Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging

Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derive...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications biology Ročník 7; číslo 1; s. 414 - 14
Hlavní autori: Patel, Khush, Xie, Ziqian, Yuan, Hao, Islam, Sheikh Muhammad Saiful, Xie, Yaochen, He, Wei, Zhang, Wanheng, Gottlieb, Assaf, Chen, Han, Giancardo, Luca, Knaack, Alexander, Fletcher, Evan, Fornage, Myriam, Ji, Shuiwang, Zhi, Degui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 05.04.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2399-3642, 2399-3642
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants’ T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes. A study utilizing unsupervised deep learning to generate interpretable brain imaging phenotypes from brain T1 and T2-FLAIR MRI identified 97 genetic loci enhancing understanding of brain structure genetics.
AbstractList Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants’ T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.A study utilizing unsupervised deep learning to generate interpretable brain imaging phenotypes from brain T1 and T2-FLAIR MRI identified 97 genetic loci enhancing understanding of brain structure genetics.
Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants’ T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.
Abstract Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants’ T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.
Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants' T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants' T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.
Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants’ T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes. A study utilizing unsupervised deep learning to generate interpretable brain imaging phenotypes from brain T1 and T2-FLAIR MRI identified 97 genetic loci enhancing understanding of brain structure genetics.
ArticleNumber 414
Author Islam, Sheikh Muhammad Saiful
Knaack, Alexander
Xie, Ziqian
Fletcher, Evan
Xie, Yaochen
Gottlieb, Assaf
Fornage, Myriam
Yuan, Hao
Zhang, Wanheng
Chen, Han
Giancardo, Luca
Ji, Shuiwang
He, Wei
Zhi, Degui
Patel, Khush
Author_xml – sequence: 1
  givenname: Khush
  orcidid: 0000-0002-7451-3103
  surname: Patel
  fullname: Patel, Khush
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
– sequence: 2
  givenname: Ziqian
  surname: Xie
  fullname: Xie, Ziqian
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
– sequence: 3
  givenname: Hao
  surname: Yuan
  fullname: Yuan, Hao
  organization: Department of Computer Science and Engineering, Texas A&M University
– sequence: 4
  givenname: Sheikh Muhammad Saiful
  surname: Islam
  fullname: Islam, Sheikh Muhammad Saiful
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
– sequence: 5
  givenname: Yaochen
  orcidid: 0000-0003-0320-6728
  surname: Xie
  fullname: Xie, Yaochen
  organization: Department of Computer Science and Engineering, Texas A&M University
– sequence: 6
  givenname: Wei
  surname: He
  fullname: He, Wei
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
– sequence: 7
  givenname: Wanheng
  surname: Zhang
  fullname: Zhang, Wanheng
  organization: School of Public Health, University of Texas Health Science Center
– sequence: 8
  givenname: Assaf
  orcidid: 0000-0003-4904-631X
  surname: Gottlieb
  fullname: Gottlieb, Assaf
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
– sequence: 9
  givenname: Han
  surname: Chen
  fullname: Chen, Han
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center, School of Public Health, University of Texas Health Science Center
– sequence: 10
  givenname: Luca
  orcidid: 0000-0002-4862-2277
  surname: Giancardo
  fullname: Giancardo, Luca
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
– sequence: 11
  givenname: Alexander
  orcidid: 0000-0002-5231-3637
  surname: Knaack
  fullname: Knaack, Alexander
  organization: Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis
– sequence: 12
  givenname: Evan
  surname: Fletcher
  fullname: Fletcher, Evan
  organization: Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis
– sequence: 13
  givenname: Myriam
  orcidid: 0000-0003-0677-8158
  surname: Fornage
  fullname: Fornage, Myriam
  organization: School of Public Health, University of Texas Health Science Center, McGovern Medical School, University of Texas Health Science Center
– sequence: 14
  givenname: Shuiwang
  orcidid: 0000-0002-4205-4563
  surname: Ji
  fullname: Ji, Shuiwang
  organization: Department of Computer Science and Engineering, Texas A&M University
– sequence: 15
  givenname: Degui
  orcidid: 0000-0001-7754-1890
  surname: Zhi
  fullname: Zhi, Degui
  email: Degui.Zhi@uth.tmc.edu
  organization: McWilliams School of Biomedical Informatics, University of Texas Health Science Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38580839$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v3CAQxa0qVZOm-QI9VEi99OJ2DBjDsYr6J1KkXpozwnhwWXnBBXul_fZl46StcsgJhH7vzQzzXldnIQasqrcNfGyAyU-ZUwBWA-U1CFCi7l5UF5QpVTPB6dl_9_PqKucdADRKKcH4q-qcyVaCZOqiOtyFvM6YDj7jQAbEmSScE2YMi1l8DGRCk4IPI8Fg-gkzmX9hiMtxRjL4bOMB05G4mMiIARdvick5Wr-J87IOvmiiI30yPhC_N2Mxe1O9dGbKePVwXlZ3X7_8vP5e3_74dnP9-ba2XLZLzcC1OFhoOaW2485w0zHVt8ZKBZ0ajOgUR6WoBONk3ynrXMMGZY0znZGCXVY3m-8QzU7PqZRPRx2N1_cPMY3apNL0hLovtSQwYWiLHG0jeWMVACL0VnABxevD5jWn-HvFvOh9mR-nyQSMa9YMGKecKdoU9P0TdBfXFMqkJ4p1glHRFerdA7X2exz-tve4nQLIDbAp5pzQaeu3rSzlMyfdgD5lQW9Z0CUL-j4L-uRNn0gf3Z8VsU2UCxxGTP_afkb1B-Hdx2E
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106423
crossref_primary_10_1038_s41380_025_03232_5
crossref_primary_10_1093_bib_bbaf037
crossref_primary_10_1371_journal_pgen_1011332
crossref_primary_10_20517_ais_2024_103
crossref_primary_10_1097_CORR_0000000000003679
crossref_primary_10_1002_qub2_93
crossref_primary_10_1007_s12021_025_09722_9
crossref_primary_10_1016_j_scib_2025_04_058
Cites_doi 10.1038/s41593-021-00826-4
10.1038/s41588-019-0516-6
10.1038/s41588-019-0512-x
10.1016/j.neuroimage.2021.118603
10.1038/s41562-019-0653-z
10.1016/j.schres.2005.11.020
10.1038/s41588-018-0108-x
10.1038/ng.3406
10.1016/j.neuroimage.2012.01.021
10.1006/nimg.2002.1132
10.1103/PhysRevE.102.042119
10.1073/pnas.1523888113
10.3389/fnins.2021.652987
10.1038/s41588-021-00954-4
10.1038/s41398-020-00902-6
10.1038/s41588-019-0450-7
10.1176/appi.ajp.160.4.636
10.1038/d41586-022-03252-z
10.1038/ng.3211
10.1038/s41467-019-09480-8
10.1161/STROKEAHA.109.569194
10.1038/s41467-017-01261-5
10.1073/pnas.1706100115
10.1038/s41588-019-0530-8
10.1007/s11682-013-9269-5
10.1126/science.1127647
10.1038/nn.4398
10.1038/nature14101
10.1016/j.media.2020.101871
10.1038/s41588-019-0511-y
10.1038/nn.4393
10.3389/fncom.2021.654315
10.1038/s41586-018-0579-z
10.1371/journal.pmed.1001779
10.1038/s41467-018-04362-x
10.1038/s41593-022-01042-4
10.1161/CIRCGENETICS.108.829747
10.1088/1361-6560/abcd1a
10.1038/s41380-019-0569-z
10.1109/JBHI.2019.2914970
10.1093/bioinformatics/btq340
10.1093/brain/awab140
10.1038/s41593-020-0643-5
10.1155/2015/450341
10.1038/ncomms13624
10.3389/fnhum.2018.00399
10.1038/s41467-019-13163-9
10.1016/j.neuroimage.2022.118871
10.1111/add.15511
10.1038/s41467-020-17368-1
10.1016/j.biopsych.2020.01.026
10.1126/science.aay6690
10.3389/fnins.2016.00503
10.1016/j.neuroimage.2012.12.068
10.1002/ajmg.b.32349
10.1038/s41588-018-0307-5
10.1016/j.media.2016.10.004
10.6084/m9.figshare.25203224.v2
10.1038/s41586-018-0571-7
10.1038/s41598-017-02584-5
10.1109/acpr.2015.7486599
10.1007/978-3-319-46723-8_49
10.6084/m9.figshare.25203230.v2
10.21105/joss.00861
10.6084/m9.figshare.25203233.v2
10.1016/j.artmed.2018.08.008
10.1016/j.neuroimage.2011.09.015
10.1007/978-3-319-55524-9_14
10.1038/s41380-017-0001-5
10.1109/IEMBS.2011.6091212
10.6084/m9.figshare.25148744.v2
10.1038/s41467-021-23175-z
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s42003-024-06096-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
EndPage 14
ExternalDocumentID oai_doaj_org_article_b0f58036a25e4ec1841c900ee0bc6460
38580839
10_1038_s42003_024_06096_7
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
  grantid: U01 AG070112-01A1
  funderid: https://doi.org/10.13039/100000049
– fundername: NIA NIH HHS
  grantid: U01 AG070112
– fundername: NCATS NIH HHS
  grantid: UL1 TR003167
– fundername: NINDS NIH HHS
  grantid: R01 NS121154
– fundername: NEI NIH HHS
  grantid: R01 EY032768
GroupedDBID 0R~
53G
88I
AAJSJ
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FE
8FH
8FK
AARCD
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-30f5edc05422c74fa4a739b5ac89079da6794e99280af8b79cff13d9cafa7a863
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197447800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-3642
IngestDate Tue Oct 14 18:50:31 EDT 2025
Thu Oct 02 07:52:30 EDT 2025
Wed Aug 13 10:58:03 EDT 2025
Thu Jan 02 22:23:22 EST 2025
Tue Nov 18 22:20:41 EST 2025
Sat Nov 29 02:09:05 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-30f5edc05422c74fa4a739b5ac89079da6794e99280af8b79cff13d9cafa7a863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7451-3103
0000-0002-4862-2277
0000-0001-7754-1890
0000-0002-4205-4563
0000-0002-5231-3637
0000-0003-0677-8158
0000-0003-0320-6728
0000-0003-4904-631X
OpenAccessLink https://doaj.org/article/b0f58036a25e4ec1841c900ee0bc6460
PMID 38580839
PQID 3033763267
PQPubID 4669726
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b0f58036a25e4ec1841c900ee0bc6460
proquest_miscellaneous_3034243921
proquest_journals_3033763267
pubmed_primary_38580839
crossref_citationtrail_10_1038_s42003_024_06096_7
crossref_primary_10_1038_s42003_024_06096_7
springer_journals_10_1038_s42003_024_06096_7
PublicationCentury 2000
PublicationDate 2024-04-05
PublicationDateYYYYMMDD 2024-04-05
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Thompson (CR2) 2014; 8
Joel (CR34) 2018; 12
Adams (CR9) 2016; 19
Makris (CR74) 2006; 83
Jiang, Zheng, Fang, Yang (CR77) 2021; 53
Hibar (CR6) 2015; 520
CR39
Kranzler (CR51) 2019; 10
CR38
Tudorascu (CR18) 2016; 10
Zhao (CR60) 2021; 26
Chekroud, Ward, Rosenberg, Holmes (CR33) 2016; 113
Goes (CR50) 2015; 168
CR31
Hinton, Salakhutdinov (CR26) 2006; 313
CR73
Ulyanov, Tarasevich, Eserkepov, Grigorieva (CR67) 2020; 102
Jenkinson, Bannister, Brady, Smith (CR69) 2002; 17
Brouwer (CR63) 2022; 25
Carlson, Henn, Al-Hindi, Ramachandran (CR68) 2022; 610
Martinez-Murcia, Ortiz, Gorriz, Ramirez, Castillo-Barnes (CR70) 2020; 24
Konstantinos (CR29) 2017; 36
Jonsson (CR36) 2019; 10
Hibar (CR7) 2017; 8
Miller (CR5) 2016; 19
Satizabal (CR8) 2019; 51
Smith (CR15) 2021; 24
Peng, Gong, Beckmann, Vedaldi, Smith (CR35) 2021; 68
CR46
Fischl (CR12) 2012; 62
Gottesman, Gould (CR61) 2003; 160
Pardiñas (CR47) 2019; 51
CR42
CR41
CR40
CR80
Zhao (CR17) 2019; 51
Evans (CR44) 2018; 50
Jiang (CR76) 2019; 51
Despotović, Goossens, Philips (CR20) 2015; 2015
Han (CR21) 2019; 11383
Sudlow (CR1) 2015; 12
Smeland (CR59) 2021; 89
Weng (CR71) 2020; 9
van der Meer (CR24) 2020; 11
CR19
Zhou (CR53) 2020; 23
Almuqhim, Saeed (CR72) 2021; 15
Debette (CR4) 2010; 41
CR14
Hashimoto (CR66) 2021; 66
CR13
CR57
Liu (CR54) 2019; 51
CR56
CR11
Wu (CR48) 2020; 10
Watanabe, Taskesen, van Bochoven (CR79) 2017; 8
Davies (CR58) 2018; 9
Feis, Brodersen, von Cramon, Luders, Tittgemeyer (CR32) 2013; 70
Lam (CR49) 2019; 51
Lorenzi (CR62) 2018; 115
Willer, Li, Abecasis (CR45) 2010; 26
Jolly, Hampshire (CR23) 2021; 144
CR28
Grasby (CR10) 2020; 367
CR27
CR25
Bulik-Sullivan (CR78) 2015; 47
Yamaguchi (CR30) 2021; 15
CR22
Wood (CR37) 2022; 249
Dao (CR52) 2021; 116
CR65
Bycroft (CR75) 2018; 562
CR64
Psaty (CR3) 2009; 2
Shadrin (CR16) 2021; 244
Evangelou (CR55) 2019; 3
Bulik-Sullivan (CR43) 2015; 47
E Evangelou (6096_CR55) 2019; 3
OB Smeland (6096_CR59) 2021; 89
J Carlson (6096_CR68) 2022; 610
M Lam (6096_CR49) 2019; 51
LM Evans (6096_CR44) 2018; 50
B Fischl (6096_CR12) 2012; 62
D-L Feis (6096_CR32) 2013; 70
KL Grasby (6096_CR10) 2020; 367
KL Miller (6096_CR5) 2016; 19
C Bycroft (6096_CR75) 2018; 562
M Lorenzi (6096_CR62) 2018; 115
M Jenkinson (6096_CR69) 2002; 17
X Han (6096_CR21) 2019; 11383
6096_CR39
6096_CR38
6096_CR73
B Zhao (6096_CR17) 2019; 51
6096_CR31
CL Satizabal (6096_CR8) 2019; 51
FJ Martinez-Murcia (6096_CR70) 2020; 24
DP Hibar (6096_CR7) 2017; 8
AE Jolly (6096_CR23) 2021; 144
DP Hibar (6096_CR6) 2015; 520
PM Thompson (6096_CR2) 2014; 8
AF Pardiñas (6096_CR47) 2019; 51
B Zhao (6096_CR60) 2021; 26
I Despotović (6096_CR20) 2015; 2015
6096_CR25
F Almuqhim (6096_CR72) 2021; 15
K Watanabe (6096_CR79) 2017; 8
DL Tudorascu (6096_CR18) 2016; 10
BA Jonsson (6096_CR36) 2019; 10
6096_CR28
S Debette (6096_CR4) 2010; 41
6096_CR27
HR Kranzler (6096_CR51) 2019; 10
F Hashimoto (6096_CR66) 2021; 66
MV Ulyanov (6096_CR67) 2020; 102
K Konstantinos (6096_CR29) 2017; 36
6096_CR22
6096_CR65
6096_CR64
H Peng (6096_CR35) 2021; 68
DA Wood (6096_CR37) 2022; 249
C Dao (6096_CR52) 2021; 116
AA Shadrin (6096_CR16) 2021; 244
D Joel (6096_CR34) 2018; 12
B Bulik-Sullivan (6096_CR78) 2015; 47
G Davies (6096_CR58) 2018; 9
BK Bulik-Sullivan (6096_CR43) 2015; 47
C Sudlow (6096_CR1) 2015; 12
6096_CR14
6096_CR13
6096_CR57
Y Wu (6096_CR48) 2020; 10
6096_CR56
6096_CR19
GE Hinton (6096_CR26) 2006; 313
L Jiang (6096_CR76) 2019; 51
SM Smith (6096_CR15) 2021; 24
M Liu (6096_CR54) 2019; 51
L Jiang (6096_CR77) 2021; 53
6096_CR11
N Makris (6096_CR74) 2006; 83
D van der Meer (6096_CR24) 2020; 11
H Yamaguchi (6096_CR30) 2021; 15
6096_CR80
AM Chekroud (6096_CR33) 2016; 113
II Gottesman (6096_CR61) 2003; 160
HHH Adams (6096_CR9) 2016; 19
RM Brouwer (6096_CR63) 2022; 25
FS Goes (6096_CR50) 2015; 168
CJ Willer (6096_CR45) 2010; 26
BM Psaty (6096_CR3) 2009; 2
J-C Weng (6096_CR71) 2020; 9
6096_CR46
H Zhou (6096_CR53) 2020; 23
6096_CR40
6096_CR42
6096_CR41
References_xml – ident: CR22
– ident: CR39
– volume: 24
  start-page: 737
  year: 2021
  end-page: 745
  ident: CR15
  article-title: An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00826-4
– volume: 51
  start-page: 1637
  year: 2019
  end-page: 1644
  ident: CR17
  article-title: Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0516-6
– volume: 51
  start-page: 1670
  year: 2019
  end-page: 1678
  ident: CR49
  article-title: Comparative genetic architectures of schizophrenia in East Asian and European populations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0512-x
– volume: 244
  year: 2021
  ident: CR16
  article-title: Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118603
– ident: CR80
– volume: 3
  start-page: 950
  year: 2019
  end-page: 961
  ident: CR55
  article-title: New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0653-z
– volume: 83
  start-page: 155
  year: 2006
  end-page: 171
  ident: CR74
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.11.020
– ident: CR25
– volume: 50
  start-page: 737
  year: 2018
  end-page: 745
  ident: CR44
  article-title: Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0108-x
– volume: 47
  start-page: 1236
  year: 2015
  end-page: 1241
  ident: CR78
  article-title: An atlas of genetic correlations across human diseases and traits
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– ident: CR42
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: CR12
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: CR69
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 102
  start-page: 042119
  year: 2020
  ident: CR67
  article-title: Characterization of domain formation during random sequential adsorption of stiff linear k-mers onto a square lattice
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.042119
– volume: 113
  start-page: E1968
  year: 2016
  ident: CR33
  article-title: Patterns in the human brain mosaic discriminate males from females
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1523888113
– ident: CR46
– ident: CR19
– volume: 15
  start-page: 652987
  year: 2021
  ident: CR30
  article-title: Three-dimensional convolutional autoencoder extracts features of structural brain images with a ‘diagnostic label-free’ approach: application to schizophrenia datasets
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.652987
– volume: 53
  start-page: 1616
  year: 2021
  end-page: 1621
  ident: CR77
  article-title: A generalized linear mixed model association tool for biobank-scale data
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00954-4
– volume: 10
  year: 2020
  ident: CR48
  article-title: Multi-trait analysis for genome-wide association study of five psychiatric disorders
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-020-00902-6
– volume: 51
  start-page: 1193
  year: 2019
  ident: CR47
  article-title: Publisher Correction: Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0450-7
– volume: 160
  start-page: 636
  year: 2003
  end-page: 645
  ident: CR61
  article-title: The endophenotype concept in psychiatry: etymology and strategic intentions
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.160.4.636
– ident: CR11
– ident: CR57
– volume: 610
  start-page: 444
  year: 2022
  end-page: 447
  ident: CR68
  article-title: Counter the weaponization of genetics research by extremists
  publication-title: Nature
  doi: 10.1038/d41586-022-03252-z
– volume: 47
  start-page: 291
  year: 2015
  end-page: 295
  ident: CR43
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– ident: CR64
– volume: 10
  year: 2019
  ident: CR51
  article-title: Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09480-8
– volume: 41
  start-page: 210
  year: 2010
  end-page: 217
  ident: CR4
  article-title: Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE Consortium
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.569194
– volume: 8
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR79
  article-title: Functional mapping and annotation of genetic associations with FUMA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01261-5
– volume: 115
  start-page: 3162
  year: 2018
  end-page: 3167
  ident: CR62
  article-title: Susceptibility of brain atrophy in Alzheimer’s disease, evidence from functional prioritization in imaging genetics
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706100115
– volume: 51
  start-page: 1749
  year: 2019
  end-page: 1755
  ident: CR76
  article-title: A resource-efficient tool for mixed model association analysis of large-scale data
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0530-8
– volume: 8
  start-page: 153
  year: 2014
  end-page: 182
  ident: CR2
  article-title: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-013-9269-5
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 19
  start-page: 1569
  year: 2016
  end-page: 1582
  ident: CR9
  article-title: Novel genetic loci underlying human intracranial volume identified through genome-wide association
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4398
– ident: CR14
– volume: 520
  start-page: 224
  year: 2015
  end-page: 229
  ident: CR6
  article-title: Common genetic variants influence human subcortical brain structures
  publication-title: Nature
  doi: 10.1038/nature14101
– volume: 68
  start-page: 101871
  year: 2021
  ident: CR35
  article-title: Accurate brain age prediction with lightweight deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101871
– volume: 51
  start-page: 1624
  year: 2019
  end-page: 1636
  ident: CR8
  article-title: Genetic architecture of subcortical brain structures in 38,851 individuals
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0511-y
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: CR5
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 15
  start-page: 654315
  year: 2021
  ident: CR72
  article-title: ASD-SAENet: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2021.654315
– ident: CR56
– ident: CR40
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  ident: CR75
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 12
  start-page: e1001779
  year: 2015
  ident: CR1
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
– volume: 9
  year: 2018
  ident: CR58
  article-title: Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04362-x
– volume: 25
  start-page: 421
  year: 2022
  end-page: 432
  ident: CR63
  article-title: Genetic variants associated with longitudinal changes in brain structure across the lifespan
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01042-4
– volume: 2
  start-page: 73
  year: 2009
  end-page: 80
  ident: CR3
  article-title: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.108.829747
– ident: CR27
– volume: 66
  start-page: 015006
  year: 2021
  ident: CR66
  article-title: 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abcd1a
– volume: 9
  start-page: 658
  year: 2020
  ident: CR71
  article-title: An autoencoder and machine learning model to predict suicidal ideation with brain structural imaging
  publication-title: J. Clin. Med. Res.
– volume: 26
  start-page: 3943
  year: 2021
  end-page: 3955
  ident: CR60
  article-title: Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706)
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0569-z
– volume: 24
  start-page: 17
  year: 2020
  end-page: 26
  ident: CR70
  article-title: Studying the manifold structure of alzheimer’s disease: a deep learning approach using convolutional autoencoders
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2914970
– volume: 26
  start-page: 2190
  year: 2010
  end-page: 2191
  ident: CR45
  article-title: METAL: fast and efficient meta-analysis of genomewide association scans
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 144
  start-page: 1038
  year: 2021
  end-page: 1040
  ident: CR23
  article-title: A robust brain signature region approach for episodic memory performance in older adults
  publication-title: Brain J. Neurol.
  doi: 10.1093/brain/awab140
– ident: CR73
– ident: CR65
– volume: 23
  start-page: 809
  year: 2020
  end-page: 818
  ident: CR53
  article-title: Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0643-5
– volume: 2015
  start-page: 450341
  year: 2015
  ident: CR20
  article-title: MRI segmentation of the human brain: challenges, methods, and applications
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/450341
– volume: 11383
  start-page: 105
  year: 2019
  end-page: 114
  ident: CR21
  article-title: Patient-specific registration of pre-operative and post-recurrence brain tumor MRI scans
  publication-title: Brainlesion
– ident: CR38
– volume: 8
  year: 2017
  ident: CR7
  article-title: Novel genetic loci associated with hippocampal volume
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13624
– volume: 12
  start-page: 399
  year: 2018
  ident: CR34
  article-title: Analysis of human brain structure reveals that the brain ‘types’ typical of males are also typical of females, and vice versa
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00399
– volume: 10
  year: 2019
  ident: CR36
  article-title: Brain age prediction using deep learning uncovers associated sequence variants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13163-9
– ident: CR31
– volume: 249
  year: 2022
  ident: CR37
  article-title: Accurate brain-age models for routine clinical MRI examinations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.118871
– ident: CR13
– volume: 116
  start-page: 3044
  year: 2021
  end-page: 3054
  ident: CR52
  article-title: The impact of removing former drinkers from genome-wide association studies of AUDIT-C
  publication-title: Addiction
  doi: 10.1111/add.15511
– volume: 11
  year: 2020
  ident: CR24
  article-title: Understanding the genetic determinants of the brain with MOSTest
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17368-1
– volume: 89
  start-page: 227
  year: 2021
  end-page: 235
  ident: CR59
  article-title: Genome-wide association analysis of parkinson’s disease and schizophrenia reveals shared genetic architecture and identifies novel risk loci
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.01.026
– volume: 367
  start-page: eaay6690
  year: 2020
  ident: CR10
  article-title: The genetic architecture of the human cerebral cortex
  publication-title: Science
  doi: 10.1126/science.aay6690
– volume: 10
  start-page: 503
  year: 2016
  ident: CR18
  article-title: Reproducibility and bias in healthy brain segmentation: comparison of two popular neuroimaging platforms
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00503
– ident: CR28
– volume: 70
  start-page: 250
  year: 2013
  end-page: 257
  ident: CR32
  article-title: Decoding gender dimorphism of the human brain using multimodal anatomical and diffusion MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.068
– ident: CR41
– volume: 168
  start-page: 649
  year: 2015
  end-page: 659
  ident: CR50
  article-title: Genome-wide association study of schizophrenia in Ashkenazi Jews
  publication-title: Am. J. Med. Genet. B Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.32349
– volume: 51
  start-page: 237
  year: 2019
  end-page: 244
  ident: CR54
  article-title: Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0307-5
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: CR29
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– ident: 6096_CR42
  doi: 10.6084/m9.figshare.25203224.v2
– ident: 6096_CR14
  doi: 10.1038/s41586-018-0571-7
– volume: 520
  start-page: 224
  year: 2015
  ident: 6096_CR6
  publication-title: Nature
  doi: 10.1038/nature14101
– ident: 6096_CR39
– volume: 50
  start-page: 737
  year: 2018
  ident: 6096_CR44
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0108-x
– volume: 562
  start-page: 203
  year: 2018
  ident: 6096_CR75
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 19
  start-page: 1569
  year: 2016
  ident: 6096_CR9
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4398
– ident: 6096_CR19
  doi: 10.1038/s41598-017-02584-5
– volume: 24
  start-page: 17
  year: 2020
  ident: 6096_CR70
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2914970
– volume: 313
  start-page: 504
  year: 2006
  ident: 6096_CR26
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 2
  start-page: 73
  year: 2009
  ident: 6096_CR3
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.108.829747
– volume: 168
  start-page: 649
  year: 2015
  ident: 6096_CR50
  publication-title: Am. J. Med. Genet. B Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.32349
– volume: 11
  year: 2020
  ident: 6096_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17368-1
– volume: 249
  year: 2022
  ident: 6096_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.118871
– volume: 244
  year: 2021
  ident: 6096_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118603
– ident: 6096_CR31
  doi: 10.1109/acpr.2015.7486599
– ident: 6096_CR27
  doi: 10.1007/978-3-319-46723-8_49
– volume: 19
  start-page: 1523
  year: 2016
  ident: 6096_CR5
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 15
  start-page: 652987
  year: 2021
  ident: 6096_CR30
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.652987
– volume: 47
  start-page: 1236
  year: 2015
  ident: 6096_CR78
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3406
– volume: 53
  start-page: 1616
  year: 2021
  ident: 6096_CR77
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00954-4
– ident: 6096_CR40
  doi: 10.6084/m9.figshare.25203230.v2
– volume: 89
  start-page: 227
  year: 2021
  ident: 6096_CR59
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.01.026
– ident: 6096_CR73
– volume: 24
  start-page: 737
  year: 2021
  ident: 6096_CR15
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00826-4
– ident: 6096_CR65
– volume: 115
  start-page: 3162
  year: 2018
  ident: 6096_CR62
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706100115
– volume: 116
  start-page: 3044
  year: 2021
  ident: 6096_CR52
  publication-title: Addiction
  doi: 10.1111/add.15511
– ident: 6096_CR13
– volume: 51
  start-page: 1637
  year: 2019
  ident: 6096_CR17
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0516-6
– volume: 51
  start-page: 1749
  year: 2019
  ident: 6096_CR76
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0530-8
– volume: 3
  start-page: 950
  year: 2019
  ident: 6096_CR55
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0653-z
– volume: 12
  start-page: 399
  year: 2018
  ident: 6096_CR34
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00399
– volume: 8
  start-page: 153
  year: 2014
  ident: 6096_CR2
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-013-9269-5
– volume: 10
  year: 2020
  ident: 6096_CR48
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-020-00902-6
– volume: 51
  start-page: 1670
  year: 2019
  ident: 6096_CR49
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0512-x
– ident: 6096_CR38
  doi: 10.21105/joss.00861
– volume: 47
  start-page: 291
  year: 2015
  ident: 6096_CR43
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– ident: 6096_CR41
  doi: 10.6084/m9.figshare.25203233.v2
– volume: 26
  start-page: 2190
  year: 2010
  ident: 6096_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 70
  start-page: 250
  year: 2013
  ident: 6096_CR32
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.068
– ident: 6096_CR25
  doi: 10.1016/j.artmed.2018.08.008
– volume: 10
  start-page: 503
  year: 2016
  ident: 6096_CR18
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00503
– volume: 2015
  start-page: 450341
  year: 2015
  ident: 6096_CR20
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/450341
– volume: 51
  start-page: 1193
  year: 2019
  ident: 6096_CR47
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0450-7
– ident: 6096_CR11
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 68
  start-page: 101871
  year: 2021
  ident: 6096_CR35
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101871
– volume: 17
  start-page: 825
  year: 2002
  ident: 6096_CR69
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 610
  start-page: 444
  year: 2022
  ident: 6096_CR68
  publication-title: Nature
  doi: 10.1038/d41586-022-03252-z
– volume: 113
  start-page: E1968
  year: 2016
  ident: 6096_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1523888113
– ident: 6096_CR28
  doi: 10.1007/978-3-319-55524-9_14
– ident: 6096_CR57
  doi: 10.1038/s41380-017-0001-5
– volume: 11383
  start-page: 105
  year: 2019
  ident: 6096_CR21
  publication-title: Brainlesion
– volume: 10
  year: 2019
  ident: 6096_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13163-9
– ident: 6096_CR56
– volume: 367
  start-page: eaay6690
  year: 2020
  ident: 6096_CR10
  publication-title: Science
  doi: 10.1126/science.aay6690
– ident: 6096_CR22
  doi: 10.1109/IEMBS.2011.6091212
– volume: 8
  year: 2017
  ident: 6096_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13624
– volume: 23
  start-page: 809
  year: 2020
  ident: 6096_CR53
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0643-5
– volume: 8
  start-page: 1
  year: 2017
  ident: 6096_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01261-5
– ident: 6096_CR80
  doi: 10.6084/m9.figshare.25148744.v2
– volume: 62
  start-page: 774
  year: 2012
  ident: 6096_CR12
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 41
  start-page: 210
  year: 2010
  ident: 6096_CR4
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.569194
– volume: 102
  start-page: 042119
  year: 2020
  ident: 6096_CR67
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.042119
– volume: 83
  start-page: 155
  year: 2006
  ident: 6096_CR74
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.11.020
– volume: 9
  start-page: 658
  year: 2020
  ident: 6096_CR71
  publication-title: J. Clin. Med. Res.
– volume: 10
  year: 2019
  ident: 6096_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09480-8
– ident: 6096_CR46
  doi: 10.1038/s41467-021-23175-z
– volume: 25
  start-page: 421
  year: 2022
  ident: 6096_CR63
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01042-4
– volume: 51
  start-page: 1624
  year: 2019
  ident: 6096_CR8
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0511-y
– volume: 36
  start-page: 61
  year: 2017
  ident: 6096_CR29
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 51
  start-page: 237
  year: 2019
  ident: 6096_CR54
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0307-5
– volume: 26
  start-page: 3943
  year: 2021
  ident: 6096_CR60
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0569-z
– volume: 160
  start-page: 636
  year: 2003
  ident: 6096_CR61
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.160.4.636
– volume: 15
  start-page: 654315
  year: 2021
  ident: 6096_CR72
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2021.654315
– volume: 66
  start-page: 015006
  year: 2021
  ident: 6096_CR66
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abcd1a
– volume: 9
  year: 2018
  ident: 6096_CR58
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04362-x
– ident: 6096_CR64
– volume: 144
  start-page: 1038
  year: 2021
  ident: 6096_CR23
  publication-title: Brain J. Neurol.
  doi: 10.1093/brain/awab140
– volume: 12
  start-page: e1001779
  year: 2015
  ident: 6096_CR1
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001779
SSID ssj0001999634
Score 2.3327925
Snippet Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain...
Abstract Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 414
SubjectTerms 45/43
59/57
631/114
631/208/205
Biobanks
Biomedical and Life Sciences
Brain - diagnostic imaging
Brain architecture
Deep learning
Gene loci
Genetic Loci
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Humans
Life Sciences
Medical imaging
Neuroimaging
Phenotype
Phenotypes
Single-nucleotide polymorphism
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9UwFD7oqODG96M6SgR3GiZN0yZZiYqDG4dZODC7kOYxDIzt9fbegfn3nqS59yLqbIRCoU1Lyjkn52vO4wN4y71oHTpmir6op0JHTS3rGUVf5TWX3nViJpuQR0fq9FQflw23qaRVbtbEvFD70aU98gNcapMt8E5-WPykiTUqRVcLhcZNuIXIpk4pXd_48W6PJaH5RpRaGdaog0nkZCx0TJR1iN6p_M0f5bb9f8Oaf8RJs_s5vP-_E38A9wrwJB9nTXkIN8LwCO7MVJRXj-HyZJjWi7RwTMETH8KC5H6Xm9qkgRR-iTMScrnVRFJ22Ji2cEkq7U2poFcEITBBlUyVkcTuJE-mOV2RjJH0iZSCnP_I9EhP4OTwy_fPX2nhZKBOqHZFGxbb4B0CPc6dFNEKKxvdt9Yp_M3W3nZo4EFrrpiNqpfaxVg3XjsbrbSqa57C3jAO4TkQvOxt46XtlRAyctW2PLWzw3Ovom0qqDeSMa40LE-8GRcmB84bZWZpGpSmydI0soJ322cWc7uOa0d_SgLfjkyttvOFcXlmiuWaHr9YoZ-3vA0iOPwjrp1mLATWoyJ3rIL9jdxNsf_J7IRewZvtbbTcFI6xQxjXeYzgiAd5XcGzWc22M0nhWgTHuoL3G73bvfzfH_Ti-rm8hLs8qz4e7T7srZbr8Apuu8vV-bR8nW3nFyKSH94
  priority: 102
  providerName: ProQuest
Title Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging
URI https://link.springer.com/article/10.1038/s42003-024-06096-7
https://www.ncbi.nlm.nih.gov/pubmed/38580839
https://www.proquest.com/docview/3033763267
https://www.proquest.com/docview/3034243921
https://doaj.org/article/b0f58036a25e4ec1841c900ee0bc6460
Volume 7
WOSCitedRecordID wos001197447800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1daxQxcNBWwRfx2631iOCbLs1ls5vk0UqLPvRYxML5FLL5kELdO7p3hf77TpK9a8WvF2HJQjYbksxMZiaZD4C3zPHaImMukRd1JVdBlYZ2tERe5RQTzjY8J5sQs5mcz1V7K9VXtAnL4YHzwh10NNQSt1nDas-9RYVkahWl3tMO-2mStk6FuqVMpdOVKMdXfPSSoZU8GHgyw0KWVNIG5fZS_MSJUsD-30mZv9yQJsZz_AgejhIj-ZBH-hju-P4J3M85JK-ewuVpP6yXkeIH74jzfklSoMqNU1FPxsQQ34lPflIDiWZdi3j2SqJPbrThvCIouxLEpejSSMwNyMiQ7QzJIpAuZpMgZz9SXqNncHp89PXjp3JMplBaLutVWeE6emdRQmPMCh4MN6JSXW2sRP1YOdMgZXqlmKQmyE4oG8K0csqaYISRTfUcdvpF718CwWpnKidMJzkXgcm6ZjEOHb47GUxVwHSzsNqOkcZjwotznW68K6kzMDQCQydgaFHAu-0_yxxn46-tDyO8ti1jjOxUgZijR8zR_8KcAvY30NYj4Q4aOXrccnE-BbzZfkaSi_copveLdWrDGQpybFrAi4wl25HEe1aUalUB7zdoc9P5nye09z8m9AoesITf-NT7sLO6WPvXcM9ers6GiwncFXM5gd3Do1n7ZZLIBcsT1sZSYLnbfj5pv10D6iYXhg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFG9jhPbB4R4Va1aVj20Um_GsZ2qEk2WzW7R_il-I2Mn2RUCeusBKVKkrBPFm29e9sx8AC-Z47lFw5yiLSpTriqVGlrSFG2VU0w4W_CObEKMx_L4WB2swc-hFiakVQ46MSpq19iwRr6FqjbIAivEu8n3NLBGhd3VgUKjg8WeX_zAkK19u_sJv-8rxrY_H37cSXtWgdRymc_SjFa5dxZdFcas4JXhRmSqzI2VGCgqZwqEqFeKSWoqWQplq2qUOWVNZYSRRYbPvQJXeegsFlIF2cFqTSdEDxnva3NoJrdaHpO_0BCmtMBoIRW_2b9IE_A33_aPfdlo7rZv_29_1B241TvW5H0nCXdhzdf34HpHtbm4D-dHdTufBMXYekec9xMS-3kOtVc16fkzToiP5WQtCdlvTViiJqF0OaS6Lgi6-ARFLlR-ErNCNmm7dEzSVKQMpBvk9CzSPz2Ao0uZ9ENYr5vaPwKCl53JnDCl5FxUTOY5C-368FzKymQJjAYkaNs3ZA-8IN90TAzIpO7QoxE9OqJHiwReL--ZdO1ILhz9IQBsOTK0Eo8XmumJ7jWTLnHGEv0Yw3LPvcWIf2QVpd7TEgW1oAlsDjjTvX5r9QpkCbxY_oyaKWw3mdo38ziGM_R32SiBjQ7WyzcJ29Ho_KsE3gw4Xz383xN6fPG7PIcbO4df9vX-7njvCdxkUezwyDdhfTad-6dwzZ7PTtvpsyi3BL5eNv5_AUQVff4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+deep+representation+learning+enables+phenotype+discovery+for+genetic+association+studies+of+brain+imaging&rft.jtitle=Communications+biology&rft.au=Khush+Patel&rft.au=Ziqian+Xie&rft.au=Hao+Yuan&rft.au=Sheikh+Muhammad+Saiful+Islam&rft.date=2024-04-05&rft.pub=Nature+Portfolio&rft.eissn=2399-3642&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs42003-024-06096-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0f58036a25e4ec1841c900ee0bc6460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon