Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy

Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 14; H. 1; S. 12483 - 21
Hauptverfasser: Aljalal, Majid, Aldosari, Saeed A., Molinas, Marta, Alturki, Fahd A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 30.05.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.
AbstractList Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.
Abstract Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.
Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization approach for selecting EEG channels (and features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed into subbands using either variational mode decomposition (VMD) or discrete wavelet transform (DWT). A feature is then extracted from each subband using one of the following measures: standard deviation, interquartile range, band power, Teager energy, Katz's and Higuchi's fractal dimensions, Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are used to classify the features of MCI cases from those of healthy controls. The classifier's performance is validated using leave-one-subject-out (LOSO) cross-validation (CV). The non-dominated sorting genetic algorithm (NSGA)-II is designed with the aim of minimizing the number of EEG channels (or features) and maximizing classification accuracy. The performance is evaluated using a publicly available online dataset containing EEGs from 19 channels recorded from 24 participants. The results demonstrate a significant improvement in performance when utilizing the NSGA-II algorithm. By selecting only a few appropriate EEG channels, the LOSO CV-based results show a significant improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy can be further improved by selecting suitable features from different channels. For instance, by combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. Interestingly, when only five channels are selected using NSGA-II, the accuracy increases to 91.56%. The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This demonstrates that by choosing informative features or channels while excluding noisy or irrelevant information, the impact of noise is reduced, resulting in improved accuracy. These promising findings indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, which opens the door for its application in clinical practice.
ArticleNumber 12483
Author Alturki, Fahd A.
Aljalal, Majid
Aldosari, Saeed A.
Molinas, Marta
Author_xml – sequence: 1
  givenname: Majid
  surname: Aljalal
  fullname: Aljalal, Majid
  email: maljalal@ksu.edu.sa
  organization: Department of Electrical Engineering, College of Engineering, King Saud University
– sequence: 2
  givenname: Saeed A.
  surname: Aldosari
  fullname: Aldosari, Saeed A.
  organization: Department of Electrical Engineering, College of Engineering, King Saud University
– sequence: 3
  givenname: Marta
  surname: Molinas
  fullname: Molinas, Marta
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology
– sequence: 4
  givenname: Fahd A.
  surname: Alturki
  fullname: Alturki, Fahd A.
  organization: Department of Electrical Engineering, College of Engineering, King Saud University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38816409$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAltiwMfgncRx2aDSUkYpYAGvLsW8GjzJ2sZ2RhsfgiXEmLaAu6o0t-ztH91zf59WZDx6q6iUlbynh8l2qadNJTFiNBaeS4OOT6oKRusGMM3b23_m8ukppR8pqWFfT7ll1zqWkoibdRfX7K4xgsvNbtF5fI_NDew9jQtpbNIDOU4SEpjS_76cxOxz63cwfAIXb7Pbul84ueDSEiLQxU9QZ0OfVBlnIMxf8e3TQo7MLtjiNoA-ASx6cppMdDlNGKc_i7fFF9XTQY4Kru_2y-v5x_W31Cd98ud6sPtxgU8smYwY1CMN6QSynVoLhpJG6bTpiO2g54cZoy3sJrC1Ze2KlGGomh9Y2praC8stqs_jaoHfqNrq9jkcVtFOnixC3SsfszAiKMCANbc3QFy0RVGvRi4ExSqCThuri9Wbxuo3h5wQpq71LBsZRewhTUpwIXjetEKSgrx-guzBFX5LOFOOUtKfiXt1RU78H-7e8-58rgFwAE0NKEQZlXD41ubTRjYoSNc-JWuakJKjVaU7UsUjZA-m9-6MivohSgf0W4r-yH1H9AV000WQ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3585963
crossref_primary_10_1016_j_cmpb_2024_108506
crossref_primary_10_3390_app15010149
crossref_primary_10_1109_ACCESS_2025_3541176
crossref_primary_10_3390_app15052328
crossref_primary_10_1007_s10548_025_01106_1
Cites_doi 10.1186/s13195-022-01115-3
10.3390/app12115413
10.1109/4235.996017
10.1186/s13634-015-0251-9
10.1109/TNSRE.2020.3013429
10.1007/s11633-019-1197-4
10.3389/fnins.2020.00593
10.1038/s41598-022-07517-5
10.3390/bioengineering10060664
10.1212/WNL.54.3.581
10.1016/j.bspc.2020.102223
10.1038/s41598-022-23247-0
10.1109/eSmarTA59349.2023.10293374
10.1186/s12883-020-01728-x
10.1016/j.neuroimage.2012.04.056
10.1016/j.bspc.2023.105462
10.1038/s41598-023-49048-7
10.1186/s12911-018-0613-y
10.1016/j.jalz.2015.02.003
10.1007/s11370-020-00328-5
10.1109/ACCESS.2021.3056619
10.1038/s41598-023-32664-8
10.1016/j.artmed.2019.07.006
10.3390/bios11120499
10.1155/2022/2014001
10.1016/j.irbm.2018.11.007
10.1007/978-0-387-39940-9_565
10.1162/evco.1994.2.3.221
10.1109/TSP.2013.2288675
10.3390/act10070152
10.1038/s41598-022-26644-7
10.1136/bmj.b1349
10.1016/j.bspc.2019.101559
10.1109/TNSRE.2023.3347032
10.4103/2228-7477.175869
10.1023/A:1010933404324
10.1023/A:1009715923555
10.1109/TETCI.2022.3186180
10.1016/j.eswa.2015.10.049
10.1136/jnnp.2005.074336
10.1016/j.bbr.2019.03.004
10.1109/TNSRE.2019.2911970
10.3389/fnagi.2022.836568
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-024-63180-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_02e0517cfb5c4061aa6b6f2210e98c1a
38816409
10_1038_s41598_024_63180_y
Genre Journal Article
GrantInformation_xml – fundername: Deanship of Scientific Research, King Saud University
  grantid: RSPD2023R
  funderid: http://dx.doi.org/10.13039/501100011665
– fundername: Deanship of Scientific Research, King Saud University
  grantid: RSPD2023R
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-2e4e6c2b60d31d8ec3058a7590d9e7303ccad3b8e27164b0d86f428f7d5c4d613
IEDL.DBID M7P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236334900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:44:36 EDT 2025
Thu Sep 04 18:02:40 EDT 2025
Tue Oct 07 07:57:10 EDT 2025
Mon Jul 21 05:58:41 EDT 2025
Sat Nov 29 02:13:11 EST 2025
Tue Nov 18 22:49:44 EST 2025
Fri Feb 21 02:37:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EEG channel selection
MCI
Feature selection
Multi-objective optimization
NSGA
Machine learning
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-2e4e6c2b60d31d8ec3058a7590d9e7303ccad3b8e27164b0d86f428f7d5c4d613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3062310761?pq-origsite=%requestingapplication%
PMID 38816409
PQID 3062310761
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_02e0517cfb5c4061aa6b6f2210e98c1a
proquest_miscellaneous_3063457660
proquest_journals_3062310761
pubmed_primary_38816409
crossref_citationtrail_10_1038_s41598_024_63180_y
crossref_primary_10_1038_s41598_024_63180_y
springer_journals_10_1038_s41598_024_63180_y
PublicationCentury 2000
PublicationDate 2024-05-30
PublicationDateYYYYMMDD 2024-05-30
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LeeKChoiKMParkSLeeSHImCHSelection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairmentAlzheimer's Res. Ther.202214117010.1186/s13195-022-01115-3
AljalalMMild cognitive impairment detection with optimally selected EEG channels based on variational mode decomposition and supervised machine learningBiomed. Signal Process. Control20248710.1016/j.bspc.2023.105462
PetersenRCMemory and MRI-based hippocampal volumes in aging and ADNeurology20005435815811:STN:280:DC%2BD3c7kt12kuw%3D%3D1068078610.1212/WNL.54.3.581
DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20226218219710.1109/4235.996017
SharmaNKolekarMHJhaKKumarYEEG and cognitive biomarkers based mild cognitive impairment diagnosisIrbm201940211312110.1016/j.irbm.2018.11.007
SmrdelAUse of common spatial patterns for early detection of Parkinson’s diseaseSci. Rep.2022121187932022NatSR..1218793S1:CAS:528:DC%2BB38XivVahsLbI36335198963721310.1038/s41598-022-23247-0
BarekatainMThe relationship between regional brain volumes and the extent of coronary artery disease in mild cognitive impairmentJ. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci.2014198739
KashefpoorMRabbaniHBarekatainMAutomatic diagnosis of mild cognitive impairment using electroencephalogram spectral featuresJ. Med. Signals Sens.201661253227014609478696010.4103/2228-7477.175869
ShiYLiYKoikeYSparse logistic regression-based EEG channel optimization algorithm for improved universality across participantsBioengineering2023106664373705951029530710.3390/bioengineering10060664
BurgesCJA tutorial on support vector machines for pattern recognitionData Min. Knowl. Discov.19982212116710.1023/A:1009715923555
AssociationA2015 Alzheimer's disease facts and figuresAlzheimers Dement.201511333238410.1016/j.jalz.2015.02.003
KashefpoorMRabbaniHBarekatainMSupervised dictionary learning of EEG signals for mild cognitive impairment diagnosisBiomed. Signal Process. Control20165310.1016/j.bspc.2019.101559
WeinbergerKQSaulLKDistance metric learning for large margin nearest neighbor classificationJ. Mach. Learn. Res.200910207244
SiulySAlçinÖFKabirEŞengürAWangHZhangYWhittakerFA new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signalsIEEE Trans. Neural Syst. Rehab. Eng.20202891966197610.1109/TNSRE.2020.3013429
RoseSEDiffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairmentJ. Neurol. Neurosurg. Psychiatry20067710112211281:STN:280:DC%2BD28rlsVOntQ%3D%3D16754694207753310.1136/jnnp.2005.074336
YinJCaoJSiulySWangHAn integrated MCI detection framework based on spectral-temporal analysisInt. J. Autom. Comput.20191678679910.1007/s11633-019-1197-4
AljalalMIbrahimSDjemalRKoWComprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signalsIntel. Serv. Robot.202013453956310.1007/s11370-020-00328-5
Yong, Y. A., Hurley, N. J. & Silvestre, G. C. Single-trial EEG classification for brain-computer interface using wavelet decomposition. In 2005 13th European Signal Processing Conference (IEEE), 1–4 (2005).
DragomiretskiyKZossoDVariational mode decompositionIEEE Trans. Signal Process.20136235315442014ITSP...62..531D316029310.1109/TSP.2013.2288675
AtkinsonJCamposDImproving BCI-based emotion recognition by combining EEG feature selection and kernel classifiersExpert Syst. Appl.201647354110.1016/j.eswa.2015.10.049
SaidAGökerHAutomatic detection of mild cognitive impairment from EEG recordings using discrete wavelet transform leader and ensemble learning methodsDicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi20231414754
MoctezumaLAMolinasMEEG channel-selection method for epileptic-seizure classification based on multi-objective optimizationFront. Neurosci.20201453763310.3389/fnins.2020.00593
Burns, A. & Iliffe, S. Alzheimer’s disease. BMJ338 (2009).
HsiaoYTMCI Detection using kernel eigen-relative-power features of EEG signalsActuators202110715210.3390/act10070152
VicchiettiMLRamosFMBettingLECampanharoASComputational methods of EEG signals analysis for Alzheimer’s disease classificationSci. Rep.202313181842023NatSR..13.8184V1:CAS:528:DC%2BB3sXhtVKitLjN372103971019994010.1038/s41598-023-32664-8
AlotaibyTEl-SamieFEAAlshebeiliSAAhmadIA review of channel selection algorithms for EEG signal processingEURASIP J. Adv. Signal Process.2015201512110.1186/s13634-015-0251-9
MovahedRARezaeianMAutomatic diagnosis of mild cognitive impairment based on spectral, functional connectivity, and nonlinear EEG-based featuresComput. Math. Methods Med.2022202211710.1155/2022/2014001
KhatunSMorshedBIBidelmanGMA single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responsesIEEE Trans. Neural Syst. Rehab. Eng.20192751063107010.1109/TNSRE.2019.2911970
EEGLAB. sccn.ucsd.edu. https://sccn.ucsd.edu/eeglab/index.php
DudaROHartPEPattern Classification2006Wiley
AlturkiFAAljalalMAbdurraqeebAMAlsharabiKAl-Shamma.aAACommon spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disordersIEEE Access20219243342434910.1109/ACCESS.2021.3056619
World Health Organization, “Dementia,” World Health Organization, (2023).
WestmanEMuehlboeckJSSimmonsACombining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversionNeuroImage20126212292382258017010.1016/j.neuroimage.2012.04.056
JahmunahVAutomated detection of schizophrenia using nonlinear signal processing methodsArtif. Intell. Med.20191001:STN:280:DC%2BB3MnntlGrtQ%3D%3D3160734910.1016/j.artmed.2019.07.006
AhadNSiulySKabirELiYExploring frequency band-based biomarkers of EEG signals for mild cognitive impairment detectionIEEE Trans. Neural Syst. Rehab. Eng.20243218919910.1109/TNSRE.2023.3347032
TengLPredicting MCI progression with FDG-PET and cognitive scores: A longitudinal studyBMC Neurol.2020201110.1186/s12883-020-01728-x
HadiyosoSCynthiaCLZakariaHEarly detection of mild cognitive impairment using quantitative analysis of EEG signalsIEEE Xplore2019115
WuHComputed tomography density and β-amyloid deposition of intraorbital optic nerve may assist in diagnosing mild cognitive impairment and Alzheimer’s disease: A 18f-flutemetamol positron emission tomography/computed tomography studyFront. Aging Neurosci.2022141:CAS:528:DC%2BB38Xhs12qtrrP35370601897030710.3389/fnagi.2022.836568
OltuBAkşahinMFKibaroğluSA novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detectionBiomed. Signal Process. Control20216310.1016/j.bspc.2020.102223
BanzhafWNordinPKellerREFranconeFDGenetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and ITS applications1998Morgan Kaufmann Publishers Inc
BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324
US Food and Drug Administration. FDA grants accelerated approval for alzheimer’s disease treatment. US Food and Drug Administration: Rockville, MD, USA (2023).
WuC-TResting-state EEG signal for major depressive disorder detection: A systematic validation on a large and diverse datasetBiosensors2021111249934940256869934810.3390/bios11120499
MoctezumaLAAbeTMolinasMTwo-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithmSci. Rep.202212135232022NatSR..12.3523M1:CAS:528:DC%2BB38XlvVemurc%3D35241745889447910.1038/s41598-022-07517-5
SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221
AljalalMAldosariSAMolinasMAlSharabiKAlturkiFADetection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniquesSci. Rep.2022121225472022NatSR..1222547A1:CAS:528:DC%2BB3sXhtFOh36581646980036910.1038/s41598-022-26644-7
RogalaJEnhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysisSci. Rep.2023131217482023NatSR..1321748R1:CAS:528:DC%2BB3sXisF2js7bM380660461070964710.1038/s41598-023-49048-7
AlviAMSiulySWangHA long short-term memory based framework for early detection of mild cognitive impairment from EEG signalsIEEE Trans. Emerging Top. Comput. Intell.20227237538810.1109/TETCI.2022.3186180
PirroneDWeitschekEDi PaoloPDe SalvoSDe ColaMCEEG signal processing and supervised machine learning to early diagnose Alzheimer’s diseaseAppl. Sci.2022121154131:CAS:528:DC%2BB38XhsVyksb7K10.3390/app12115413
Refaeilzadeh, P., Tang, L. & Liu, H. Cross-validation. Encyclopedia of Database Syst., 532–538 (2009).
ShengJA novel joint HCPMMP method for automatically classifying Alzheimer’s and different stage MCI patientsBehav Brain Res.20193652102213083615810.1016/j.bbr.2019.03.004
Aljalal, M., Aldosari, S. A., Molinas, M., AlSharabi, K. & Alturki, F. A. Mild Cognitive Impairment Detection from EEG Signals Using Combination of EMD Decomposition and Machine Learning. In 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA) (IEEE), 1–8 (2023).
Alzheimer's Association. Treatments and Research. Alzheimer’s Disease and Dementia (2019).
Prince, M., Albanese, E., Guerchet, M. & Prina, M. World Alzheimer Report 2014. Dementia and Risk Reduction: An analysis of protective and modifiable risk factors (Doctoral dissertation, Alzheimer's Disease International), (2014).
EEG Signals from Normal and MCI (Mild Cognitive Impairment) Cases. Available: https://misp.mui.ac.ir/en/eeg-data-0.
FisconGCombining EEG signal processing with supervised methods for Alzheimer’s patients classificationBMC Med. Inform. Decis. Mak.20181811010.1186/s12911-018-0613-y
K Deb (63180_CR53) 2022; 6
KQ Weinberger (63180_CR49) 2009; 10
A Smrdel (63180_CR20) 2022; 12
A Said (63180_CR33) 2023; 14
CJ Burges (63180_CR48) 1998; 2
N Ahad (63180_CR35) 2024; 32
AM Alvi (63180_CR30) 2022; 7
M Aljalal (63180_CR21) 2022; 12
B Oltu (63180_CR38) 2021; 63
J Yin (63180_CR27) 2019; 16
D Pirrone (63180_CR39) 2022; 12
H Wu (63180_CR10) 2022; 14
FA Alturki (63180_CR16) 2021; 9
LA Moctezuma (63180_CR18) 2020; 14
J Atkinson (63180_CR56) 2016; 47
S Siuly (63180_CR28) 2020; 28
V Jahmunah (63180_CR19) 2019; 100
63180_CR41
E Westman (63180_CR11) 2012; 62
ML Vicchietti (63180_CR14) 2023; 13
RA Movahed (63180_CR32) 2022; 2022
G Fiscon (63180_CR36) 2018; 18
K Lee (63180_CR31) 2022; 14
S Hadiyoso (63180_CR26) 2019; 1
M Kashefpoor (63180_CR24) 2016; 6
C-T Wu (63180_CR17) 2021; 11
63180_CR34
J Sheng (63180_CR13) 2019; 365
SE Rose (63180_CR8) 2006; 77
M Aljalal (63180_CR12) 2020; 13
S Khatun (63180_CR23) 2019; 27
63180_CR50
A Association (63180_CR4) 2015; 11
63180_CR6
RO Duda (63180_CR47) 2006
M Aljalal (63180_CR40) 2024; 87
Y Shi (63180_CR54) 2023; 10
63180_CR2
63180_CR3
63180_CR5
K Dragomiretskiy (63180_CR45) 2013; 62
RC Petersen (63180_CR7) 2000; 54
63180_CR1
63180_CR43
L Teng (63180_CR9) 2020; 20
M Barekatain (63180_CR42) 2014; 19
63180_CR44
L Breiman (63180_CR46) 2001; 45
LA Moctezuma (63180_CR22) 2022; 12
M Kashefpoor (63180_CR25) 2016; 53
J Rogala (63180_CR15) 2023; 13
YT Hsiao (63180_CR29) 2021; 10
W Banzhaf (63180_CR51) 1998
N Srinivas (63180_CR52) 1994; 2
T Alotaiby (63180_CR55) 2015; 2015
N Sharma (63180_CR37) 2019; 40
38871767 - Sci Rep. 2024 Jun 13;14(1):13627. doi: 10.1038/s41598-024-64545-z
References_xml – reference: AhadNSiulySKabirELiYExploring frequency band-based biomarkers of EEG signals for mild cognitive impairment detectionIEEE Trans. Neural Syst. Rehab. Eng.20243218919910.1109/TNSRE.2023.3347032
– reference: WestmanEMuehlboeckJSSimmonsACombining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversionNeuroImage20126212292382258017010.1016/j.neuroimage.2012.04.056
– reference: BarekatainMThe relationship between regional brain volumes and the extent of coronary artery disease in mild cognitive impairmentJ. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci.2014198739
– reference: PetersenRCMemory and MRI-based hippocampal volumes in aging and ADNeurology20005435815811:STN:280:DC%2BD3c7kt12kuw%3D%3D1068078610.1212/WNL.54.3.581
– reference: MovahedRARezaeianMAutomatic diagnosis of mild cognitive impairment based on spectral, functional connectivity, and nonlinear EEG-based featuresComput. Math. Methods Med.2022202211710.1155/2022/2014001
– reference: AtkinsonJCamposDImproving BCI-based emotion recognition by combining EEG feature selection and kernel classifiersExpert Syst. Appl.201647354110.1016/j.eswa.2015.10.049
– reference: EEGLAB. sccn.ucsd.edu. https://sccn.ucsd.edu/eeglab/index.php
– reference: MoctezumaLAMolinasMEEG channel-selection method for epileptic-seizure classification based on multi-objective optimizationFront. Neurosci.20201453763310.3389/fnins.2020.00593
– reference: ShengJA novel joint HCPMMP method for automatically classifying Alzheimer’s and different stage MCI patientsBehav Brain Res.20193652102213083615810.1016/j.bbr.2019.03.004
– reference: World Health Organization, “Dementia,” World Health Organization, (2023).‏
– reference: AlturkiFAAljalalMAbdurraqeebAMAlsharabiKAl-Shamma.aAACommon spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disordersIEEE Access20219243342434910.1109/ACCESS.2021.3056619
– reference: Yong, Y. A., Hurley, N. J. & Silvestre, G. C. Single-trial EEG classification for brain-computer interface using wavelet decomposition. In 2005 13th European Signal Processing Conference (IEEE), 1–4 (2005).
– reference: LeeKChoiKMParkSLeeSHImCHSelection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairmentAlzheimer's Res. Ther.202214117010.1186/s13195-022-01115-3
– reference: AljalalMIbrahimSDjemalRKoWComprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signalsIntel. Serv. Robot.202013453956310.1007/s11370-020-00328-5
– reference: AljalalMMild cognitive impairment detection with optimally selected EEG channels based on variational mode decomposition and supervised machine learningBiomed. Signal Process. Control20248710.1016/j.bspc.2023.105462
– reference: AljalalMAldosariSAMolinasMAlSharabiKAlturkiFADetection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniquesSci. Rep.2022121225472022NatSR..1222547A1:CAS:528:DC%2BB3sXhtFOh36581646980036910.1038/s41598-022-26644-7
– reference: HadiyosoSCynthiaCLZakariaHEarly detection of mild cognitive impairment using quantitative analysis of EEG signalsIEEE Xplore2019115
– reference: PirroneDWeitschekEDi PaoloPDe SalvoSDe ColaMCEEG signal processing and supervised machine learning to early diagnose Alzheimer’s diseaseAppl. Sci.2022121154131:CAS:528:DC%2BB38XhsVyksb7K10.3390/app12115413
– reference: ShiYLiYKoikeYSparse logistic regression-based EEG channel optimization algorithm for improved universality across participantsBioengineering2023106664373705951029530710.3390/bioengineering10060664
– reference: YinJCaoJSiulySWangHAn integrated MCI detection framework based on spectral-temporal analysisInt. J. Autom. Comput.20191678679910.1007/s11633-019-1197-4
– reference: BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324
– reference: SaidAGökerHAutomatic detection of mild cognitive impairment from EEG recordings using discrete wavelet transform leader and ensemble learning methodsDicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi20231414754
– reference: RogalaJEnhancing autism spectrum disorder classification in children through the integration of traditional statistics and classical machine learning techniques in EEG analysisSci. Rep.2023131217482023NatSR..1321748R1:CAS:528:DC%2BB3sXisF2js7bM380660461070964710.1038/s41598-023-49048-7
– reference: MoctezumaLAAbeTMolinasMTwo-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithmSci. Rep.202212135232022NatSR..12.3523M1:CAS:528:DC%2BB38XlvVemurc%3D35241745889447910.1038/s41598-022-07517-5
– reference: WeinbergerKQSaulLKDistance metric learning for large margin nearest neighbor classificationJ. Mach. Learn. Res.200910207244
– reference: FisconGCombining EEG signal processing with supervised methods for Alzheimer’s patients classificationBMC Med. Inform. Decis. Mak.20181811010.1186/s12911-018-0613-y
– reference: WuHComputed tomography density and β-amyloid deposition of intraorbital optic nerve may assist in diagnosing mild cognitive impairment and Alzheimer’s disease: A 18f-flutemetamol positron emission tomography/computed tomography studyFront. Aging Neurosci.2022141:CAS:528:DC%2BB38Xhs12qtrrP35370601897030710.3389/fnagi.2022.836568
– reference: KashefpoorMRabbaniHBarekatainMSupervised dictionary learning of EEG signals for mild cognitive impairment diagnosisBiomed. Signal Process. Control20165310.1016/j.bspc.2019.101559
– reference: AlviAMSiulySWangHA long short-term memory based framework for early detection of mild cognitive impairment from EEG signalsIEEE Trans. Emerging Top. Comput. Intell.20227237538810.1109/TETCI.2022.3186180
– reference: Aljalal, M., Aldosari, S. A., Molinas, M., AlSharabi, K. & Alturki, F. A. Mild Cognitive Impairment Detection from EEG Signals Using Combination of EMD Decomposition and Machine Learning. In 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA) (IEEE), 1–8 (2023).‏
– reference: SharmaNKolekarMHJhaKKumarYEEG and cognitive biomarkers based mild cognitive impairment diagnosisIrbm201940211312110.1016/j.irbm.2018.11.007
– reference: SmrdelAUse of common spatial patterns for early detection of Parkinson’s diseaseSci. Rep.2022121187932022NatSR..1218793S1:CAS:528:DC%2BB38XivVahsLbI36335198963721310.1038/s41598-022-23247-0
– reference: DudaROHartPEPattern Classification2006Wiley
– reference: VicchiettiMLRamosFMBettingLECampanharoASComputational methods of EEG signals analysis for Alzheimer’s disease classificationSci. Rep.202313181842023NatSR..13.8184V1:CAS:528:DC%2BB3sXhtVKitLjN372103971019994010.1038/s41598-023-32664-8
– reference: JahmunahVAutomated detection of schizophrenia using nonlinear signal processing methodsArtif. Intell. Med.20191001:STN:280:DC%2BB3MnntlGrtQ%3D%3D3160734910.1016/j.artmed.2019.07.006
– reference: BanzhafWNordinPKellerREFranconeFDGenetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and ITS applications1998Morgan Kaufmann Publishers Inc
– reference: HsiaoYTMCI Detection using kernel eigen-relative-power features of EEG signalsActuators202110715210.3390/act10070152
– reference: US Food and Drug Administration. FDA grants accelerated approval for alzheimer’s disease treatment. US Food and Drug Administration: Rockville, MD, USA (2023).
– reference: SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221
– reference: TengLPredicting MCI progression with FDG-PET and cognitive scores: A longitudinal studyBMC Neurol.2020201110.1186/s12883-020-01728-x
– reference: DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20226218219710.1109/4235.996017
– reference: BurgesCJA tutorial on support vector machines for pattern recognitionData Min. Knowl. Discov.19982212116710.1023/A:1009715923555
– reference: RoseSEDiffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairmentJ. Neurol. Neurosurg. Psychiatry20067710112211281:STN:280:DC%2BD28rlsVOntQ%3D%3D16754694207753310.1136/jnnp.2005.074336
– reference: Prince, M., Albanese, E., Guerchet, M. & Prina, M. World Alzheimer Report 2014. Dementia and Risk Reduction: An analysis of protective and modifiable risk factors (Doctoral dissertation, Alzheimer's Disease International), (2014).
– reference: DragomiretskiyKZossoDVariational mode decompositionIEEE Trans. Signal Process.20136235315442014ITSP...62..531D316029310.1109/TSP.2013.2288675
– reference: OltuBAkşahinMFKibaroğluSA novel electroencephalography based approach for Alzheimer’s disease and mild cognitive impairment detectionBiomed. Signal Process. Control20216310.1016/j.bspc.2020.102223
– reference: WuC-TResting-state EEG signal for major depressive disorder detection: A systematic validation on a large and diverse datasetBiosensors2021111249934940256869934810.3390/bios11120499
– reference: KhatunSMorshedBIBidelmanGMA single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responsesIEEE Trans. Neural Syst. Rehab. Eng.20192751063107010.1109/TNSRE.2019.2911970
– reference: AssociationA2015 Alzheimer's disease facts and figuresAlzheimers Dement.201511333238410.1016/j.jalz.2015.02.003
– reference: SiulySAlçinÖFKabirEŞengürAWangHZhangYWhittakerFA new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signalsIEEE Trans. Neural Syst. Rehab. Eng.20202891966197610.1109/TNSRE.2020.3013429
– reference: Alzheimer's Association. Treatments and Research. Alzheimer’s Disease and Dementia (2019).
– reference: Refaeilzadeh, P., Tang, L. & Liu, H. Cross-validation. Encyclopedia of Database Syst., 532–538 (2009).
– reference: Burns, A. & Iliffe, S. Alzheimer’s disease. BMJ338 (2009).‏
– reference: AlotaibyTEl-SamieFEAAlshebeiliSAAhmadIA review of channel selection algorithms for EEG signal processingEURASIP J. Adv. Signal Process.2015201512110.1186/s13634-015-0251-9
– reference: KashefpoorMRabbaniHBarekatainMAutomatic diagnosis of mild cognitive impairment using electroencephalogram spectral featuresJ. Med. Signals Sens.201661253227014609478696010.4103/2228-7477.175869
– reference: EEG Signals from Normal and MCI (Mild Cognitive Impairment) Cases. Available: https://misp.mui.ac.ir/en/eeg-data-0.
– volume-title: Pattern Classification
  year: 2006
  ident: 63180_CR47
– volume: 14
  start-page: 170
  issue: 1
  year: 2022
  ident: 63180_CR31
  publication-title: Alzheimer's Res. Ther.
  doi: 10.1186/s13195-022-01115-3
– volume: 19
  start-page: 739
  issue: 8
  year: 2014
  ident: 63180_CR42
  publication-title: J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci.
– volume: 12
  start-page: 5413
  issue: 11
  year: 2022
  ident: 63180_CR39
  publication-title: Appl. Sci.
  doi: 10.3390/app12115413
– volume: 6
  start-page: 182
  issue: 2
  year: 2022
  ident: 63180_CR53
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 2015
  start-page: 1
  year: 2015
  ident: 63180_CR55
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-015-0251-9
– ident: 63180_CR1
– ident: 63180_CR5
– ident: 63180_CR43
– volume: 28
  start-page: 1966
  issue: 9
  year: 2020
  ident: 63180_CR28
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2020.3013429
– volume: 16
  start-page: 786
  year: 2019
  ident: 63180_CR27
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-019-1197-4
– volume: 14
  start-page: 537633
  year: 2020
  ident: 63180_CR18
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00593
– volume: 12
  start-page: 3523
  issue: 1
  year: 2022
  ident: 63180_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07517-5
– volume: 10
  start-page: 664
  issue: 6
  year: 2023
  ident: 63180_CR54
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10060664
– volume: 54
  start-page: 581
  issue: 3
  year: 2000
  ident: 63180_CR7
  publication-title: Neurology
  doi: 10.1212/WNL.54.3.581
– volume: 63
  year: 2021
  ident: 63180_CR38
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102223
– volume: 1
  start-page: 1
  year: 2019
  ident: 63180_CR26
  publication-title: IEEE Xplore
– volume: 12
  start-page: 18793
  issue: 1
  year: 2022
  ident: 63180_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-23247-0
– volume: 14
  start-page: 47
  issue: 1
  year: 2023
  ident: 63180_CR33
  publication-title: Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi
– ident: 63180_CR34
  doi: 10.1109/eSmarTA59349.2023.10293374
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 63180_CR9
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-020-01728-x
– ident: 63180_CR6
– volume: 62
  start-page: 229
  issue: 1
  year: 2012
  ident: 63180_CR11
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.04.056
– volume: 87
  year: 2024
  ident: 63180_CR40
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105462
– volume: 13
  start-page: 21748
  issue: 1
  year: 2023
  ident: 63180_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-49048-7
– volume-title: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and ITS applications
  year: 1998
  ident: 63180_CR51
– volume: 18
  start-page: 1
  year: 2018
  ident: 63180_CR36
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-018-0613-y
– volume: 10
  start-page: 207
  year: 2009
  ident: 63180_CR49
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 332
  issue: 3
  year: 2015
  ident: 63180_CR4
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2015.02.003
– volume: 13
  start-page: 539
  issue: 4
  year: 2020
  ident: 63180_CR12
  publication-title: Intel. Serv. Robot.
  doi: 10.1007/s11370-020-00328-5
– volume: 9
  start-page: 24334
  year: 2021
  ident: 63180_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056619
– volume: 13
  start-page: 8184
  issue: 1
  year: 2023
  ident: 63180_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32664-8
– volume: 100
  year: 2019
  ident: 63180_CR19
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.07.006
– volume: 11
  start-page: 499
  issue: 12
  year: 2021
  ident: 63180_CR17
  publication-title: Biosensors
  doi: 10.3390/bios11120499
– ident: 63180_CR3
– volume: 2022
  start-page: 1
  year: 2022
  ident: 63180_CR32
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/2014001
– volume: 40
  start-page: 113
  issue: 2
  year: 2019
  ident: 63180_CR37
  publication-title: Irbm
  doi: 10.1016/j.irbm.2018.11.007
– ident: 63180_CR41
– ident: 63180_CR50
  doi: 10.1007/978-0-387-39940-9_565
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 63180_CR52
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 63180_CR45
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 10
  start-page: 152
  issue: 7
  year: 2021
  ident: 63180_CR29
  publication-title: Actuators
  doi: 10.3390/act10070152
– volume: 12
  start-page: 22547
  issue: 1
  year: 2022
  ident: 63180_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26644-7
– ident: 63180_CR2
  doi: 10.1136/bmj.b1349
– volume: 53
  year: 2016
  ident: 63180_CR25
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101559
– volume: 32
  start-page: 189
  year: 2024
  ident: 63180_CR35
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2023.3347032
– volume: 6
  start-page: 25
  issue: 1
  year: 2016
  ident: 63180_CR24
  publication-title: J. Med. Signals Sens.
  doi: 10.4103/2228-7477.175869
– volume: 45
  start-page: 5
  year: 2001
  ident: 63180_CR46
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 63180_CR48
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 7
  start-page: 375
  issue: 2
  year: 2022
  ident: 63180_CR30
  publication-title: IEEE Trans. Emerging Top. Comput. Intell.
  doi: 10.1109/TETCI.2022.3186180
– ident: 63180_CR44
– volume: 47
  start-page: 35
  year: 2016
  ident: 63180_CR56
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.049
– volume: 77
  start-page: 1122
  issue: 10
  year: 2006
  ident: 63180_CR8
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2005.074336
– volume: 365
  start-page: 210
  year: 2019
  ident: 63180_CR13
  publication-title: Behav Brain Res.
  doi: 10.1016/j.bbr.2019.03.004
– volume: 27
  start-page: 1063
  issue: 5
  year: 2019
  ident: 63180_CR23
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2019.2911970
– volume: 14
  year: 2022
  ident: 63180_CR10
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.836568
– reference: 38871767 - Sci Rep. 2024 Jun 13;14(1):13627. doi: 10.1038/s41598-024-64545-z
SSID ssj0000529419
Score 2.469144
Snippet Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective optimization...
Abstract Effective management of dementia requires the timely detection of mild cognitive impairment (MCI). This paper introduces a multi-objective...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12483
SubjectTerms 631/378/116/2396
639/166/985
692/53/2421
692/699/375
Accuracy
Aged
Algorithms
Cognitive ability
Cognitive Dysfunction - diagnosis
Dementia disorders
EEG
EEG channel selection
Electroencephalography - methods
Entropy
Feature selection
Female
Humanities and Social Sciences
Humans
Machine Learning
Male
MCI
Middle Aged
Multi-objective optimization
multidisciplinary
NSGA
Science
Science (multidisciplinary)
Signal Processing, Computer-Assisted
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlYd2-vY3Gi1BSSokHioN8vxAxW1SdUklfZv9BcztrNLEa8L18RxYs9nz0w88w1Cz7xthafMESs0TSk5gdiaO6KEaJSITvnMePPlXXNwoA4P9YdLpb5STFihBy4Tt0NZSDRSLrYLl5SPtbKVkYGnErRydTaNwOq55EwVVm-mRa3nLBnK1c4AmiplkzFBJOCYktVPmigT9v_OyvzlhDQrnv2b6MZsMeJX5UtvoSuhu42ulRqSqzvo4mOuZAOP4uXyNU6JvB3oO2w7j2PItJ0DTtHtX3EOHiR9-61scriH7eJkzsPEYLxi69yUqCPw-7232Icxh2l1LzGg8ajUXpp7Og72PJC-C2SYcnekn0Y8FKbb1V30eX_5ae8NmQstECfUYiQsiCAdayX1vPYqONgElG0WmnodYAvgIGbPWxVY8q5a6pWM4LbExoNMPBgE99BWB-98gLBMP1MYd1JFsMQ8tX7RcqlFTBm-LvoK1etJN25mIU_FMI5NPg3nyhRBGRCUyYIyqwo93zxzWjg4_tp6N8ly0zLxZ-cLgCozo8r8C1UV2l4jwcyLejDgXSVruJF1hZ5ubsNyTGcstgv9lNtwAT6cpBW6XxC0-RKuFEwf1RV6sYbUj87_PKCH_2NAj9B1lrCf4h7oNtoaz6bwGF115-PRcPYkL57vZuIcVw
  priority: 102
  providerName: Directory of Open Access Journals
Title Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy
URI https://link.springer.com/article/10.1038/s41598-024-63180-y
https://www.ncbi.nlm.nih.gov/pubmed/38816409
https://www.proquest.com/docview/3062310761
https://www.proquest.com/docview/3063457660
https://doaj.org/article/02e0517cfb5c4061aa6b6f2210e98c1a
Volume 14
WOSCitedRecordID wos001236334900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjISN7Dqjb2JwwXRaguV2FXES8spcmynKipJ2Wwq7d_gFzN2vKkQ0AuXHBLHsePxeJ7fADw3qhSGxZoqkTGXkmOpGnNNpRCpFJWWxiPefHmfzudyscjyYHBrQ1jlhid6Rm0a7Wzk-yjaOlEEte7X5z-oqxrlvKuhhMYW7DiUBO5D9_LBxuK8WGKchVwZxuV-i-eVyymLBU2Qmhld_3Yeedj-v8maf_hJ_fFzdPt_B34HbgXBk7zpKeUuXLP1PbjRl6Jc34efH31BHPw2mU7fEpcPXOOxSVRtSGU9-mdLXJD8CfExiLQpv_W8kjTIdb6HdE6CMjBRWncOgYLMDo-JsSsf7VW_IkjUp30Jp9DTmVUXlja1pW3nu6NNtyJtD5i7fgCfj6afDt_RUK-BaiEnKxpbYRMdlwkzfGyk1chLpEonGTOZRU7CkVoML6WNnZJWMiOTCrWfKjUTLQzKFbuwXeM3HwFJnE0m5jqRFQp0hikzKXmSicolCuvKRDDerFqhA5i5q6lxVninOpdFv9IFrnThV7pYR_BieOe8h_K4svWBI4ahpYPh9jea5UkRdjW2tw7jTFclzgAlI6WSMqliVKNtJvVYRbC3oYki8Ia2uCSICJ4Nj3FXO1eNqm3T-TZcoCqYsAge9iQ4jIRLib-PZRG83NDkZef_ntDjq8fyBG7Gblu4wAi2B9urZWefwnV9sTptlyPYShepv8oR7BxM5_mHkTdf4HUW5yO_7_BJfjzLv_4CYrgxZQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aHWjc8M8IDDASXIE1x3FTBwkhGB2r1laV2NC4Co7tTEMjGU071NfgQXhGjp2kEwJ2twtuE8eJne-c89k-PwBPjcqEYVxTJRLmQnIsVWGkqRSiJ0WupfEZbz4Oe-OxPDhIJivws42FcW6VrU70itqU2u2RbyK1dVQEV92vT75RVzXKna62JTRqWOzaxXdcslWvBu_w_z7jfLu_t7VDm6oCVAvZnVFuhY01z2JmotBIqxHxUvW6CTOJRbxHOCYTZdJyt5TImJFxjhw975muFgatH_Z7CVYFgl12YHUyGE0-LXd13LmZCJMmOodFcrNCC-mi2LigMcoPo4vfLKAvFPA3dvvHyaw3eNvX_7epugHXGmpN3tSycBNWbHELrtTFNhe34ccHX_IHx0r6_ffERTwXSAyIKgzJrc9vWhEXBnBIvJclLbMvtTUgJerVr03AKkGWT5TWc5djg4y2BsTYmfdnK14SFNujukhV09OxVaeWloWl1dx3R8v5jFR1SuDFHdi_kAm5C50C33kPSOx2nXikY5kjZTVMmW4WxYnIXSi0zk0AYYuSVDfp2l3VkOPUuw1EMq2RlSKyUo-sdBHA8-UzJ3WyknNbv3XgW7Z0icb9hXJ6mDZ6C9tbl8VN5xmOALmfUnEW55yHzCZShyqAjRaDaaP9qvQMgAE8Wd5GveUOo1Rhy7lvEwlc7MYsgPUa8ssviaTE6WNJAC9aGTjr_N8Dun_-tzyGtZ290TAdDsa7D-AqdyLp3EDYBnRm07l9CJf16eyomj5qpJrA54uWjl_sEYiS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCax1Em_WQUII2l1YtaxWgqLegmM7VVFJyma3aP8GP4dfx4yTbIWA3nrgmjhO7Hwz89meB8ATq3NpRWS4lqmgkBzHdRgbrqQcKFkYZX3Gm087g8lE7e2l0zX42cXCkFtlpxO9oraVoT3yHlJboiK46u4VrVvEdGv06ugbpwpSdNLaldNoILLtlt9x-Va_HG_hv34aRaPhx813vK0wwI1U_TmPnHSJifJE2Di0yhlEv9KDfips6hD7MY7PxrlyES0rcmFVUiBfLwa2b6RFS4j9noPzA0pa7t0Gp6v9HTpBk2HaxumIWPVqtJUUzxZJnqAkCb78zRb6kgF_47l_nNF60ze6-j9P2jW40hJu9rqRkOuw5sobcLEpwbm8CT8--EJAOG42HL5lFAddIl1gurSscD7rac0oOGCfed9LXuVfGhvBKtS2X9swVobcn2ljFpR5g73fHDPr5t7LrXzBUJgPmtJVbU-HTh87XpWO1wvfHa8Wc1Y3iYKXt2D3TCbkNqyX-M67wBLai4pik6gCiawV2vbzOEllQQHSprABhB1iMtMmcadaIoeZdyaIVdagLEOUZR5l2TKAZ6tnjpoUJqe2fkNAXLWk9OP-QjXbz1pthu0d5XYzRY4jQEaodZInRRSFwqXKhDqAjQ6PWasT6-wEjAE8Xt1GbUZHVLp01cK3iSUugRMRwJ0G_qsviZXC6RNpAM87eTjp_N8Dunf6tzyCSygS2c54sn0fLkckneQbIjZgfT5buAdwwRzPD-rZQy_eDD6ftWj8Aof1j9E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+EEG+channels+and+features+using+multi-objective+optimization+for+accurate+MCI+detection%3A+validation+using+leave-one-subject-out+strategy&rft.jtitle=Scientific+reports&rft.au=Aljalal%2C+Majid&rft.au=Aldosari%2C+Saeed+A&rft.au=Molinas%2C+Marta&rft.au=Alturki%2C+Fahd+A&rft.date=2024-05-30&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=12483&rft_id=info:doi/10.1038%2Fs41598-024-63180-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon