Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy
Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into s...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 14; H. 1; S. 12483 - 21 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
30.05.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice. |
|---|---|
| AbstractList | Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice. Abstract Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice. Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice. |
| ArticleNumber | 12483 |
| Author | Alturki, Fahd A. Aljalal, Majid Aldosari, Saeed A. Molinas, Marta |
| Author_xml | – sequence: 1 givenname: Majid surname: Aljalal fullname: Aljalal, Majid email: maljalal@ksu.edu.sa organization: Department of Electrical Engineering, College of Engineering, King Saud University – sequence: 2 givenname: Saeed A. surname: Aldosari fullname: Aldosari, Saeed A. organization: Department of Electrical Engineering, College of Engineering, King Saud University – sequence: 3 givenname: Marta surname: Molinas fullname: Molinas, Marta organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology – sequence: 4 givenname: Fahd A. surname: Alturki fullname: Alturki, Fahd A. organization: Department of Electrical Engineering, College of Engineering, King Saud University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38816409$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhSNUREvpC7BAltiwMfgncRx2aDSUkYpYAGvLsW8GjzJ2sZ2RhsfgiXEmLaAu6o0t-ztH91zf59WZDx6q6iUlbynh8l2qadNJTFiNBaeS4OOT6oKRusGMM3b23_m8ukppR8pqWFfT7ll1zqWkoibdRfX7K4xgsvNbtF5fI_NDew9jQtpbNIDOU4SEpjS_76cxOxz63cwfAIXb7Pbul84ueDSEiLQxU9QZ0OfVBlnIMxf8e3TQo7MLtjiNoA-ASx6cppMdDlNGKc_i7fFF9XTQY4Kru_2y-v5x_W31Cd98ud6sPtxgU8smYwY1CMN6QSynVoLhpJG6bTpiO2g54cZoy3sJrC1Ze2KlGGomh9Y2praC8stqs_jaoHfqNrq9jkcVtFOnixC3SsfszAiKMCANbc3QFy0RVGvRi4ExSqCThuri9Wbxuo3h5wQpq71LBsZRewhTUpwIXjetEKSgrx-guzBFX5LOFOOUtKfiXt1RU78H-7e8-58rgFwAE0NKEQZlXD41ubTRjYoSNc-JWuakJKjVaU7UsUjZA-m9-6MivohSgf0W4r-yH1H9AV000WQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3585963 crossref_primary_10_1016_j_cmpb_2024_108506 crossref_primary_10_3390_app15010149 crossref_primary_10_1109_ACCESS_2025_3541176 crossref_primary_10_3390_app15052328 crossref_primary_10_1007_s10548_025_01106_1 |
| Cites_doi | 10.1186/s13195-022-01115-3 10.3390/app12115413 10.1109/4235.996017 10.1186/s13634-015-0251-9 10.1109/TNSRE.2020.3013429 10.1007/s11633-019-1197-4 10.3389/fnins.2020.00593 10.1038/s41598-022-07517-5 10.3390/bioengineering10060664 10.1212/WNL.54.3.581 10.1016/j.bspc.2020.102223 10.1038/s41598-022-23247-0 10.1109/eSmarTA59349.2023.10293374 10.1186/s12883-020-01728-x 10.1016/j.neuroimage.2012.04.056 10.1016/j.bspc.2023.105462 10.1038/s41598-023-49048-7 10.1186/s12911-018-0613-y 10.1016/j.jalz.2015.02.003 10.1007/s11370-020-00328-5 10.1109/ACCESS.2021.3056619 10.1038/s41598-023-32664-8 10.1016/j.artmed.2019.07.006 10.3390/bios11120499 10.1155/2022/2014001 10.1016/j.irbm.2018.11.007 10.1007/978-0-387-39940-9_565 10.1162/evco.1994.2.3.221 10.1109/TSP.2013.2288675 10.3390/act10070152 10.1038/s41598-022-26644-7 10.1136/bmj.b1349 10.1016/j.bspc.2019.101559 10.1109/TNSRE.2023.3347032 10.4103/2228-7477.175869 10.1023/A:1010933404324 10.1023/A:1009715923555 10.1109/TETCI.2022.3186180 10.1016/j.eswa.2015.10.049 10.1136/jnnp.2005.074336 10.1016/j.bbr.2019.03.004 10.1109/TNSRE.2019.2911970 10.3389/fnagi.2022.836568 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-024-63180-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_02e0517cfb5c4061aa6b6f2210e98c1a 38816409 10_1038_s41598_024_63180_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Deanship of Scientific Research, King Saud University grantid: RSPD2023R funderid: http://dx.doi.org/10.13039/501100011665 – fundername: Deanship of Scientific Research, King Saud University grantid: RSPD2023R |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c485t-2e4e6c2b60d31d8ec3058a7590d9e7303ccad3b8e27164b0d86f428f7d5c4d613 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236334900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:44:36 EDT 2025 Thu Sep 04 18:02:40 EDT 2025 Tue Oct 07 07:57:10 EDT 2025 Mon Jul 21 05:58:41 EDT 2025 Sat Nov 29 02:13:11 EST 2025 Tue Nov 18 22:49:44 EST 2025 Fri Feb 21 02:37:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | EEG channel selection MCI Feature selection Multi-objective optimization NSGA Machine learning |
| Language | English |
| License | 2024. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-2e4e6c2b60d31d8ec3058a7590d9e7303ccad3b8e27164b0d86f428f7d5c4d613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3062310761?pq-origsite=%requestingapplication% |
| PMID | 38816409 |
| PQID | 3062310761 |
| PQPubID | 2041939 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_02e0517cfb5c4061aa6b6f2210e98c1a proquest_miscellaneous_3063457660 proquest_journals_3062310761 pubmed_primary_38816409 crossref_citationtrail_10_1038_s41598_024_63180_y crossref_primary_10_1038_s41598_024_63180_y springer_journals_10_1038_s41598_024_63180_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-30 |
| PublicationDateYYYYMMDD | 2024-05-30 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | LeeKChoiKMParkSLeeSHImCHSelection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairmentAlzheimer's Res. Ther.202214117010.1186/s13195-022-01115-3 AljalalMMild cognitive impairment detection with optimally selected EEG channels based on variational mode decomposition and supervised machine learningBiomed. Signal Process. Control20248710.1016/j.bspc.2023.105462 PetersenRCMemory and MRI-based hippocampal volumes in aging and ADNeurology20005435815811:STN:280:DC%2BD3c7kt12kuw%3D%3D1068078610.1212/WNL.54.3.581 DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20226218219710.1109/4235.996017 SharmaNKolekarMHJhaKKumarYEEG and cognitive biomarkers based mild cognitive impairment diagnosisIrbm201940211312110.1016/j.irbm.2018.11.007 SmrdelAUse of common spatial patterns for early detection of Parkinson’s diseaseSci. Rep.2022121187932022NatSR..1218793S1:CAS:528:DC%2BB38XivVahsLbI36335198963721310.1038/s41598-022-23247-0 BarekatainMThe relationship between regional brain volumes and the extent of coronary artery disease in mild cognitive impairmentJ. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci.2014198739 KashefpoorMRabbaniHBarekatainMAutomatic diagnosis of mild cognitive impairment using electroencephalogram spectral featuresJ. Med. Signals Sens.201661253227014609478696010.4103/2228-7477.175869 ShiYLiYKoikeYSparse logistic regression-based EEG channel optimization algorithm for improved universality across participantsBioengineering2023106664373705951029530710.3390/bioengineering10060664 BurgesCJA tutorial on support vector machines for pattern recognitionData Min. Knowl. Discov.19982212116710.1023/A:1009715923555 AssociationA2015 Alzheimer's disease facts and figuresAlzheimers Dement.201511333238410.1016/j.jalz.2015.02.003 KashefpoorMRabbaniHBarekatainMSupervised dictionary learning of EEG signals for mild cognitive impairment diagnosisBiomed. Signal Process. Control20165310.1016/j.bspc.2019.101559 WeinbergerKQSaulLKDistance metric learning for large margin nearest neighbor classificationJ. Mach. Learn. Res.200910207244 SiulySAlçinÖFKabirEŞengürAWangHZhangYWhittakerFA new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signalsIEEE Trans. Neural Syst. Rehab. Eng.20202891966197610.1109/TNSRE.2020.3013429 RoseSEDiffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairmentJ. Neurol. Neurosurg. Psychiatry20067710112211281:STN:280:DC%2BD28rlsVOntQ%3D%3D16754694207753310.1136/jnnp.2005.074336 YinJCaoJSiulySWangHAn integrated MCI detection framework based on spectral-temporal analysisInt. J. Autom. Comput.20191678679910.1007/s11633-019-1197-4 AljalalMIbrahimSDjemalRKoWComprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signalsIntel. Serv. Robot.202013453956310.1007/s11370-020-00328-5 Yong, Y. A., Hurley, N. J. & Silvestre, G. C. Single-trial EEG classification for brain-computer interface using wavelet decomposition. In 2005 13th European Signal Processing Conference (IEEE), 1–4 (2005). DragomiretskiyKZossoDVariational mode decompositionIEEE Trans. Signal Process.20136235315442014ITSP...62..531D316029310.1109/TSP.2013.2288675 AtkinsonJCamposDImproving BCI-based emotion recognition by combining EEG feature selection and kernel classifiersExpert Syst. Appl.201647354110.1016/j.eswa.2015.10.049 SaidAGökerHAutomatic detection of mild cognitive impairment from EEG recordings using discrete wavelet transform leader and ensemble learning methodsDicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi20231414754 MoctezumaLAMolinasMEEG channel-selection method for epileptic-seizure classification based on multi-objective optimizationFront. Neurosci.20201453763310.3389/fnins.2020.00593 Burns, A. & Iliffe, S. Alzheimer’s disease. BMJ338 (2009). HsiaoYTMCI Detection using kernel eigen-relative-power features of EEG signalsActuators202110715210.3390/act10070152 VicchiettiMLRamosFMBettingLECampanharoASComputational methods of EEG signals analysis for Alzheimer’s disease classificationSci. Rep.202313181842023NatSR..13.8184V1:CAS:528:DC%2BB3sXhtVKitLjN372103971019994010.1038/s41598-023-32664-8 AlotaibyTEl-SamieFEAAlshebeiliSAAhmadIA review of channel selection algorithms for EEG signal processingEURASIP J. Adv. Signal Process.2015201512110.1186/s13634-015-0251-9 MovahedRARezaeianMAutomatic diagnosis of mild cognitive impairment based on spectral, functional connectivity, and nonlinear EEG-based featuresComput. Math. Methods Med.2022202211710.1155/2022/2014001 KhatunSMorshedBIBidelmanGMA single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responsesIEEE Trans. Neural Syst. Rehab. Eng.20192751063107010.1109/TNSRE.2019.2911970 EEGLAB. sccn.ucsd.edu. https://sccn.ucsd.edu/eeglab/index.php DudaROHartPEPattern Classification2006Wiley AlturkiFAAljalalMAbdurraqeebAMAlsharabiKAl-Shamma.aAACommon spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disordersIEEE Access20219243342434910.1109/ACCESS.2021.3056619 World Health Organization, “Dementia,” World Health Organization, (2023). WestmanEMuehlboeckJSSimmonsACombining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversionNeuroImage20126212292382258017010.1016/j.neuroimage.2012.04.056 JahmunahVAutomated detection of schizophrenia using nonlinear signal processing methodsArtif. Intell. Med.20191001:STN:280:DC%2BB3MnntlGrtQ%3D%3D3160734910.1016/j.artmed.2019.07.006 AhadNSiulySKabirELiYExploring frequency band-based biomarkers of EEG signals for mild cognitive impairment detectionIEEE Trans. Neural Syst. Rehab. Eng.20243218919910.1109/TNSRE.2023.3347032 TengLPredicting MCI progression with FDG-PET and cognitive scores: A longitudinal studyBMC Neurol.2020201110.1186/s12883-020-01728-x HadiyosoSCynthiaCLZakariaHEarly detection of mild cognitive impairment using quantitative analysis of EEG signalsIEEE Xplore2019115 WuHComputed tomography density and β-amyloid deposition of intraorbital optic nerve may assist in diagnosing mild cognitive impairment and Alzheimer’s disease: A 18f-flutemetamol positron emission tomography/computed tomography studyFront. Aging Neurosci.2022141:CAS:528:DC%2BB38Xhs12qtrrP35370601897030710.3389/fnagi.2022.836568 OltuBAkşahinMFKibaroğluSA novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detectionBiomed. Signal Process. Control20216310.1016/j.bspc.2020.102223 BanzhafWNordinPKellerREFranconeFDGenetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and ITS applications1998Morgan Kaufmann Publishers Inc BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324 US Food and Drug Administration. FDA grants accelerated approval for alzheimer’s disease treatment. US Food and Drug Administration: Rockville, MD, USA (2023). WuC-TResting-state EEG signal for major depressive disorder detection: A systematic validation on a large and diverse datasetBiosensors2021111249934940256869934810.3390/bios11120499 MoctezumaLAAbeTMolinasMTwo-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithmSci. Rep.202212135232022NatSR..12.3523M1:CAS:528:DC%2BB38XlvVemurc%3D35241745889447910.1038/s41598-022-07517-5 SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221 AljalalMAldosariSAMolinasMAlSharabiKAlturkiFADetection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniquesSci. Rep.2022121225472022NatSR..1222547A1:CAS:528:DC%2BB3sXhtFOh36581646980036910.1038/s41598-022-26644-7 RogalaJEnhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysisSci. Rep.2023131217482023NatSR..1321748R1:CAS:528:DC%2BB3sXisF2js7bM380660461070964710.1038/s41598-023-49048-7 AlviAMSiulySWangHA long short-term memory based framework for early detection of mild cognitive impairment from EEG signalsIEEE Trans. Emerging Top. Comput. Intell.20227237538810.1109/TETCI.2022.3186180 PirroneDWeitschekEDi PaoloPDe SalvoSDe ColaMCEEG signal processing and supervised machine learning to early diagnose Alzheimer’s diseaseAppl. Sci.2022121154131:CAS:528:DC%2BB38XhsVyksb7K10.3390/app12115413 Refaeilzadeh, P., Tang, L. & Liu, H. Cross-validation. Encyclopedia of Database Syst., 532–538 (2009). ShengJA novel joint HCPMMP method for automatically classifying Alzheimer’s and different stage MCI patientsBehav Brain Res.20193652102213083615810.1016/j.bbr.2019.03.004 Aljalal, M., Aldosari, S. A., Molinas, M., AlSharabi, K. & Alturki, F. A. Mild Cognitive Impairment Detection from EEG Signals Using Combination of EMD Decomposition and Machine Learning. In 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA) (IEEE), 1–8 (2023). Alzheimer's Association. Treatments and Research. Alzheimer’s Disease and Dementia (2019). Prince, M., Albanese, E., Guerchet, M. & Prina, M. World Alzheimer Report 2014. Dementia and Risk Reduction: An analysis of protective and modifiable risk factors (Doctoral dissertation, Alzheimer's Disease International), (2014). EEG Signals from Normal and MCI (Mild Cognitive Impairment) Cases. Available: https://misp.mui.ac.ir/en/eeg-data-0. FisconGCombining EEG signal processing with supervised methods for Alzheimer’s patients classificationBMC Med. Inform. Decis. Mak.20181811010.1186/s12911-018-0613-y K Deb (63180_CR53) 2022; 6 KQ Weinberger (63180_CR49) 2009; 10 A Smrdel (63180_CR20) 2022; 12 A Said (63180_CR33) 2023; 14 CJ Burges (63180_CR48) 1998; 2 N Ahad (63180_CR35) 2024; 32 AM Alvi (63180_CR30) 2022; 7 M Aljalal (63180_CR21) 2022; 12 B Oltu (63180_CR38) 2021; 63 J Yin (63180_CR27) 2019; 16 D Pirrone (63180_CR39) 2022; 12 H Wu (63180_CR10) 2022; 14 FA Alturki (63180_CR16) 2021; 9 LA Moctezuma (63180_CR18) 2020; 14 J Atkinson (63180_CR56) 2016; 47 S Siuly (63180_CR28) 2020; 28 V Jahmunah (63180_CR19) 2019; 100 63180_CR41 E Westman (63180_CR11) 2012; 62 ML Vicchietti (63180_CR14) 2023; 13 RA Movahed (63180_CR32) 2022; 2022 G Fiscon (63180_CR36) 2018; 18 K Lee (63180_CR31) 2022; 14 S Hadiyoso (63180_CR26) 2019; 1 M Kashefpoor (63180_CR24) 2016; 6 C-T Wu (63180_CR17) 2021; 11 63180_CR34 J Sheng (63180_CR13) 2019; 365 SE Rose (63180_CR8) 2006; 77 M Aljalal (63180_CR12) 2020; 13 S Khatun (63180_CR23) 2019; 27 63180_CR50 A Association (63180_CR4) 2015; 11 63180_CR6 RO Duda (63180_CR47) 2006 M Aljalal (63180_CR40) 2024; 87 Y Shi (63180_CR54) 2023; 10 63180_CR2 63180_CR3 63180_CR5 K Dragomiretskiy (63180_CR45) 2013; 62 RC Petersen (63180_CR7) 2000; 54 63180_CR1 63180_CR43 L Teng (63180_CR9) 2020; 20 M Barekatain (63180_CR42) 2014; 19 63180_CR44 L Breiman (63180_CR46) 2001; 45 LA Moctezuma (63180_CR22) 2022; 12 M Kashefpoor (63180_CR25) 2016; 53 J Rogala (63180_CR15) 2023; 13 YT Hsiao (63180_CR29) 2021; 10 W Banzhaf (63180_CR51) 1998 N Srinivas (63180_CR52) 1994; 2 T Alotaiby (63180_CR55) 2015; 2015 N Sharma (63180_CR37) 2019; 40 38871767 - Sci Rep. 2024 Jun 13;14(1):13627. doi: 10.1038/s41598-024-64545-z |
| References_xml | – reference: AhadNSiulySKabirELiYExploring frequency band-based biomarkers of EEG signals for mild cognitive impairment detectionIEEE Trans. Neural Syst. Rehab. Eng.20243218919910.1109/TNSRE.2023.3347032 – reference: WestmanEMuehlboeckJSSimmonsACombining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversionNeuroImage20126212292382258017010.1016/j.neuroimage.2012.04.056 – reference: BarekatainMThe relationship between regional brain volumes and the extent of coronary artery disease in mild cognitive impairmentJ. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci.2014198739 – reference: PetersenRCMemory and MRI-based hippocampal volumes in aging and ADNeurology20005435815811:STN:280:DC%2BD3c7kt12kuw%3D%3D1068078610.1212/WNL.54.3.581 – reference: MovahedRARezaeianMAutomatic diagnosis of mild cognitive impairment based on spectral, functional connectivity, and nonlinear EEG-based featuresComput. Math. Methods Med.2022202211710.1155/2022/2014001 – reference: AtkinsonJCamposDImproving BCI-based emotion recognition by combining EEG feature selection and kernel classifiersExpert Syst. Appl.201647354110.1016/j.eswa.2015.10.049 – reference: EEGLAB. sccn.ucsd.edu. https://sccn.ucsd.edu/eeglab/index.php – reference: MoctezumaLAMolinasMEEG channel-selection method for epileptic-seizure classification based on multi-objective optimizationFront. Neurosci.20201453763310.3389/fnins.2020.00593 – reference: ShengJA novel joint HCPMMP method for automatically classifying Alzheimer’s and different stage MCI patientsBehav Brain Res.20193652102213083615810.1016/j.bbr.2019.03.004 – reference: World Health Organization, “Dementia,” World Health Organization, (2023). – reference: AlturkiFAAljalalMAbdurraqeebAMAlsharabiKAl-Shamma.aAACommon spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disordersIEEE Access20219243342434910.1109/ACCESS.2021.3056619 – reference: Yong, Y. A., Hurley, N. J. & Silvestre, G. C. Single-trial EEG classification for brain-computer interface using wavelet decomposition. In 2005 13th European Signal Processing Conference (IEEE), 1–4 (2005). – reference: LeeKChoiKMParkSLeeSHImCHSelection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairmentAlzheimer's Res. Ther.202214117010.1186/s13195-022-01115-3 – reference: AljalalMIbrahimSDjemalRKoWComprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signalsIntel. Serv. Robot.202013453956310.1007/s11370-020-00328-5 – reference: AljalalMMild cognitive impairment detection with optimally selected EEG channels based on variational mode decomposition and supervised machine learningBiomed. Signal Process. Control20248710.1016/j.bspc.2023.105462 – reference: AljalalMAldosariSAMolinasMAlSharabiKAlturkiFADetection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniquesSci. Rep.2022121225472022NatSR..1222547A1:CAS:528:DC%2BB3sXhtFOh36581646980036910.1038/s41598-022-26644-7 – reference: HadiyosoSCynthiaCLZakariaHEarly detection of mild cognitive impairment using quantitative analysis of EEG signalsIEEE Xplore2019115 – reference: PirroneDWeitschekEDi PaoloPDe SalvoSDe ColaMCEEG signal processing and supervised machine learning to early diagnose Alzheimer’s diseaseAppl. Sci.2022121154131:CAS:528:DC%2BB38XhsVyksb7K10.3390/app12115413 – reference: ShiYLiYKoikeYSparse logistic regression-based EEG channel optimization algorithm for improved universality across participantsBioengineering2023106664373705951029530710.3390/bioengineering10060664 – reference: YinJCaoJSiulySWangHAn integrated MCI detection framework based on spectral-temporal analysisInt. J. Autom. Comput.20191678679910.1007/s11633-019-1197-4 – reference: BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324 – reference: SaidAGökerHAutomatic detection of mild cognitive impairment from EEG recordings using discrete wavelet transform leader and ensemble learning methodsDicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi20231414754 – reference: RogalaJEnhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysisSci. Rep.2023131217482023NatSR..1321748R1:CAS:528:DC%2BB3sXisF2js7bM380660461070964710.1038/s41598-023-49048-7 – reference: MoctezumaLAAbeTMolinasMTwo-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithmSci. Rep.202212135232022NatSR..12.3523M1:CAS:528:DC%2BB38XlvVemurc%3D35241745889447910.1038/s41598-022-07517-5 – reference: WeinbergerKQSaulLKDistance metric learning for large margin nearest neighbor classificationJ. Mach. Learn. Res.200910207244 – reference: FisconGCombining EEG signal processing with supervised methods for Alzheimer’s patients classificationBMC Med. Inform. Decis. Mak.20181811010.1186/s12911-018-0613-y – reference: WuHComputed tomography density and β-amyloid deposition of intraorbital optic nerve may assist in diagnosing mild cognitive impairment and Alzheimer’s disease: A 18f-flutemetamol positron emission tomography/computed tomography studyFront. Aging Neurosci.2022141:CAS:528:DC%2BB38Xhs12qtrrP35370601897030710.3389/fnagi.2022.836568 – reference: KashefpoorMRabbaniHBarekatainMSupervised dictionary learning of EEG signals for mild cognitive impairment diagnosisBiomed. Signal Process. Control20165310.1016/j.bspc.2019.101559 – reference: AlviAMSiulySWangHA long short-term memory based framework for early detection of mild cognitive impairment from EEG signalsIEEE Trans. Emerging Top. Comput. Intell.20227237538810.1109/TETCI.2022.3186180 – reference: Aljalal, M., Aldosari, S. A., Molinas, M., AlSharabi, K. & Alturki, F. A. Mild Cognitive Impairment Detection from EEG Signals Using Combination of EMD Decomposition and Machine Learning. In 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA) (IEEE), 1–8 (2023). – reference: SharmaNKolekarMHJhaKKumarYEEG and cognitive biomarkers based mild cognitive impairment diagnosisIrbm201940211312110.1016/j.irbm.2018.11.007 – reference: SmrdelAUse of common spatial patterns for early detection of Parkinson’s diseaseSci. Rep.2022121187932022NatSR..1218793S1:CAS:528:DC%2BB38XivVahsLbI36335198963721310.1038/s41598-022-23247-0 – reference: DudaROHartPEPattern Classification2006Wiley – reference: VicchiettiMLRamosFMBettingLECampanharoASComputational methods of EEG signals analysis for Alzheimer’s disease classificationSci. Rep.202313181842023NatSR..13.8184V1:CAS:528:DC%2BB3sXhtVKitLjN372103971019994010.1038/s41598-023-32664-8 – reference: JahmunahVAutomated detection of schizophrenia using nonlinear signal processing methodsArtif. Intell. Med.20191001:STN:280:DC%2BB3MnntlGrtQ%3D%3D3160734910.1016/j.artmed.2019.07.006 – reference: BanzhafWNordinPKellerREFranconeFDGenetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and ITS applications1998Morgan Kaufmann Publishers Inc – reference: HsiaoYTMCI Detection using kernel eigen-relative-power features of EEG signalsActuators202110715210.3390/act10070152 – reference: US Food and Drug Administration. FDA grants accelerated approval for alzheimer’s disease treatment. US Food and Drug Administration: Rockville, MD, USA (2023). – reference: SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221 – reference: TengLPredicting MCI progression with FDG-PET and cognitive scores: A longitudinal studyBMC Neurol.2020201110.1186/s12883-020-01728-x – reference: DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20226218219710.1109/4235.996017 – reference: BurgesCJA tutorial on support vector machines for pattern recognitionData Min. Knowl. Discov.19982212116710.1023/A:1009715923555 – reference: RoseSEDiffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairmentJ. Neurol. Neurosurg. Psychiatry20067710112211281:STN:280:DC%2BD28rlsVOntQ%3D%3D16754694207753310.1136/jnnp.2005.074336 – reference: Prince, M., Albanese, E., Guerchet, M. & Prina, M. World Alzheimer Report 2014. Dementia and Risk Reduction: An analysis of protective and modifiable risk factors (Doctoral dissertation, Alzheimer's Disease International), (2014). – reference: DragomiretskiyKZossoDVariational mode decompositionIEEE Trans. Signal Process.20136235315442014ITSP...62..531D316029310.1109/TSP.2013.2288675 – reference: OltuBAkşahinMFKibaroğluSA novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detectionBiomed. Signal Process. Control20216310.1016/j.bspc.2020.102223 – reference: WuC-TResting-state EEG signal for major depressive disorder detection: A systematic validation on a large and diverse datasetBiosensors2021111249934940256869934810.3390/bios11120499 – reference: KhatunSMorshedBIBidelmanGMA single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responsesIEEE Trans. Neural Syst. Rehab. Eng.20192751063107010.1109/TNSRE.2019.2911970 – reference: AssociationA2015 Alzheimer's disease facts and figuresAlzheimers Dement.201511333238410.1016/j.jalz.2015.02.003 – reference: SiulySAlçinÖFKabirEŞengürAWangHZhangYWhittakerFA new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signalsIEEE Trans. Neural Syst. Rehab. Eng.20202891966197610.1109/TNSRE.2020.3013429 – reference: Alzheimer's Association. Treatments and Research. Alzheimer’s Disease and Dementia (2019). – reference: Refaeilzadeh, P., Tang, L. & Liu, H. Cross-validation. Encyclopedia of Database Syst., 532–538 (2009). – reference: Burns, A. & Iliffe, S. Alzheimer’s disease. BMJ338 (2009). – reference: AlotaibyTEl-SamieFEAAlshebeiliSAAhmadIA review of channel selection algorithms for EEG signal processingEURASIP J. Adv. Signal Process.2015201512110.1186/s13634-015-0251-9 – reference: KashefpoorMRabbaniHBarekatainMAutomatic diagnosis of mild cognitive impairment using electroencephalogram spectral featuresJ. Med. Signals Sens.201661253227014609478696010.4103/2228-7477.175869 – reference: EEG Signals from Normal and MCI (Mild Cognitive Impairment) Cases. Available: https://misp.mui.ac.ir/en/eeg-data-0. – volume-title: Pattern Classification year: 2006 ident: 63180_CR47 – volume: 14 start-page: 170 issue: 1 year: 2022 ident: 63180_CR31 publication-title: Alzheimer's Res. Ther. doi: 10.1186/s13195-022-01115-3 – volume: 19 start-page: 739 issue: 8 year: 2014 ident: 63180_CR42 publication-title: J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. – volume: 12 start-page: 5413 issue: 11 year: 2022 ident: 63180_CR39 publication-title: Appl. Sci. doi: 10.3390/app12115413 – volume: 6 start-page: 182 issue: 2 year: 2022 ident: 63180_CR53 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 2015 start-page: 1 year: 2015 ident: 63180_CR55 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-015-0251-9 – ident: 63180_CR1 – ident: 63180_CR5 – ident: 63180_CR43 – volume: 28 start-page: 1966 issue: 9 year: 2020 ident: 63180_CR28 publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2020.3013429 – volume: 16 start-page: 786 year: 2019 ident: 63180_CR27 publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-019-1197-4 – volume: 14 start-page: 537633 year: 2020 ident: 63180_CR18 publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00593 – volume: 12 start-page: 3523 issue: 1 year: 2022 ident: 63180_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-022-07517-5 – volume: 10 start-page: 664 issue: 6 year: 2023 ident: 63180_CR54 publication-title: Bioengineering doi: 10.3390/bioengineering10060664 – volume: 54 start-page: 581 issue: 3 year: 2000 ident: 63180_CR7 publication-title: Neurology doi: 10.1212/WNL.54.3.581 – volume: 63 year: 2021 ident: 63180_CR38 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102223 – volume: 1 start-page: 1 year: 2019 ident: 63180_CR26 publication-title: IEEE Xplore – volume: 12 start-page: 18793 issue: 1 year: 2022 ident: 63180_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-022-23247-0 – volume: 14 start-page: 47 issue: 1 year: 2023 ident: 63180_CR33 publication-title: Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi – ident: 63180_CR34 doi: 10.1109/eSmarTA59349.2023.10293374 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 63180_CR9 publication-title: BMC Neurol. doi: 10.1186/s12883-020-01728-x – ident: 63180_CR6 – volume: 62 start-page: 229 issue: 1 year: 2012 ident: 63180_CR11 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 87 year: 2024 ident: 63180_CR40 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105462 – volume: 13 start-page: 21748 issue: 1 year: 2023 ident: 63180_CR15 publication-title: Sci. Rep. doi: 10.1038/s41598-023-49048-7 – volume-title: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and ITS applications year: 1998 ident: 63180_CR51 – volume: 18 start-page: 1 year: 2018 ident: 63180_CR36 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-018-0613-y – volume: 10 start-page: 207 year: 2009 ident: 63180_CR49 publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 332 issue: 3 year: 2015 ident: 63180_CR4 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2015.02.003 – volume: 13 start-page: 539 issue: 4 year: 2020 ident: 63180_CR12 publication-title: Intel. Serv. Robot. doi: 10.1007/s11370-020-00328-5 – volume: 9 start-page: 24334 year: 2021 ident: 63180_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056619 – volume: 13 start-page: 8184 issue: 1 year: 2023 ident: 63180_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-023-32664-8 – volume: 100 year: 2019 ident: 63180_CR19 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.07.006 – volume: 11 start-page: 499 issue: 12 year: 2021 ident: 63180_CR17 publication-title: Biosensors doi: 10.3390/bios11120499 – ident: 63180_CR3 – volume: 2022 start-page: 1 year: 2022 ident: 63180_CR32 publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/2014001 – volume: 40 start-page: 113 issue: 2 year: 2019 ident: 63180_CR37 publication-title: Irbm doi: 10.1016/j.irbm.2018.11.007 – ident: 63180_CR41 – ident: 63180_CR50 doi: 10.1007/978-0-387-39940-9_565 – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 63180_CR52 publication-title: Evol. Comput. doi: 10.1162/evco.1994.2.3.221 – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 63180_CR45 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 10 start-page: 152 issue: 7 year: 2021 ident: 63180_CR29 publication-title: Actuators doi: 10.3390/act10070152 – volume: 12 start-page: 22547 issue: 1 year: 2022 ident: 63180_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-022-26644-7 – ident: 63180_CR2 doi: 10.1136/bmj.b1349 – volume: 53 year: 2016 ident: 63180_CR25 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101559 – volume: 32 start-page: 189 year: 2024 ident: 63180_CR35 publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2023.3347032 – volume: 6 start-page: 25 issue: 1 year: 2016 ident: 63180_CR24 publication-title: J. Med. Signals Sens. doi: 10.4103/2228-7477.175869 – volume: 45 start-page: 5 year: 2001 ident: 63180_CR46 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 63180_CR48 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 7 start-page: 375 issue: 2 year: 2022 ident: 63180_CR30 publication-title: IEEE Trans. Emerging Top. Comput. Intell. doi: 10.1109/TETCI.2022.3186180 – ident: 63180_CR44 – volume: 47 start-page: 35 year: 2016 ident: 63180_CR56 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.049 – volume: 77 start-page: 1122 issue: 10 year: 2006 ident: 63180_CR8 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2005.074336 – volume: 365 start-page: 210 year: 2019 ident: 63180_CR13 publication-title: Behav Brain Res. doi: 10.1016/j.bbr.2019.03.004 – volume: 27 start-page: 1063 issue: 5 year: 2019 ident: 63180_CR23 publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2019.2911970 – volume: 14 year: 2022 ident: 63180_CR10 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.836568 – reference: 38871767 - Sci Rep. 2024 Jun 13;14(1):13627. doi: 10.1038/s41598-024-64545-z |
| SSID | ssj0000529419 |
| Score | 2.469144 |
| Snippet | Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization... Abstract Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12483 |
| SubjectTerms | 631/378/116/2396 639/166/985 692/53/2421 692/699/375 Accuracy Aged Algorithms Cognitive ability Cognitive Dysfunction - diagnosis Dementia disorders EEG EEG channel selection Electroencephalography - methods Entropy Feature selection Female Humanities and Social Sciences Humans Machine Learning Male MCI Middle Aged Multi-objective optimization multidisciplinary NSGA Science Science (multidisciplinary) Signal Processing, Computer-Assisted Wavelet Analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlYd2-vY3Gi1BSSokHioN8vxAxW1SdUklfZv9BcztrNLEa8L18RxYs9nz0w88w1Cz7xthafMESs0TSk5gdiaO6KEaJSITvnMePPlXXNwoA4P9YdLpb5STFihBy4Tt0NZSDRSLrYLl5SPtbKVkYGnErRydTaNwOq55EwVVm-mRa3nLBnK1c4AmiplkzFBJOCYktVPmigT9v_OyvzlhDQrnv2b6MZsMeJX5UtvoSuhu42ulRqSqzvo4mOuZAOP4uXyNU6JvB3oO2w7j2PItJ0DTtHtX3EOHiR9-61scriH7eJkzsPEYLxi69yUqCPw-7232Icxh2l1LzGg8ajUXpp7Og72PJC-C2SYcnekn0Y8FKbb1V30eX_5ae8NmQstECfUYiQsiCAdayX1vPYqONgElG0WmnodYAvgIGbPWxVY8q5a6pWM4LbExoNMPBgE99BWB-98gLBMP1MYd1JFsMQ8tX7RcqlFTBm-LvoK1etJN25mIU_FMI5NPg3nyhRBGRCUyYIyqwo93zxzWjg4_tp6N8ly0zLxZ-cLgCozo8r8C1UV2l4jwcyLejDgXSVruJF1hZ5ubsNyTGcstgv9lNtwAT6cpBW6XxC0-RKuFEwf1RV6sYbUj87_PKCH_2NAj9B1lrCf4h7oNtoaz6bwGF115-PRcPYkL57vZuIcVw priority: 102 providerName: Directory of Open Access Journals |
| Title | Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy |
| URI | https://link.springer.com/article/10.1038/s41598-024-63180-y https://www.ncbi.nlm.nih.gov/pubmed/38816409 https://www.proquest.com/docview/3062310761 https://www.proquest.com/docview/3063457660 https://doaj.org/article/02e0517cfb5c4061aa6b6f2210e98c1a |
| Volume | 14 |
| WOSCitedRecordID | wos001236334900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjISN7Dqjb2JwwXRaguV2FXES8spcmynKipJ2Wwq7d_gFzN2vKkQ0AuXHBLHsePxeJ7fADw3qhSGxZoqkTGXkmOpGnNNpRCpFJWWxiPefHmfzudyscjyYHBrQ1jlhid6Rm0a7Wzk-yjaOlEEte7X5z-oqxrlvKuhhMYW7DiUBO5D9_LBxuK8WGKchVwZxuV-i-eVyymLBU2Qmhld_3Yeedj-v8maf_hJ_fFzdPt_B34HbgXBk7zpKeUuXLP1PbjRl6Jc34efH31BHPw2mU7fEpcPXOOxSVRtSGU9-mdLXJD8CfExiLQpv_W8kjTIdb6HdE6CMjBRWncOgYLMDo-JsSsf7VW_IkjUp30Jp9DTmVUXlja1pW3nu6NNtyJtD5i7fgCfj6afDt_RUK-BaiEnKxpbYRMdlwkzfGyk1chLpEonGTOZRU7CkVoML6WNnZJWMiOTCrWfKjUTLQzKFbuwXeM3HwFJnE0m5jqRFQp0hikzKXmSicolCuvKRDDerFqhA5i5q6lxVninOpdFv9IFrnThV7pYR_BieOe8h_K4svWBI4ahpYPh9jea5UkRdjW2tw7jTFclzgAlI6WSMqliVKNtJvVYRbC3oYki8Ia2uCSICJ4Nj3FXO1eNqm3T-TZcoCqYsAge9iQ4jIRLib-PZRG83NDkZef_ntDjq8fyBG7Gblu4wAi2B9urZWefwnV9sTptlyPYShepv8oR7BxM5_mHkTdf4HUW5yO_7_BJfjzLv_4CYrgxZQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aHWjc8M8IDDASXIE1x3FTBwkhGB2r1laV2NC4Co7tTEMjGU071NfgQXhGjp2kEwJ2twtuE8eJne-c89k-PwBPjcqEYVxTJRLmQnIsVWGkqRSiJ0WupfEZbz4Oe-OxPDhIJivws42FcW6VrU70itqU2u2RbyK1dVQEV92vT75RVzXKna62JTRqWOzaxXdcslWvBu_w_z7jfLu_t7VDm6oCVAvZnVFuhY01z2JmotBIqxHxUvW6CTOJRbxHOCYTZdJyt5TImJFxjhw975muFgatH_Z7CVYFgl12YHUyGE0-LXd13LmZCJMmOodFcrNCC-mi2LigMcoPo4vfLKAvFPA3dvvHyaw3eNvX_7epugHXGmpN3tSycBNWbHELrtTFNhe34ccHX_IHx0r6_ffERTwXSAyIKgzJrc9vWhEXBnBIvJclLbMvtTUgJerVr03AKkGWT5TWc5djg4y2BsTYmfdnK14SFNujukhV09OxVaeWloWl1dx3R8v5jFR1SuDFHdi_kAm5C50C33kPSOx2nXikY5kjZTVMmW4WxYnIXSi0zk0AYYuSVDfp2l3VkOPUuw1EMq2RlSKyUo-sdBHA8-UzJ3WyknNbv3XgW7Z0icb9hXJ6mDZ6C9tbl8VN5xmOALmfUnEW55yHzCZShyqAjRaDaaP9qvQMgAE8Wd5GveUOo1Rhy7lvEwlc7MYsgPUa8ssviaTE6WNJAC9aGTjr_N8Dun_-tzyGtZ290TAdDsa7D-AqdyLp3EDYBnRm07l9CJf16eyomj5qpJrA54uWjl_sEYiS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCax1Em_WQUII2l1YtaxWgqLegmM7VVFJyma3aP8GP4dfx4yTbIWA3nrgmjhO7Hwz89meB8ATq3NpRWS4lqmgkBzHdRgbrqQcKFkYZX3Gm087g8lE7e2l0zX42cXCkFtlpxO9oraVoT3yHlJboiK46u4VrVvEdGv06ugbpwpSdNLaldNoILLtlt9x-Va_HG_hv34aRaPhx813vK0wwI1U_TmPnHSJifJE2Di0yhlEv9KDfips6hD7MY7PxrlyES0rcmFVUiBfLwa2b6RFS4j9noPzA0pa7t0Gp6v9HTpBk2HaxumIWPVqtJUUzxZJnqAkCb78zRb6kgF_47l_nNF60ze6-j9P2jW40hJu9rqRkOuw5sobcLEpwbm8CT8--EJAOG42HL5lFAddIl1gurSscD7rac0oOGCfed9LXuVfGhvBKtS2X9swVobcn2ljFpR5g73fHDPr5t7LrXzBUJgPmtJVbU-HTh87XpWO1wvfHa8Wc1Y3iYKXt2D3TCbkNqyX-M67wBLai4pik6gCiawV2vbzOEllQQHSprABhB1iMtMmcadaIoeZdyaIVdagLEOUZR5l2TKAZ6tnjpoUJqe2fkNAXLWk9OP-QjXbz1pthu0d5XYzRY4jQEaodZInRRSFwqXKhDqAjQ6PWasT6-wEjAE8Xt1GbUZHVLp01cK3iSUugRMRwJ0G_qsviZXC6RNpAM87eTjp_N8Dunf6tzyCSygS2c54sn0fLkckneQbIjZgfT5buAdwwRzPD-rZQy_eDD6ftWj8Aof1j9E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+EEG+channels+and+features+using+multi-objective+optimization+for+accurate+MCI+detection%3A+validation+using+leave-one-subject-out+strategy&rft.jtitle=Scientific+reports&rft.au=Aljalal%2C+Majid&rft.au=Aldosari%2C+Saeed+A&rft.au=Molinas%2C+Marta&rft.au=Alturki%2C+Fahd+A&rft.date=2024-05-30&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=12483&rft_id=info:doi/10.1038%2Fs41598-024-63180-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |