM and LS-SVM for regressionNeural Netw Brain2005120792283
WangWXuDChauKChenSImproved annual rainfall-runoff forecasting using PSO–SVM model based on EEMDJ Hydroinformatics201315413771390
VapnikVGolwichSSmolaAJMozerMJordanMPetscheTSupport vector method for function approximation, regression estimation, and signal processingAdvances in Neural Information Processing Systems 91997CambridgeMIT Press281287
LinJ-YChengC-TChauK-WUsing support vector machines for long-term discharge predictionHydrol Sci J200651459961210.1623/hysj.51.4.599
McNamaraJDScaleaFLFatehMAutomatic defect classification in long-range ultrasonic rail inspection using a support vector machine-based ‘smart system’Hydrol Sci J2005466331337
ChenDGaoCSoft computing methods applied to train station parking in urban rail transitAppl Soft Comput20121275976710.1016/j.asoc.2011.10.016
GuvenATaluNEGene-expression programming for estimating suspended sediment in middle euphrates basin, TurkeyCLEAN Soil Air Water201038121159116810.1002/clen.201000003
CobanerMEvapotranspiration estimation by two different neuro-fuzzy inference systemsJ Hydrol201139829230210.1016/j.jhydrol.2010.12.030
ShokrollahiAArablooMGharagheiziFMohammadiAHIntelligent model for prediction of CO2 e reservoir oil minimum miscibility pressureFuel201311237538410.1016/j.fuel.2013.04.036
JangJ-SRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Manag Cybern199323366568510.1109/21.256541
KisiOModeling discharge-sediment relationship using least square support vector machineJ Hydrol2012456–45711012010.1016/j.jhydrol.2012.06.019
SanikhaniHKisiORiver flow estimation and forecasting by using two different adaptive neuro-fuzzy approachesWater Resour Manag2012261715172910.1007/s11269-012-9982-7
Flecher R (1987) Practical methods of optimization. John Wiley & Sons
GuvenALinear genetic programming for time-series modeling of daily flow rateJ Earth Syst Sci2009118213714610.1007/s12040-009-0022-9
Shu-gangCYan-baoLYan-pingWA forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVMJ China Univ Mining Technol2008180172017610.1016/S1006-1266(08)60037-1
SuykensJAKVandewalleJLeast square support vector machine classifiersNeural Process Lett19999329330010.1023/A:1018628609742
MustafaMRRezaurRBSaiediSIsaMHRiver suspended sediment prediction using various multilayer perceptron neural network training - a case study in MalaysiaWater Resour Manag2012261879189710.1007/s11269-012-9992-5
SivapragasamCLiongS-YPashaMFKRainfall and runoff forecasting with SSA–SVM approachJ Hydroinformatics200133141152
A Kamari (1107_CR25) 2014; 25
SH Chen (1107_CR5) 2006; 20
A Guven (1107_CR15) 2010; 38
S Esfahani (1107_CR11) 2015; 22
Z He (1107_CR16) 2014; 509
O Kisi (1107_CR27) 2006; 329
O Kisi (1107_CR31) 2009; 54
C Sivapragasam (1107_CR48) 2005; 19
H Wang (1107_CR54) 2005; 1
J-SR Jang (1107_CR23) 1997
M Cobaner (1107_CR9) 2011; 398
MT Ayvaza (1107_CR3) 2007; 343
1107_CR20
C Sivapragasam (1107_CR49) 2001; 3
M Kumar (1107_CR33) 2009; 50
M Cimen (1107_CR8) 2008; 53
MR Mustafa (1107_CR39) 2012; 26
O Kisi (1107_CR29) 2012; 456–457
J-Y Lin (1107_CR35) 2006; 51
S Deng (1107_CR10) 2010; 37
C Shu-gang (1107_CR47) 2008; 18
A Yarar (1107_CR56) 2009; 365
A Hemmati-Sarapardeh (1107_CR17) 2014; 116
ARS Kumar (1107_CR34) 2011; 16
A Hipni (1107_CR18) 2013; 27
K Hsu (1107_CR19) 1995; 31
V Vapnik (1107_CR53) 1997
X Guo (1107_CR13) 2011; 42
U Okkan (1107_CR40) 2013; 61
TA Awchi (1107_CR2) 2014; 28
H Sanikhani (1107_CR44) 2012; 26
JD McNamara (1107_CR38) 2005; 46
D Chen (1107_CR4) 2012; 12
S Sharma (1107_CR45) 2015; 42
SH Hwang (1107_CR21) 2012; 16
1107_CR1
J Pahasa (1107_CR41) 2011; 38
MS Khan (1107_CR26) 2006; 11
O Kisi (1107_CR32) 2012; 26
M Rezaeianzadeh (1107_CR43) 2014; 25
J-SR Jang (1107_CR22) 1993; 23
A Shokrollahi (1107_CR46) 2013; 112
HR Maier (1107_CR37) 2000; 15
O Kisi (1107_CR28) 2007; 21
S Liong (1107_CR36) 2002; 38
1107_CR51
W Wang (1107_CR55) 2013; 15
1107_CR52
JAK Suykens (1107_CR50) 1999; 9
K Rasouli (1107_CR42) 2012; 414–415
A Guven (1107_CR14) 2009; 118
1107_CR12
ST Chen (1107_CR6) 2010; 385
S Chiu (1107_CR7) 1994; 2
YH Kaheil (1107_CR24) 2008; 46
O Kisi (1107_CR30) 2013; 31
References_xml – reference: DengSYehTHApplying least squares support vector machines to the airframe wing-box structural design cost estimationExp Syst Appl201037128417842310.1016/j.eswa.2010.05.038
– reference: GuvenALinear genetic programming for time-series modeling of daily flow rateJ Earth Syst Sci2009118213714610.1007/s12040-009-0022-9
– reference: AwchiTARiver discharges forecasting in northern Iraq using different ANN techniquesWater Resour Manag20142880181410.1007/s11269-014-0516-3
– reference: CobanerMEvapotranspiration estimation by two different neuro-fuzzy inference systemsJ Hydrol201139829230210.1016/j.jhydrol.2010.12.030
– reference: KisiODaily pan evaporation modeling using a neuro-fuzzy computing techniqueJ Hydrol200632963664610.1016/j.jhydrol.2006.03.015
– reference: Awad M, Jiang X, Motai Y (2007) Incremental support vector machine framework for visual sensor networks. EURASIP J. Adv. Signal Process 2007, Article ID 64270, doi:10.1155/2007/64270
– reference: KisiOCimenMEvapotranspiration modelling using support vector machinesHydrol Sci J200954591892810.1623/hysj.54.5.918
– reference: CimenMEstimation of daily suspended sediments using support vector machinesHydrol Sci J200853365666610.1623/hysj.53.3.656
– reference: ChiuSFuzzy model identification based on cluster estimationJ Intell Fuzzy Syst199423267278
– reference: SharmaSSrivastavaPFangXKalinLPerformance comparison of adoptive neuro fuzzy inference system (ANFIS) with loading simulation program C++ (LSPC) model for streamflow simulation in El Nino southern oscillation (ENSO)-affected watershedExp Syst Appl20154242213222310.1016/j.eswa.2014.09.062
– reference: WangHHuDComparison of SVM and LS-SVM for regressionNeural Netw Brain2005120792283
– reference: HeZWenXLiuHDuJA comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain regionJ Hydrol201450937938610.1016/j.jhydrol.2013.11.054
– reference: KamariANikookarMSahranavardLMohammadiAEfficient screening of enhanced oil recovery methods and predictive economic analysisNeural Comput Applic20142581582410.1007/s00521-014-1553-9
– reference: LiongSSivapragasamCFlood stage forecasting with support vector machinesJ Am Water Resour Assoc200238117318610.1111/j.1752-1688.2002.tb01544.x
– reference: RezaeianzadehMTabariHYazdiAAIsikSKalinLFlood flow forecasting using ANN, ANFIS and regression modelsNeural Comput Applic201425253710.1007/s00521-013-1443-6
– reference: KumarMKarINNon-linear HVAC computations using least square support vector machinesEnergy Convers Manag2009501411141810.1016/j.enconman.2009.03.009
– reference: GuoXSunXMaJPrediction of daily crop reference evapotranspiration (ET0) values through a least-squares support vector machine modelHydrol Res201142426827410.2166/nh.2011.072
– reference: JangJ-SRANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Manag Cybern199323366568510.1109/21.256541
– reference: MaierHRDandyGNeural networks for prediction and forecasting of water resources variables: a review of modeling issues and applicationsEnviron Model Softw200015101124
– reference: SivapragasamCLiongS-YPashaMFKRainfall and runoff forecasting with SSA–SVM approachJ Hydroinformatics200133141152
– reference: YararAOnucyıldızMCoptyNKModelling level changes in lakes using neuro-fuzzy and artificial neural networksJ Hydrol200936532933410.1016/j.jhydrol.2008.12.006
– reference: SuykensJAKVandewalleJLeast square support vector machine classifiersNeural Process Lett19999329330010.1023/A:1018628609742
– reference: MustafaMRRezaurRBSaiediSIsaMHRiver suspended sediment prediction using various multilayer perceptron neural network training - a case study in MalaysiaWater Resour Manag2012261879189710.1007/s11269-012-9992-5
– reference: Flecher R (1987) Practical methods of optimization. John Wiley & Sons
– reference: KisiOEvapotranspiration modeling from climate data using a neural computing techniqueHydrol Process20072161925193410.1002/hyp.6403
– reference: SivapragasamCMuttilNDischarge rating curve extension: a new approachWater Resour Manag200519550552010.1007/s11269-005-6811-2
– reference: HipniAEl-shafieANajahAKarimOAHussainAMukhlisinMDaily forecasting of Dam water levels: comparing a support vector machine (SVM) model with adaptive neuro fuzzy inference system (ANFIS)Water Resour Manag2013273803382310.1007/s11269-013-0382-4
– reference: LinJ-YChengC-TChauK-WUsing support vector machines for long-term discharge predictionHydrol Sci J200651459961210.1623/hysj.51.4.599
– reference: HsuKGuptaHVSorooshianSArtificial neural network modeling of the rainfall-runoff processWater Resour Res199531102517253010.1029/95WR01955
– reference: Shu-gangCYan-baoLYan-pingWA forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVMJ China Univ Mining Technol2008180172017610.1016/S1006-1266(08)60037-1
– reference: Suykens JA, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Suykens J, Van Gestel T (2002) Least squares support vector machines. World Sci
– reference: VapnikVGolwichSSmolaAJMozerMJordanMPetscheTSupport vector method for function approximation, regression estimation, and signal processingAdvances in Neural Information Processing Systems 91997CambridgeMIT Press281287
– reference: WangWXuDChauKChenSImproved annual rainfall-runoff forecasting using PSO–SVM model based on EEMDJ Hydroinformatics201315413771390
– reference: ChenSHLinYHChangLCChangFJThe strategy of building a flood forecast model by neuro-fuzzy networkHydrol Process2006201525154010.1002/hyp.5942
– reference: KisiONiaAMGoshehMGTajabadiMRJAhmadiAIntermittent streamflow forecasting by using several data driven techniquesWater Resour Manag201226245747410.1007/s11269-011-9926-7
– reference: GuvenATaluNEGene-expression programming for estimating suspended sediment in middle euphrates basin, TurkeyCLEAN Soil Air Water201038121159116810.1002/clen.201000003
– reference: OkkanUSerbesZAThe combined use of wavelet transform and black box models in reservoir inflow modelingJ Hydrol Hydromechanics2013612112119
– reference: ShokrollahiAArablooMGharagheiziFMohammadiAHIntelligent model for prediction of CO2 e reservoir oil minimum miscibility pressureFuel201311237538410.1016/j.fuel.2013.04.036
– reference: KaheilYHRoseroEGillMKMc KeeMBasatidasLADownscaling and forecasting of evapotranspiration using a synthetic model of wavelets and support vector machinesIEEE Trans Geosci Remote Sens20084692692270710.1109/TGRS.2008.919819
– reference: PahasaJNgamrooIA heuristic training-based least squares support vector machines for power system stabilization by SMESExp Syst Appl201138111398713993
– reference: ChenSTYuPSTangYHStatistical downscaling of daily precipitation using support vector statistical downscaling of daily precipitation using support vector machines and multivariate analysisJ Hydrol20103851–4132210.1016/j.jhydrol.2010.01.021
– reference: KisiOLeast squares support vector machine for modeling daily reference evapotranspirationIrrig Sci201331461161910.1007/s00271-012-0336-2
– reference: Huang Z, Luo J, Li X et al (2009) Prediction of effluent parameters of wastewater treatment plant based on improved least square support vector machine with PSO. 1st International Conference on Information Science and Engineering (ICISE), Nanjing, pp 4058–4061, No. 54546060 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5454606
– reference: JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice Hall
– reference: EsfahaniSBaselizadehSHemmati-SarapardehAOn determination of natural gas density: least square support vector machine modeling approachJ Nat Gas Sci Eng20152234835810.1016/j.jngse.2014.12.003
– reference: SanikhaniHKisiORiver flow estimation and forecasting by using two different adaptive neuro-fuzzy approachesWater Resour Manag2012261715172910.1007/s11269-012-9982-7
– reference: AyvazaMTKarahanaHAralMMAquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithmJ Hydrol20073433–424025310.1016/j.jhydrol.2007.06.018
– reference: Hemmati-SarapardehAShokrollahiATatarAGharagheiziFMohammadiAHNaseriAReservoir oil viscosity determination using a rigorous approachFuel2014116394810.1016/j.fuel.2013.07.072
– reference: KisiOModeling discharge-sediment relationship using least square support vector machineJ Hydrol2012456–45711012010.1016/j.jhydrol.2012.06.019
– reference: KumarARSOjhaCSPGoyalMKSinghRDSwameePKModelling of suspended sediment concentration at Kasol in India using ANN, fuzzy logic and decision tree algorithmsJ Hydrol Eng2011163394404
– reference: Tao B, Xu WJ, Pang GB et al (2008) Prediction of bearing raceways superfinishing based on least squares support vector machines. Proceedings of the 4th International Conference on Natural Computation (ICNC) 2, 125–129
– reference: ChenDGaoCSoft computing methods applied to train station parking in urban rail transitAppl Soft Comput20121275976710.1016/j.asoc.2011.10.016
– reference: RasouliKHsiehWWCannonAJDaily streamflow forecasting by machine learning methods with weather and climate inputsJ Hydrol2012414–41528429310.1016/j.jhydrol.2011.10.039
– reference: HwangSHHamDHKimJHForecasting performance of LS-SVM for nonlinear hydrological time seriesKSCE J Civ Eng201216587088210.1007/s12205-012-1519-3
– reference: KhanMSCoulibalyPApplication of support vector machine in lake water level predictionJ Hydrol Eng200611319920510.1061/(ASCE)1084-0699(2006)11:3(199)
– reference: McNamaraJDScaleaFLFatehMAutomatic defect classification in long-range ultrasonic rail inspection using a support vector machine-based ‘smart system’Hydrol Sci J2005466331337
– volume: 118
  start-page: 137
  issue: 2
  year: 2009
  ident: 1107_CR14
  publication-title: J Earth Syst Sci
  doi: 10.1007/s12040-009-0022-9
– volume: 116
  start-page: 39
  year: 2014
  ident: 1107_CR17
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.07.072
– volume: 28
  start-page: 801
  year: 2014
  ident: 1107_CR2
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0516-3
– volume: 38
  start-page: 13987
  issue: 11
  year: 2011
  ident: 1107_CR41
  publication-title: Exp Syst Appl
– volume: 31
  start-page: 2517
  issue: 10
  year: 1995
  ident: 1107_CR19
  publication-title: Water Resour Res
  doi: 10.1029/95WR01955
– volume: 31
  start-page: 611
  issue: 4
  year: 2013
  ident: 1107_CR30
  publication-title: Irrig Sci
  doi: 10.1007/s00271-012-0336-2
– volume: 365
  start-page: 329
  year: 2009
  ident: 1107_CR56
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2008.12.006
– ident: 1107_CR1
  doi: 10.1155/2007/64270
– volume: 27
  start-page: 3803
  year: 2013
  ident: 1107_CR18
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-013-0382-4
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 1107_CR50
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– ident: 1107_CR20
  doi: 10.1109/ICISE.2009.846
– ident: 1107_CR51
  doi: 10.1142/5089
– volume: 2
  start-page: 267
  issue: 3
  year: 1994
  ident: 1107_CR7
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-1994-2306
– volume: 19
  start-page: 505
  issue: 5
  year: 2005
  ident: 1107_CR48
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-005-6811-2
– volume: 46
  start-page: 331
  issue: 6
  year: 2005
  ident: 1107_CR38
  publication-title: Hydrol Sci J
– volume: 414–415
  start-page: 284
  year: 2012
  ident: 1107_CR42
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.10.039
– volume: 456–457
  start-page: 110
  year: 2012
  ident: 1107_CR29
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.06.019
– volume-title: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence
  year: 1997
  ident: 1107_CR23
– volume: 343
  start-page: 240
  issue: 3–4
  year: 2007
  ident: 1107_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.06.018
– volume: 15
  start-page: 1377
  issue: 4
  year: 2013
  ident: 1107_CR55
  publication-title: J Hydroinformatics
  doi: 10.2166/hydro.2013.134
– volume: 26
  start-page: 1879
  year: 2012
  ident: 1107_CR39
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-012-9992-5
– volume: 25
  start-page: 815
  year: 2014
  ident: 1107_CR25
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-014-1553-9
– volume: 20
  start-page: 1525
  year: 2006
  ident: 1107_CR5
  publication-title: Hydrol Process
  doi: 10.1002/hyp.5942
– volume: 42
  start-page: 2213
  issue: 4
  year: 2015
  ident: 1107_CR45
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2014.09.062
– volume: 38
  start-page: 173
  issue: 1
  year: 2002
  ident: 1107_CR36
  publication-title: J Am Water Resour Assoc
  doi: 10.1111/j.1752-1688.2002.tb01544.x
– volume: 26
  start-page: 457
  issue: 2
  year: 2012
  ident: 1107_CR32
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-011-9926-7
– volume: 398
  start-page: 292
  year: 2011
  ident: 1107_CR9
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.12.030
– volume: 26
  start-page: 1715
  year: 2012
  ident: 1107_CR44
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-012-9982-7
– volume: 46
  start-page: 2692
  issue: 9
  year: 2008
  ident: 1107_CR24
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2008.919819
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  ident: 1107_CR35
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.4.599
– ident: 1107_CR12
– volume: 112
  start-page: 375
  year: 2013
  ident: 1107_CR46
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.04.036
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 1107_CR22
  publication-title: IEEE Trans Syst Manag Cybern
  doi: 10.1109/21.256541
– volume: 38
  start-page: 1159
  issue: 12
  year: 2010
  ident: 1107_CR15
  publication-title: CLEAN Soil Air Water
  doi: 10.1002/clen.201000003
– volume: 15
  start-page: 1
  issue: 10
  year: 2000
  ident: 1107_CR37
  publication-title: Environ Model Softw
– volume: 18
  start-page: 0172
  year: 2008
  ident: 1107_CR47
  publication-title: J China Univ Mining Technol
  doi: 10.1016/S1006-1266(08)60037-1
– volume: 385
  start-page: 13
  issue: 1–4
  year: 2010
  ident: 1107_CR6
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.01.021
– volume: 42
  start-page: 268
  issue: 4
  year: 2011
  ident: 1107_CR13
  publication-title: Hydrol Res
  doi: 10.2166/nh.2011.072
– volume: 16
  start-page: 394
  issue: 3
  year: 2011
  ident: 1107_CR34
  publication-title: J Hydrol Eng
– volume: 53
  start-page: 656
  issue: 3
  year: 2008
  ident: 1107_CR8
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.53.3.656
– volume: 21
  start-page: 1925
  issue: 6
  year: 2007
  ident: 1107_CR28
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6403
– volume: 37
  start-page: 8417
  issue: 12
  year: 2010
  ident: 1107_CR10
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2010.05.038
– volume: 22
  start-page: 348
  year: 2015
  ident: 1107_CR11
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2014.12.003
– ident: 1107_CR52
  doi: 10.1109/ICNC.2008.413
– volume: 12
  start-page: 759
  year: 2012
  ident: 1107_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.10.016
– volume: 3
  start-page: 141
  issue: 3
  year: 2001
  ident: 1107_CR49
  publication-title: J Hydroinformatics
  doi: 10.2166/hydro.2001.0014
– volume: 11
  start-page: 199
  issue: 3
  year: 2006
  ident: 1107_CR26
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2006)11:3(199)
– volume: 509
  start-page: 379
  year: 2014
  ident: 1107_CR16
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.11.054
– volume: 54
  start-page: 918
  issue: 5
  year: 2009
  ident: 1107_CR31
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.54.5.918
– start-page: 281
  volume-title: Advances in Neural Information Processing Systems 9
  year: 1997
  ident: 1107_CR53
– volume: 50
  start-page: 1411
  year: 2009
  ident: 1107_CR33
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.03.009
– volume: 61
  start-page: 112
  issue: 2
  year: 2013
  ident: 1107_CR40
  publication-title: J Hydrol Hydromechanics
  doi: 10.2478/johh-2013-0015
– volume: 1
  start-page: 2079
  year: 2005
  ident: 1107_CR54
  publication-title: Neural Netw Brain
– volume: 16
  start-page: 870
  issue: 5
  year: 2012
  ident: 1107_CR21
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-012-1519-3
– volume: 329
  start-page: 636
  year: 2006
  ident: 1107_CR27
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.03.015
– volume: 25
  start-page: 25
  year: 2014
  ident: 1107_CR43
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-013-1443-6
SSID ssj0010090
Score 2.4108918
Snippet This paper investigates the ability of least square support vector regression (LSSVR) and adaptive neuro-fuzzy embedded fuzzy c-means clustering (ANFIS-FCM) in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5109
SubjectTerms Accuracy
Atmospheric Sciences
basins
Civil Engineering
Creeks & streams
Dams
Earth and Environmental Science
Earth Sciences
Enhanced oil recovery
Environment
Estimating techniques
Forecasting
Fuzzy
Fuzzy logic
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Hydrology/Water Resources
Least squares method
Mathematical models
periodicity
Precipitation
Rain
Rivers
Stations
Stream discharge
Stream flow
Streamflow forecasting
Streams
Studies
Water resources
Water resources management
Water runoff
SummonAdditionalLinks – databaseName: Springer
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcASFAxzKs2JLQUbiBLKUlxP7WFW74oAqRKHqLbKdMULazZbuLoj-Q_-5M06yWxCsBLdEGScTezwPzwvgNWr0zqVGeuJ9knaily6UTvoyCSUJkMZoF5tNVMfH-uzMfOjzuBdDtPvgkoycepPslmYlx_YoyTaLrG7DHcXFZthEPzlduw5IaYgHK4bsooLk5eDK_NMrfhVGGw3zN6dolDWTB_-F5UPY7VVLcdjRwiO4he1juH-j4OATuGIntJ2F6fyH4Kac3i447FnYthFjuuzyGEWMIxDvua2POPlGRISCu3-Spi5O4ym_-IhfugDaNo49bOw5800Ra33Iyery8qcYzxwSW2tEd-vlDEkuiqPpiosz0BeewufJ-NPRO9k3ZJC-0GopC6O1cq4yVmWJN0ZpVL4MoQgqGFdkNtdoHXMNbV0V2HVQEoTGxCKpQpjvwU47b_EZCK8w8b4KmiyugrQgrXPXpHlVNME3KuAIkmFlat9XK-emGdN6U2eZZ7qmma55putqBG_WQ867Uh3bgA-G5a77Xbuo0yolZDgNbQSv1o9pv7ETxbY4XzFMxr5LMiO3wdAvZabQ5RYYrVSuNJmnI3g7kNINVP6G-P4_QT-He1lHi0SSB7CzvFjhC7jrvy-_Li5exo1zDedDFHg
  priority: 102
  providerName: Springer Nature
Title Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering
URI https://link.springer.com/article/10.1007/s11269-015-1107-7
https://www.proquest.com/docview/1719468335
https://www.proquest.com/docview/1727684114
https://www.proquest.com/docview/1746529486
https://www.proquest.com/docview/1855358956
Volume 29
WOSCitedRecordID wos000362422100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 7WY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M0C
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M7P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: PCBAR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: PATMY
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: M2P
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48EYUlpWROIEs0jSO7RNaqlYcoKpaWJZTZDs2QmrT7rYFsf-B_8yMk7QLEr1wsRJlojia8Tw84_kAXnjlnbVdzR3qPo4r0XEbcstdnoQcDUiplY1gE3I0UmdnetxsuK2asspWJ0ZFXS4c7ZG_7koMt3M6IvRmec4JNYqyqw2ExnU4REMtCMFAfv6yzSKg_xD3WDSGSBmazjarGY_OddOcKoUEpwiIyz_t0s7Z_Cs_Gs3O8M7_Tvgu3G4cTnZSS8g9uOar-3DrShvCB_CLUtNmHmaLH4ygOp1ZUTE0M1XJBnhZn25ksbqAvSewHzY9R9HyjDBB0X9np3Hvn03817qstorvnpRmSdqUxQ4gfLi5vPzJBnPrUdmVrL51fO7RWrL-bEMtG_ALD-HTcPCx_443MA3cZUqseaaVEtZKbUSaOK2F8sLlIWRBBG2z1PSUN5Z0iTJWBkoo5EihfGI8Oki-9wgOqkXlHwNzwifOyaAwDsvQN1KqZ8tuT2ZlcKUIvgNJy6TCNT3MCUpjVuy6LxNfC-RrQXwtZAdebl9Z1g089hEftbwsmrW8KnaM7MDz7WNchZRaMZVfbIgmpYwmBpf7aPCXUp2pfA-NEqInFAatHXjVSt6Vqfxr4k_2T_wp3ExrUUeJP4KD9cXGP4Mb7vv62-riOC6aYzh8OxiNJ3j3IenTmI5plPU4xXEyPf0NErwlxA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fb9MwED-NgQQ88B9RGGAkeAFZpEmc2A8ITaPVppVqgoH2ltmOPU1q025tmbbvwFfhM3LnNO1Aom974C1RLonj_O6f73wH8NpJZ41pK25R9nHkRMuNzwy3WeQzVCClkiY0m8j7fXlwoPbW4FezF4bSKhuZGAR1ObK0Rv6-naO7ndEWoY_jE05doyi62rTQqGGx687P0GWbfNj5hP_3TRx3O_tb23zeVYDbVIopT5WUwphcaRFHVikhnbCZ96kXXpk01ol02hD0pTa5p_XvDCmki7RDfe4SfO41uI5mRByFVMG9RdQC7ZWwpqPQJUtRVTdR1LBVrx1nlJkkOHlcPP9TDy6N27_isUHNde_-bxN0D-7MDWq2WXPAfVhz1QO4fanM4kP4SaF3PfSD0RmjVqRWTyjZm-mqZB08rHdvspA9wXrUzIh9PUHWcYx6nqJ_wr6H2Ab74o7qtOEq3LtZ6jFpCxYqnPDu7OLinHWGxqEwL1l9avnQoTXAtgYzKkmBb3gE365kPh7DejWq3BNgVrjI2txL9DNTtP2kTEzZTvK09LYU3rUgakBR2HmNdmoVMiiW1aUJRwXiqCAcFXkL3i5uGdcFSlYRbzTYKeayalIsgdOCV4vLKGUodKQrN5oRTUwRW3SeV9HgJ8UqldkKGilEIiQ65S141yD90lD-NfCnqwf-Em5u73_uFb2d_u4zuBXXbIbctgHr09OZew437I_p8eT0RWBYBodXzQC_Afhie_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYNFFgkuIBWdWyvvXtAqLSJqFpFUXmoN3d3vYsqJU7aJFTtf-AP8euY8SMpSOTWA7dEGSdr55vHtzM7A_DaSWeN6Shu0fZx1ETLjU8Mt0ngE3QguZKmHDaR9vvy6EgN1uBXcxaGyiobm1ga6nxsaY98q5Mi3U7oiNCWr8siBru9D5NTThOkKNPajNOoILLvLs6Rvk3f7-3if_0mDHvdLzufeD1hgNtYihmPlZTCmFRpEQZWKSGdsIn3sRdemTjUkXTakBpIbVJPe-EJSkgXaIe-3UX4vTdgPY2Q9LRg_WO3Pzhc5DAweil3eBQStBgdd5NTLQ_udcKE6pQEJ_7F0z-94jLU_Ss7Wzq93r3_-XHdh7t1qM22K914AGuueAh3rjRgfAQ_KSmvR344Pmc0pNTqKZWBM13krIsvq3OdrKyrYAc05oh9PkWlcoymoSJzYd_KrAc7dN-rguKivHY71xPyI6zsfcJ788vLC9YdGYdmPmfVW8tHDuMEtjOcU7MK_IXH8PVanscTaBXjwm0As8IF1qZeIgONMSqUMjJ5J0rj3NtceNeGoAFIZuvu7TREZJgt-04TpjLEVEaYytI2vF1cMqlal6wS3mxwlNVWbJotQdSGV4uP0f5QUkkXbjwnmZByuUirV8ngLYUqlskKGSlEJCTS9Ta8a1B_ZSn_WvjT1Qt_CbcQ99nBXn__GdwOK41DxduE1uxs7p7DTftjdjI9e1FrL4Pj69aA3-MWhhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streamflow+Forecasting+and+Estimation+Using+Least+Square+Support+Vector+Regression+and+Adaptive+Neuro-Fuzzy+Embedded+Fuzzy+c-means+Clustering&rft.jtitle=Water+resources+management&rft.au=Kisi%2C+Ozgur&rft.date=2015-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=29&rft.issue=14&rft.spage=5109&rft_id=info:doi/10.1007%2Fs11269-015-1107-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3829153121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon