Using machine learning model explanations to identify proteins related to severity of meibomian gland dysfunction

Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the un...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 13; číslo 1; s. 22946 - 13
Hlavní autori: Storås, Andrea M., Fineide, Fredrik, Magnø, Morten, Thiede, Bernd, Chen, Xiangjun, Strümke, Inga, Halvorsen, Pål, Galtung, Hilde, Jensen, Janicke L., Utheim, Tor P., Riegler, Michael A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 22.12.2023
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.
AbstractList Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.
Abstract Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.
Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.
ArticleNumber 22946
Author Jensen, Janicke L.
Thiede, Bernd
Strümke, Inga
Storås, Andrea M.
Chen, Xiangjun
Magnø, Morten
Utheim, Tor P.
Riegler, Michael A.
Fineide, Fredrik
Halvorsen, Pål
Galtung, Hilde
Author_xml – sequence: 1
  givenname: Andrea M.
  surname: Storås
  fullname: Storås, Andrea M.
  email: andrea@simula.no
  organization: Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Department of Computer Science, OsloMet - Oslo Metropolitan University
– sequence: 2
  givenname: Fredrik
  surname: Fineide
  fullname: Fineide, Fredrik
  organization: Department of Computer Science, OsloMet - Oslo Metropolitan University, The Norwegian Dry Eye Clinic
– sequence: 3
  givenname: Morten
  surname: Magnø
  fullname: Magnø, Morten
  organization: Department of Ophthalmology, Sørlandet Hospital Arendal, Department of Plastic and Reconstructive Surgery, Oslo University Hospital
– sequence: 4
  givenname: Bernd
  surname: Thiede
  fullname: Thiede, Bernd
  organization: Department of Biosciences, University of Oslo
– sequence: 5
  givenname: Xiangjun
  surname: Chen
  fullname: Chen, Xiangjun
  organization: Department of Ophthalmology, Sørlandet Hospital Arendal, Department of Medical Biochemistry, Oslo University Hospital, Department of Ophthalmology, Vestre Viken Hospital Trust
– sequence: 6
  givenname: Inga
  surname: Strümke
  fullname: Strümke, Inga
  organization: Department of Computer Science, Norwegian University of Science and Technology
– sequence: 7
  givenname: Pål
  surname: Halvorsen
  fullname: Halvorsen, Pål
  organization: Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Department of Computer Science, OsloMet - Oslo Metropolitan University
– sequence: 8
  givenname: Hilde
  surname: Galtung
  fullname: Galtung, Hilde
  organization: Institute of Oral Biology, University of Oslo
– sequence: 9
  givenname: Janicke L.
  surname: Jensen
  fullname: Jensen, Janicke L.
  organization: Department of Oral Surgery and Oral Medicine, University of Oslo
– sequence: 10
  givenname: Tor P.
  surname: Utheim
  fullname: Utheim, Tor P.
  organization: Department of Computer Science, OsloMet - Oslo Metropolitan University, The Norwegian Dry Eye Clinic, Department of Ophthalmology, Sørlandet Hospital Arendal, Department of Medical Biochemistry, Oslo University Hospital, Department of Ophthalmology, Oslo University Hospital
– sequence: 11
  givenname: Michael A.
  surname: Riegler
  fullname: Riegler, Michael A.
  organization: Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Department of Computer Science, OsloMet - Oslo Metropolitan University, Department of Computer Science, UiT The Arctic University of Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38135766$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MKQuHEzyscwwyxNo7ZJEzd2TRi4PHmZgVfgGd-_L_OmraaLsoFczjncwz1v0UmIARB6T8lnSrj8klsqBtkQxhtBeMua_hU6Y6QVDeOMnfx3PkUXOW9JXYINLR3eoFMuKRd9152hu9vswwbP2vz2AfAEOoVjIVqYMPzdTTro4mPIuETsLYTi3QHvUizgazHBpAvY5TLDH0i-HHB0eAY_xtnrgDdVwGJ7yG4fzCL0Dr12espw8bCfo9vv335dXjU3P39cX369aUwrRWk47Znllo7EOrCLDy6s7traue063pHRkpbzftSDldA6BoZJ7oijRkL9GX6OrlddG_VW7ZKfdTqoqL06FmLaKJ2KNxMo6pgZO0F1J2Q7SDYIajUd7Th21AjSV61Pq1b1fbeHXNTss4GpeoO4z4oNRAhGJOMV-vEZdBv3KVSnC6qVfCB0EfzwgNqPM9in9h4HUwFsBZgUc07gniCUqCUAag2AqgFQxwCoRVU-IxlfjtMrSfvpZSpfqbm-EzaQ_rX9AuserNvETw
CitedBy_id crossref_primary_10_1016_j_ajo_2025_05_040
crossref_primary_10_4103_joco_joco_172_24
crossref_primary_10_1371_journal_pone_0300125
crossref_primary_10_62347_CZYA6232
Cites_doi 10.1136/bjophthalmol-2015-307415
10.1136/bjophthalmol-2018-313173
10.1038/srep29629
10.1136/bjo.68.5.321
10.1167/iovs.13-11863
10.1002/pmic.201400239
10.1167/iovs.10-6997a
10.1111/ceo.13569
10.1038/s41419-023-05821-0
10.1016/j.jtos.2021.05.006
10.1016/j.jtos.2017.05.008
10.1006/clin.1996.0050
10.1371/journal.pone.0200702
10.1186/ar3523
10.1159/000487487
10.1016/j.nmd.2005.07.008
10.1183/09031936.01.00228801
10.1016/j.jtos.2022.03.001
10.1016/j.jare.2020.11.001
10.1016/j.jtos.2017.05.003
10.3390/ijms22168997
10.3389/fmed.2022.873483
10.1371/journal.pone.0126561
10.1016/j.jprot.2012.04.053
10.3390/ijms23073714
10.1186/s13075-017-1228-x
10.3390/biom11111651
10.1167/iovs.04-0448
10.1167/iovs.10-6598
10.1167/iovs.10-6482
10.1097/ICO.0b013e3181f7f363
10.1016/j.aanat.2012.10.001
10.3390/ijms18081764
10.1016/S1542-0124(12)70083-6
10.1167/iovs.11-9022
10.1186/s12014-019-9233-5
10.1136/bjo.2010.185256
10.1167/iovs.17-23402
10.1214/12-EJS710
10.1016/S0014-5793(98)00374-3
10.1016/j.clae.2011.08.003
10.3389/fphar.2021.717730
10.1016/j.jtos.2021.11.004
10.1016/j.jtos.2017.03.006
10.1016/j.exer.2005.04.019
10.1038/nrrheum.2012.53
10.1002/pmic.201200230
10.1016/j.exer.2017.09.005
10.3390/ijms23094918
10.1038/s41598-022-25821-y
10.1016/j.exer.2005.11.009
10.1186/s13075-019-1961-4
10.48550/ARXIV.1802.03888
10.48550/arXiv.2012.07532
10.48550/arXiv.1905.04610
10.1515/9781400881970-018
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-023-50342-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_1f2cb651a6584982951da1bdbb61c507
38135766
10_1038_s41598_023_50342_7
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-3172d3d1b0dfed232235da64813d66360bd04337ba9d8e4f2ec283f0f1c8e5983
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129675600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:45:29 EDT 2025
Fri Sep 05 11:41:16 EDT 2025
Tue Oct 07 07:57:33 EDT 2025
Wed Feb 19 02:10:28 EST 2025
Sat Nov 29 01:56:44 EST 2025
Tue Nov 18 21:03:34 EST 2025
Fri Feb 21 02:37:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-3172d3d1b0dfed232235da64813d66360bd04337ba9d8e4f2ec283f0f1c8e5983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/1f2cb651a6584982951da1bdbb61c507
PMID 38135766
PQID 2904839017
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_1f2cb651a6584982951da1bdbb61c507
proquest_miscellaneous_2905520823
proquest_journals_2904839017
pubmed_primary_38135766
crossref_primary_10_1038_s41598_023_50342_7
crossref_citationtrail_10_1038_s41598_023_50342_7
springer_journals_10_1038_s41598_023_50342_7
PublicationCentury 2000
PublicationDate 2023-12-22
PublicationDateYYYYMMDD 2023-12-22
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Bron (CR14) 2007; 5
Sullivan (CR56) 2018; 59
Mackie, Seal (CR31) 1984; 68
Aqrawi (CR12) 2019
Fineide (CR60) 2021
Pult, Riede-Pult (CR15) 2012; 35
Wang (CR44) 2021
Storås (CR10) 2022; 23
Zhou (CR7) 2012; 75
Nichols (CR1) 2011; 52
Dogru, Kojima, Simsek, Tsubota (CR52) 2018; 59
Deng (CR38) 2015; 10
Huettner, Sunder (CR20) 2012; 6
Baudouin (CR49) 2016; 100
Liu (CR30) 2021; 29
Allali-Hassani, Peralba, Martras, Farrés, Parés (CR48) 1998; 426
Nezzar (CR37) 2017; 165
La, Brock (CR45) 2001; 18
Robinson, Yamamoto, Peck, Humphreys-Beher (CR53) 1996; 79
Zhou (CR24) 2013; 13
Craig (CR64) 2017; 15
Ke, Guyon (CR17) 2017
Willcox (CR65) 2017; 15
CR47
Perumal, Funke, Wolters, Pfeiffer, Grus (CR43) 2014; 55
Pult, Riede-Pult (CR16) 2012; 53
Fineide (CR11) 2022; 12
Nebbioso (CR27) 2017; 18
Amorim (CR28) 2022
Blázquez (CR42) 2005; 15
Perumal, Funke, Pfeiffer, Grus (CR6) 2016; 6
Srinivasan, Thangavelu, Zhang, Green, Nichols (CR23) 2012; 53
Čejková (CR39) 2008; 23
Garreis (CR34) 2011; 52
Tong, Zhou, Beuerman, Zhao, Li (CR5) 2011; 95
Yu, Asche, Fairchild (CR4) 2011; 30
Kishimoto, Ishida, Nakajima, Fukuda, Yamashiro (CR50) 2022
CR19
CR18
Perumal, Funke, Wolters, Pfeiffer, Grus (CR25) 2015; 15
Pedregosa (CR22) 2011; 12
CR59
CR58
Grus (CR61) 2005; 46
Hynne (CR13) 2022
Posa (CR62) 2013; 195
Green-Church, Nichols, Kleinholz, Zhang, Nichols (CR63) 2008; 14
Liu (CR35) 2011; 52
Stapleton (CR2) 2017; 15
Baldini (CR36) 2011; 13
Baris, Fraile-Bethencourt, Eubanks, Khou, Anand (CR41) 2023; 14
Ramos-Casals, Brito-Zeron, Siso-Almirall, Bosch, Tzioufas (CR55) 2012; 8
Ding, Kam, Dieckow, Sullivan (CR33) 2013; 54
Wu (CR40) 2006; 83
Nättinen (CR46) 2019
da Costa (CR54) 2006; 82
Kuot (CR51) 2019; 47
Huang, Du, Pan (CR26) 2018; 13
Latta (CR32) 2021; 11
Aqrawi (CR57) 2017; 19
CR21
Morthen (CR3) 2021; 21
Pilette, Ouadrhiri, Godding, Vaerman, Sibille (CR29) 2001; 18
Jackson, Gundersen, Tong, Utheim (CR8) 2022; 24
Ting (CR9) 2019; 103
C Baudouin (50342_CR49) 2016; 100
J Nättinen (50342_CR46) 2019
H Pult (50342_CR15) 2012; 35
S Liu (50342_CR35) 2011; 52
K Wu (50342_CR40) 2006; 83
L Zhou (50342_CR24) 2013; 13
L Zhou (50342_CR7) 2012; 75
50342_CR47
cr-split#-50342_CR59.1
S Srinivasan (50342_CR23) 2012; 53
cr-split#-50342_CR59.2
A Posa (50342_CR62) 2013; 195
KB Green-Church (50342_CR63) 2008; 14
CJ Jackson (50342_CR8) 2022; 24
N Perumal (50342_CR43) 2014; 55
F Pedregosa (50342_CR22) 2011; 12
JP Craig (50342_CR64) 2017; 15
H Nezzar (50342_CR37) 2017; 165
H Pult (50342_CR16) 2012; 53
50342_CR18
DA Sullivan (50342_CR56) 2018; 59
IA Mackie (50342_CR31) 1984; 68
A Baris (50342_CR41) 2023; 14
F Fineide (50342_CR11) 2022; 12
50342_CR58
J Yu (50342_CR4) 2011; 30
F Huettner (50342_CR20) 2012; 6
MK Morthen (50342_CR3) 2021; 21
X Wang (50342_CR44) 2021
L Tong (50342_CR5) 2011; 95
J Ding (50342_CR33) 2013; 54
M Amorim (50342_CR28) 2022
N Perumal (50342_CR6) 2016; 6
Y-C Liu (50342_CR30) 2021; 29
H Hynne (50342_CR13) 2022
50342_CR21
J Čejková (50342_CR39) 2008; 23
FH Grus (50342_CR61) 2005; 46
CP Robinson (50342_CR53) 1996; 79
Z Huang (50342_CR26) 2018; 13
L Latta (50342_CR32) 2021; 11
F Stapleton (50342_CR2) 2017; 15
T Kishimoto (50342_CR50) 2022
M Dogru (50342_CR52) 2018; 59
A Allali-Hassani (50342_CR48) 1998; 426
50342_CR19
SR da Costa (50342_CR54) 2006; 82
N Perumal (50342_CR25) 2015; 15
M Ramos-Casals (50342_CR55) 2012; 8
R Deng (50342_CR38) 2015; 10
KK Nichols (50342_CR1) 2011; 52
C Baldini (50342_CR36) 2011; 13
F Fineide (50342_CR60) 2021
AJ Bron (50342_CR14) 2007; 5
A Kuot (50342_CR51) 2019; 47
LA Aqrawi (50342_CR57) 2017; 19
LA Aqrawi (50342_CR12) 2019
DSW Ting (50342_CR9) 2019; 103
AM Storås (50342_CR10) 2022; 23
G Ke (50342_CR17) 2017
F Garreis (50342_CR34) 2011; 52
MD Willcox (50342_CR65) 2017; 15
OAA La (50342_CR45) 2001; 18
C Pilette (50342_CR29) 2001; 18
M Nebbioso (50342_CR27) 2017; 18
A Blázquez (50342_CR42) 2005; 15
References_xml – volume: 100
  start-page: 300
  year: 2016
  end-page: 306
  ident: CR49
  article-title: Revisiting the vicious circle of dry eye disease: A focus on the pathophysiology of meibomian gland dysfunction
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2015-307415
– volume: 103
  start-page: 167
  year: 2019
  end-page: 175
  ident: CR9
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2018-313173
– volume: 6
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR6
  article-title: Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients
  publication-title: Sci. Rep.
  doi: 10.1038/srep29629
– volume: 68
  start-page: 321
  year: 1984
  end-page: 324
  ident: CR31
  article-title: Diagnostic implications of tear protein profiles
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.68.5.321
– volume: 54
  start-page: 4341
  year: 2013
  end-page: 4350
  ident: CR33
  article-title: The influence of 13-cis retinoic acid on human meibomian gland epithelial cells
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-11863
– volume: 15
  start-page: 3370
  year: 2015
  end-page: 3381
  ident: CR25
  article-title: Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (prr4)
  publication-title: Proteomics
  doi: 10.1002/pmic.201400239
– volume: 55
  start-page: 2002
  year: 2014
  ident: CR43
  article-title: In-depth protein profiling and identification of tear fluid biomarkers in different subgroups of dry eye disease: Proline-rich protein 4 (prr4) as a potential biomarker for aqueous-deficient dry eye syndrome
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 52
  start-page: 1922
  year: 2011
  end-page: 1929
  ident: CR1
  article-title: The international workshop on meibomian gland dysfunction: Executive summary
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6997a
– volume: 47
  start-page: 1028
  year: 2019
  end-page: 1042
  ident: CR51
  article-title: Reduced expression of apolipoprotein E and immunoglobulin heavy constant gamma 1 proteins in Fuchs endothelial corneal dystrophy
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/ceo.13569
– volume: 14
  start-page: 294
  year: 2023
  ident: CR41
  article-title: Thymidine phosphorylase facilitates retinoic acid inducible gene-I induced endothelial dysfunction
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-023-05821-0
– volume: 21
  start-page: 107
  year: 2021
  end-page: 117
  ident: CR3
  article-title: The physical and mental burden of dry eye disease: A large population-based study investigating the relationship with health-related quality of life and its determinants
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2021.05.006
– volume: 15
  start-page: 276
  year: 2017
  end-page: 283
  ident: CR64
  article-title: TFOS DEWS II definition and classification report
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2017.05.008
– volume: 14
  start-page: 456
  year: 2008
  end-page: 470
  ident: CR63
  article-title: Investigation of the human tear film proteome using multiple proteomic approaches
  publication-title: Mol. Vis.
– volume: 79
  start-page: 50
  year: 1996
  end-page: 59
  ident: CR53
  article-title: Genetically programmed development of salivary gland abnormalities in the nod (nonobese diabetic)-scidmouse in the absence of detectable lymphocytic infiltration: A potential trigger for sialoadenitis of nod mice
  publication-title: Clin. Immunol. Immunopathol.
  doi: 10.1006/clin.1996.0050
– ident: CR58
– volume: 13
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR26
  article-title: The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200702
– volume: 13
  start-page: 1
  year: 2011
  end-page: 16
  ident: CR36
  article-title: Proteomic analysis of saliva: A unique tool to distinguish primary Sjögren’s syndrome from secondary Sjögren’s syndrome and other sicca syndromes
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar3523
– volume: 59
  start-page: 193
  year: 2018
  end-page: 205
  ident: CR56
  article-title: Meibomian gland dysfunction in primary and secondary Sjögren syndrome
  publication-title: Ophthalmic Res.
  doi: 10.1159/000487487
– volume: 15
  start-page: 775
  year: 2005
  end-page: 778
  ident: CR42
  article-title: Increased muscle nucleoside levels associated with a novel frameshift mutation in the thymidine phosphorylase gene in a Spanish patient with MNGIE
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2005.07.008
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR22
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: CR21
– volume: 18
  start-page: 571
  year: 2001
  end-page: 588
  ident: CR29
  article-title: Lung mucosal immunity: Immunoglobulin-A revisited
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.01.00228801
– volume: 24
  start-page: 119
  year: 2022
  end-page: 128
  ident: CR8
  article-title: Dry eye disease and proteomics
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2022.03.001
– ident: CR19
– volume: 29
  start-page: 67
  year: 2021
  end-page: 81
  ident: CR30
  article-title: Comparison of tear proteomic and neuromediator profiles changes between small incision lenticule extraction (SMILE) and femtosecond laser-assisted in-situ keratomileusis (LASIK)
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.11.001
– year: 2017
  ident: CR17
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 334
  year: 2017
  end-page: 365
  ident: CR2
  article-title: TFOS DEWS II epidemiology report
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2017.05.003
– year: 2021
  ident: CR60
  article-title: Characterization of lipids in saliva, tears and minor salivary glands of Sjögren’s syndrome patients using an HPLC/MS-based approach
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22168997
– year: 2022
  ident: CR28
  article-title: Putative biomarkers in tears for diabetic retinopathy diagnosis
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.873483
– volume: 10
  start-page: 1
  year: 2015
  end-page: 16
  ident: CR38
  article-title: Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126561
– volume: 53
  start-page: 588
  year: 2012
  ident: CR16
  article-title: An assement of subjective and objective grading of meibography image
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 75
  start-page: 3877
  year: 2012
  end-page: 3885
  ident: CR7
  article-title: In-depth analysis of the human tear proteome
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2012.04.053
– year: 2022
  ident: CR13
  article-title: Proteomic profiling of saliva and tears in radiated head and neck cancer patients as compared to primary Sjögren’s syndrome patients
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23073714
– volume: 19
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR57
  article-title: Identification of potential saliva and tear biomarkers in primary Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-017-1228-x
– volume: 11
  start-page: 1651
  year: 2021
  ident: CR32
  article-title: Similarities in DSG1 and KRT3 downregulation through retinoic acid treatment and PAX6 knockdown related expression profiles: Does PAX6 affect RA signaling in limbal epithelial cells?
  publication-title: Biomolecules
  doi: 10.3390/biom11111651
– volume: 46
  start-page: 863
  year: 2005
  end-page: 876
  ident: CR61
  article-title: SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.04-0448
– volume: 52
  start-page: 4914
  year: 2011
  end-page: 4922
  ident: CR34
  article-title: Expression and regulation of antimicrobial peptide Psoriasin (S100A7) at the ocular surface and in the lacrimal apparatus
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6598
– volume: 52
  start-page: 2727
  year: 2011
  end-page: 2740
  ident: CR35
  article-title: Changes in gene expression in human meibomian gland dysfunction
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6482
– volume: 30
  start-page: 379
  year: 2011
  end-page: 387
  ident: CR4
  article-title: The economic burden of dry eye disease in the United States: A decision tree analysis
  publication-title: Cornea
  doi: 10.1097/ICO.0b013e3181f7f363
– volume: 195
  start-page: 137
  year: 2013
  end-page: 142
  ident: CR62
  article-title: Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid
  publication-title: Ann. Anat. Anat. Anz.
  doi: 10.1016/j.aanat.2012.10.001
– volume: 18
  start-page: 1764
  year: 2017
  ident: CR27
  article-title: Analysis of the pathogenic factors and management of dry eye in ocular surface disorders
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18081764
– volume: 5
  start-page: 108
  year: 2007
  end-page: 152
  ident: CR14
  article-title: Methodologies to diagnose and monitor dry eye disease: Report of the diagnostic methodology subcommittee of the International Dry Eye WorkShop (2007)
  publication-title: Ocul. Surf.
  doi: 10.1016/S1542-0124(12)70083-6
– volume: 53
  start-page: 5052
  year: 2012
  end-page: 5059
  ident: CR23
  article-title: iTRAQ quantitative proteomics in the analysis of tears in dry eye patients
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-9022
– ident: CR18
– year: 2019
  ident: CR46
  article-title: Age-associated changes in human tear proteome
  publication-title: Clin. Proteom.
  doi: 10.1186/s12014-019-9233-5
– volume: 18
  start-page: 1
  year: 2001
  end-page: 9
  ident: CR45
  article-title: Iron and transferrin. Research and therapeutic applications
  publication-title: Biotecnol. Apl.
– volume: 95
  start-page: 848
  year: 2011
  end-page: 852
  ident: CR5
  article-title: Association of tear proteins with Meibomian gland disease and dry eye symptoms
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.2010.185256
– ident: CR47
– volume: 59
  start-page: DES163
  year: 2018
  end-page: DES168
  ident: CR52
  article-title: Potential role of oxidative stress in ocular surface inflammation and dry eye disease
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-23402
– volume: 6
  start-page: 1239
  year: 2012
  end-page: 1250
  ident: CR20
  article-title: Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values
  publication-title: Electron. J. Stat.
  doi: 10.1214/12-EJS710
– volume: 426
  start-page: 362
  year: 1998
  end-page: 366
  ident: CR48
  article-title: Retinoids, -hydroxyfatty acids and cytotoxic aldehydes as physiological substrates, and H2-receptor antagonists as pharmacological inhibitors, of human class IV alcohol dehydrogenase
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)00374-3
– volume: 35
  start-page: 77
  year: 2012
  end-page: 80
  ident: CR15
  article-title: Non-contact meibography: Keep it simple but effective
  publication-title: Contact Lens Anterior Eye
  doi: 10.1016/j.clae.2011.08.003
– year: 2021
  ident: CR44
  article-title: Prostaglandin reductase 1 as a potential therapeutic target for cancer therapy
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.717730
– volume: 23
  start-page: 74
  year: 2022
  end-page: 86
  ident: CR10
  article-title: Artificial intelligence in dry eye disease
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2021.11.004
– volume: 23
  start-page: 1477
  year: 2008
  end-page: 1483
  ident: CR39
  article-title: Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjögren’s syndrome) and its possible contribution to the development of ocular surface oxidative injuries
  publication-title: Histol. Histopathol.
– volume: 15
  start-page: 366
  year: 2017
  end-page: 403
  ident: CR65
  article-title: TFOS DEWS II tear film report
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2017.03.006
– volume: 82
  start-page: 33
  year: 2006
  end-page: 45
  ident: CR54
  article-title: Male NOD mouse external lacrimal glands exhibit profound changes in the exocytotic pathway early in postnatal development
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2005.04.019
– volume: 8
  start-page: 399
  year: 2012
  end-page: 411
  ident: CR55
  article-title: Topical and systemic medications for the treatment of primary Sjögren’s syndrome
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2012.53
– volume: 13
  start-page: 2469
  year: 2013
  end-page: 2481
  ident: CR24
  article-title: Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren’s syndrome-associated dry eye
  publication-title: Proteomics
  doi: 10.1002/pmic.201200230
– volume: 165
  start-page: 99
  year: 2017
  end-page: 104
  ident: CR37
  article-title: Investigation of antioxidant systems in human meibomian gland and conjunctival tissues
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2017.09.005
– year: 2022
  ident: CR50
  article-title: Aqueous-deficient dry eye exacerbates signs and symptoms of allergic conjunctivitis in mice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23094918
– volume: 12
  start-page: 21416
  year: 2022
  ident: CR11
  article-title: Predicting an unstable tear film through artificial intelligence
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25821-y
– volume: 83
  start-page: 84
  year: 2006
  end-page: 96
  ident: CR40
  article-title: Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2005.11.009
– ident: CR59
– year: 2019
  ident: CR12
  article-title: Proteomic and histopathological characterisation of sicca subjects and primary Sjögren’s syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-019-1961-4
– volume: 18
  start-page: 1
  year: 2001
  ident: 50342_CR45
  publication-title: Biotecnol. Apl.
– volume: 13
  start-page: 1
  year: 2011
  ident: 50342_CR36
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar3523
– volume: 6
  start-page: 1
  year: 2016
  ident: 50342_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/srep29629
– volume: 100
  start-page: 300
  year: 2016
  ident: 50342_CR49
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2015-307415
– volume: 52
  start-page: 2727
  year: 2011
  ident: 50342_CR35
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6482
– year: 2021
  ident: 50342_CR60
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22168997
– year: 2019
  ident: 50342_CR12
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-019-1961-4
– volume: 83
  start-page: 84
  year: 2006
  ident: 50342_CR40
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2005.11.009
– year: 2021
  ident: 50342_CR44
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.717730
– volume: 15
  start-page: 276
  year: 2017
  ident: 50342_CR64
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2017.05.008
– volume: 52
  start-page: 1922
  year: 2011
  ident: 50342_CR1
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6997a
– volume: 68
  start-page: 321
  year: 1984
  ident: 50342_CR31
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.68.5.321
– volume: 426
  start-page: 362
  year: 1998
  ident: 50342_CR48
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)00374-3
– volume: 165
  start-page: 99
  year: 2017
  ident: 50342_CR37
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2017.09.005
– year: 2019
  ident: 50342_CR46
  publication-title: Clin. Proteom.
  doi: 10.1186/s12014-019-9233-5
– volume: 12
  start-page: 21416
  year: 2022
  ident: 50342_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25821-y
– volume: 5
  start-page: 108
  year: 2007
  ident: 50342_CR14
  publication-title: Ocul. Surf.
  doi: 10.1016/S1542-0124(12)70083-6
– volume: 53
  start-page: 5052
  year: 2012
  ident: 50342_CR23
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-9022
– volume: 24
  start-page: 119
  year: 2022
  ident: 50342_CR8
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2022.03.001
– volume: 13
  start-page: 1
  year: 2018
  ident: 50342_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200702
– volume: 6
  start-page: 1239
  year: 2012
  ident: 50342_CR20
  publication-title: Electron. J. Stat.
  doi: 10.1214/12-EJS710
– ident: 50342_CR21
  doi: 10.48550/ARXIV.1802.03888
– year: 2022
  ident: 50342_CR28
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.873483
– volume: 47
  start-page: 1028
  year: 2019
  ident: 50342_CR51
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/ceo.13569
– volume: 55
  start-page: 2002
  year: 2014
  ident: 50342_CR43
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 21
  start-page: 107
  year: 2021
  ident: 50342_CR3
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2021.05.006
– volume: 103
  start-page: 167
  year: 2019
  ident: 50342_CR9
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2018-313173
– year: 2022
  ident: 50342_CR13
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23073714
– volume: 12
  start-page: 2825
  year: 2011
  ident: 50342_CR22
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 294
  year: 2023
  ident: 50342_CR41
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-023-05821-0
– volume: 59
  start-page: 193
  year: 2018
  ident: 50342_CR56
  publication-title: Ophthalmic Res.
  doi: 10.1159/000487487
– ident: 50342_CR58
  doi: 10.48550/arXiv.2012.07532
– volume: 75
  start-page: 3877
  year: 2012
  ident: 50342_CR7
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2012.04.053
– volume: 10
  start-page: 1
  year: 2015
  ident: 50342_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126561
– volume: 35
  start-page: 77
  year: 2012
  ident: 50342_CR15
  publication-title: Contact Lens Anterior Eye
  doi: 10.1016/j.clae.2011.08.003
– volume: 19
  start-page: 1
  year: 2017
  ident: 50342_CR57
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-017-1228-x
– volume: 23
  start-page: 1477
  year: 2008
  ident: 50342_CR39
  publication-title: Histol. Histopathol.
– volume: 82
  start-page: 33
  year: 2006
  ident: 50342_CR54
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2005.04.019
– volume: 53
  start-page: 588
  year: 2012
  ident: 50342_CR16
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 11
  start-page: 1651
  year: 2021
  ident: 50342_CR32
  publication-title: Biomolecules
  doi: 10.3390/biom11111651
– volume: 79
  start-page: 50
  year: 1996
  ident: 50342_CR53
  publication-title: Clin. Immunol. Immunopathol.
  doi: 10.1006/clin.1996.0050
– ident: #cr-split#-50342_CR59.1
– volume: 13
  start-page: 2469
  year: 2013
  ident: 50342_CR24
  publication-title: Proteomics
  doi: 10.1002/pmic.201200230
– volume: 15
  start-page: 3370
  year: 2015
  ident: 50342_CR25
  publication-title: Proteomics
  doi: 10.1002/pmic.201400239
– year: 2022
  ident: 50342_CR50
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23094918
– volume: 15
  start-page: 775
  year: 2005
  ident: 50342_CR42
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2005.07.008
– ident: 50342_CR47
– ident: 50342_CR18
  doi: 10.48550/arXiv.1905.04610
– volume: 46
  start-page: 863
  year: 2005
  ident: 50342_CR61
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.04-0448
– volume: 15
  start-page: 366
  year: 2017
  ident: 50342_CR65
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2017.03.006
– volume: 14
  start-page: 456
  year: 2008
  ident: 50342_CR63
  publication-title: Mol. Vis.
– volume: 15
  start-page: 334
  year: 2017
  ident: 50342_CR2
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2017.05.003
– volume: 18
  start-page: 571
  year: 2001
  ident: 50342_CR29
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.01.00228801
– volume: 95
  start-page: 848
  year: 2011
  ident: 50342_CR5
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.2010.185256
– ident: 50342_CR19
  doi: 10.1515/9781400881970-018
– volume: 54
  start-page: 4341
  year: 2013
  ident: 50342_CR33
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-11863
– volume: 30
  start-page: 379
  year: 2011
  ident: 50342_CR4
  publication-title: Cornea
  doi: 10.1097/ICO.0b013e3181f7f363
– volume: 52
  start-page: 4914
  year: 2011
  ident: 50342_CR34
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6598
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 50342_CR17
– volume: 59
  start-page: DES163
  year: 2018
  ident: 50342_CR52
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.17-23402
– volume: 8
  start-page: 399
  year: 2012
  ident: 50342_CR55
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2012.53
– volume: 29
  start-page: 67
  year: 2021
  ident: 50342_CR30
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.11.001
– volume: 195
  start-page: 137
  year: 2013
  ident: 50342_CR62
  publication-title: Ann. Anat. Anat. Anz.
  doi: 10.1016/j.aanat.2012.10.001
– volume: 23
  start-page: 74
  year: 2022
  ident: 50342_CR10
  publication-title: Ocul. Surf.
  doi: 10.1016/j.jtos.2021.11.004
– volume: 18
  start-page: 1764
  year: 2017
  ident: 50342_CR27
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18081764
– ident: #cr-split#-50342_CR59.2
SSID ssj0000529419
Score 2.4310355
Snippet Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because...
Abstract Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22946
SubjectTerms 631/114/1305
631/114/663
639/705/117
692/308/53
692/53/2421
692/699/3161/3163
Eye diseases
Glands
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Proteins
Proteomics
Quality of life
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70KgICNxg6ix48TOCdGqFQdUcQBpb5afaKXuZrvZIvbf43G8qRDQS6-2YzmZsWcy4_k-gHeWt8xxaqIEeFdyr2VpWhvKyggjHPNMu1Qo_EWcncnZrPuaA25Dvla5OxPTQe16izHyQ9Yh-Hm0XuLj6qJE1ijMrmYKjdtwB2mzUc_FTEwxFsxicdrlWpmqlodDtFdYU8bqskHwu1L8YY8SbP-_fM2_8qTJ_Jw-vOnCH8GD7HiST6OmPIZbfvkE7o1UlNuncJHuDpBFulvpSSaTiA3IlEP8r9W5HuOGA9n0ZJ7Ke8OWJJiHeWxMNTHeYWe0tR4p8UgfyMLPTb-IKkgSVwhx2wEtKU70DL6fnnw7_lxmOobSctls4mktmKsdNZUL3kVPjNWN0y2XtHYtwo4Zh2howujOSc8D8zb6LqEK1Eofv3q9D3vLfulfAAmcGV_pJlrojgvHpaPScB2o0bbS2hVAd0JRNmOVI2XGuUo581qqUZAqClIlQSpRwPvpmdWI1HHt6COU9TQSUbZTQ7_-ofKmVTQwa9qGanTTOsmiN-o0Nc6YltroSBdwsBO5ylt_UFfyLuDt1B03LWZi9NL3l2lM0zBMchbwfNSwaSXRharjT2BbwIedyl1N_v8Xenn9Wl7BfYZaT1nJ2AHsbdaX_jXctT8382H9Jm2b33fPH2Q
  priority: 102
  providerName: ProQuest
Title Using machine learning model explanations to identify proteins related to severity of meibomian gland dysfunction
URI https://link.springer.com/article/10.1038/s41598-023-50342-7
https://www.ncbi.nlm.nih.gov/pubmed/38135766
https://www.proquest.com/docview/2904839017
https://www.proquest.com/docview/2905520823
https://doaj.org/article/1f2cb651a6584982951da1bdbb61c507
Volume 13
WOSCitedRecordID wos001129675600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0SNHSd2jhS1AomuVgik5WT5Ka3U3ZRmi9h_z9jOLkW8Llx8sB0r9owz44zn-wBeWN4yx6lBCfCu5F7L0rQ2lJURRjjmmXYpUfi9mE7lfN7NrlB9xTthGR44L9whDcyatqE6mspOMvQInKbGGdNS2-Q88kp0Vw5TGdWbdZx2Y5ZMVcvDAS1VzCZjddlE2LtS_GSJEmD_77zMXyKkyfCc3IHbo8dIXuc3vQvX_Ooe3Mwckpv78CUF_ckyXYr0ZGSBwIpIcUP8t_MznX_4DWTdk0XKyw0bkvAZFliZklm8i41oJH3ksiN9IEu_MP0SdYckkg_iNkM0gXGgB_Dp5Pjjm7flyKNQWi6bNX5mBXO1o6ZywTt0oVjdON1ySWvXRrww4yKMmTC6c9LzwLxFpyNUgVrpcdHqh7C36lf-MZDAmfGVbtC0dlw4Lh2VhutAjbaV1q4Aul1TZUeQ8ch1caZSsLuWKstBoRxUkoMSBbzcPXOeITb-2vsoimrXM8JjpwpUGjUqjfqX0hRwsBW0GvfsoFgX4fXRP8Lm57tm3G0xhKJXvr9MfZqGxehkAY-yguzeBH2fGk9vbQGvthrzY_A_T-jJ_5jQU7jFompTVjJ2AHvri0v_DG7Yr-vFcDGB62IuUiknsH90PJ19mKT9guUpm8VSYLk_e3c6-_wd_xIYDA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0SNHSdxDgjxqrrqdtVDkcrJ-BW0Unez3WyB_VP8RjxOshUCeuuBq-NYeXye-ezxzAfw3PCcWU61_wO8jLlTIta5qeJEF7qwzDFlQ6LwqBiPxdFRebABP_tcGDxW2dvEYKhtbXCPfJuVWPzce6_izfwkRtUojK72EhotLPbc6rtfsjWvhx_8_33B2M7Hw_e7cacqEBsusqU3OgWzqaU6sZWznlCwNLMq54KmNsfqWdpiUa9Cq9IKxyvmjHfBVVJRI1xWitSPewk2uQd7MoDNg-H-wef1rg7GzTgtu-ycJBXbjfeQmMXG0jjDcntx8ZsHDEIBf2O3f0Rmg8PbufG_faqbcL2j1uRtOxduwYab3YYrrdjm6g6chNMRZBpOjzrSyWX4BtQCIu7H_Fi1O6MNWdZkEhKYqxUJhSwmvjFk_TiLFz2bcCj6R-qKTN1E11M_yUhQQyF21SBXwIHuwqcLed97MJjVM_cASMWZdonKPAcpeWG5sFRoriqqlUmUshHQHgTSdNXYURTkWIZTAamQLXCkB44MwJFFBC_X98zbWiTn9n6H2Fr3xDrioaFefJWdWZK0YkbnGVVIREvBPN-2imqrdU6NXypEsNVDTHbGrZFn-Irg2fqyN0sYa1IzV5-GPlnGMIwbwf0W0esn8SQx9cvcPIJXPcTPBv_3Cz08_1mewtXdw_2RHA3He4_gGsMZR1nM2BYMlotT9xgum2_LSbN40k1aAl8uGvy_AItOfO8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU0BseD8CBYwEK4gaO07iLBCitCOqVqMRAqk716-gkTqT6WQKzK_xdfg6yVQI6K4Lto5j5XF8fez7OAAvDc-Z5VT7P8DLmDslYp2bKk50oQvLHFM2JAofFqORODoqxxvws8-FwbDK3iYGQ21rg2fk26zE4ucllnuuurCI8e7w3fw0RgUp9LT2chotRA7c6rvfvjVv93f9v37F2HDv84ePcacwEBsusqU3QAWzqaU6sZWznlywNLMq54KmNsdKWtpiga9Cq9IKxyvmjF-Oq6SiRrisFKkf9wpsFqnf9Axgc2dvNP60PuFBHxqnZZepk6Riu_GrJWa0sTTOsPReXPy2GgbRgL8x3T-8tGHxG976nz_bbbjZUW7yvp0jd2DDze7CtVaEc3UPTkPUBJmGqFJHOhkN34AaQcT9mJ-o9sS0IcuaTEJic7UiocDFxDeGbCBn8aJnGQ7FAEldkamb6HrqJx8JKinErhrkEDjQffhyKe_7AAazeuYeAak40y5RmecmJS8sF5YKzVVFtTKJUjYC2gNCmq5KO4qFnMgQLZAK2YJIehDJACJZRPB6fc-8rVFyYe8dxNm6J9YXDw314qvszJWkFTM6z6hCgloK5nm4VVRbrXNq_BYigq0ebrIzeo08x1oEL9aXvblCH5Saufos9Mkyhu7dCB626F4_iSePqd_-5hG86eF-Pvi_X-jxxc_yHK57xMvD_dHBE7jBcPJRFjO2BYPl4sw9havm23LSLJ5185fA8WVj_xfaJYWJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+model+explanations+to+identify+proteins+related+to+severity+of+meibomian+gland+dysfunction&rft.jtitle=Scientific+reports&rft.au=Andrea+M.+Stor%C3%A5s&rft.au=Fredrik+Fineide&rft.au=Morten+Magn%C3%B8&rft.au=Bernd+Thiede&rft.date=2023-12-22&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-023-50342-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f2cb651a6584982951da1bdbb61c507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon