Machine learning-based predictions and analyses of the creep rupture life of the Ni-based single crystal superalloy

The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the creep rupture life span as a function of 27 physical properties to address this issue. By training several classical machine learning models...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 20716 - 16
Hlavní autoři: Zou, Fan, Liu, Pengjie, Chen, Yanzhan, Zhao, Yaohua
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 05.09.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the creep rupture life span as a function of 27 physical properties to address this issue. By training several classical machine learning models and comparing their prediction performance, XGBoost is finally selected as the predictive model for creep rupture life. Moreover, we introduce an interpretable method, Shapley additive explanations (SHAP), to explain the creep rupture life predicted by the XGBoost model. The SHAP values are then calculated, and the feature importance of the creep rupture life yielded by the XGBoost model is discussed. Finally, the creep fracture life is optimized by using the chaotic sparrow optimization algorithm. We then show that our proposed method can accurately predict and optimize creep properties in a cheaper and faster way than other approaches in the experiments. The proposed method can also be used to optimize the material design across various engineering domains.
AbstractList The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the creep rupture life span as a function of 27 physical properties to address this issue. By training several classical machine learning models and comparing their prediction performance, XGBoost is finally selected as the predictive model for creep rupture life. Moreover, we introduce an interpretable method, Shapley additive explanations (SHAP), to explain the creep rupture life predicted by the XGBoost model. The SHAP values are then calculated, and the feature importance of the creep rupture life yielded by the XGBoost model is discussed. Finally, the creep fracture life is optimized by using the chaotic sparrow optimization algorithm. We then show that our proposed method can accurately predict and optimize creep properties in a cheaper and faster way than other approaches in the experiments. The proposed method can also be used to optimize the material design across various engineering domains.
The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the creep rupture life span as a function of 27 physical properties to address this issue. By training several classical machine learning models and comparing their prediction performance, XGBoost is finally selected as the predictive model for creep rupture life. Moreover, we introduce an interpretable method, Shapley additive explanations (SHAP), to explain the creep rupture life predicted by the XGBoost model. The SHAP values are then calculated, and the feature importance of the creep rupture life yielded by the XGBoost model is discussed. Finally, the creep fracture life is optimized by using the chaotic sparrow optimization algorithm. We then show that our proposed method can accurately predict and optimize creep properties in a cheaper and faster way than other approaches in the experiments. The proposed method can also be used to optimize the material design across various engineering domains.The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the creep rupture life span as a function of 27 physical properties to address this issue. By training several classical machine learning models and comparing their prediction performance, XGBoost is finally selected as the predictive model for creep rupture life. Moreover, we introduce an interpretable method, Shapley additive explanations (SHAP), to explain the creep rupture life predicted by the XGBoost model. The SHAP values are then calculated, and the feature importance of the creep rupture life yielded by the XGBoost model is discussed. Finally, the creep fracture life is optimized by using the chaotic sparrow optimization algorithm. We then show that our proposed method can accurately predict and optimize creep properties in a cheaper and faster way than other approaches in the experiments. The proposed method can also be used to optimize the material design across various engineering domains.
Abstract The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the creep rupture life span as a function of 27 physical properties to address this issue. By training several classical machine learning models and comparing their prediction performance, XGBoost is finally selected as the predictive model for creep rupture life. Moreover, we introduce an interpretable method, Shapley additive explanations (SHAP), to explain the creep rupture life predicted by the XGBoost model. The SHAP values are then calculated, and the feature importance of the creep rupture life yielded by the XGBoost model is discussed. Finally, the creep fracture life is optimized by using the chaotic sparrow optimization algorithm. We then show that our proposed method can accurately predict and optimize creep properties in a cheaper and faster way than other approaches in the experiments. The proposed method can also be used to optimize the material design across various engineering domains.
ArticleNumber 20716
Author Chen, Yanzhan
Liu, Pengjie
Zou, Fan
Zhao, Yaohua
Author_xml – sequence: 1
  givenname: Fan
  surname: Zou
  fullname: Zou, Fan
  organization: School of Traffic & Transportation Engineering, Central South University, School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology
– sequence: 2
  givenname: Pengjie
  surname: Liu
  fullname: Liu, Pengjie
  email: pengjieliu_1112@163.com
  organization: School of Traffic & Transportation Engineering, Central South University
– sequence: 3
  givenname: Yanzhan
  surname: Chen
  fullname: Chen, Yanzhan
  organization: School of Traffic & Transportation Engineering, Central South University
– sequence: 4
  givenname: Yaohua
  surname: Zhao
  fullname: Zhao, Yaohua
  organization: School of Traffic & Transportation Engineering, Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39237729$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v3CAQhlGVqvlo_kAPlaVeenEDg-2FYxW1TaQ0vSRnxMd4w4o1LtiH_fdh401a5RAkxAie92U0M6fkaIgDEvKJ0W-McnGRG9ZKUVNo6hVrOKvZO3ICtGlr4ABH_8XH5DznDS2rBdkw-YEccwl8tQJ5QvJvbR_8gFVAnQY_rGujM7pqTOi8nXwccqUHV7YOu4y5in01PWBlE-JYpXmc5lTEvsfnl1t_sMjFLezJXZ50qPI8YtIhxN1H8r7XIeP54Twj9z9_3F1e1Td_fl1ffr-pbSPaqYauNxwNrFzX6g6odR0iByuscYJRa8BSDY6jNJ1osVSlwMy4zhrGDEp-Rq4XXxf1Ro3Jb3Xaqai9erqIaa10mrwNqNDw3jAhrTZ9IyktMTBLi52QvbC8eH1dvMYU_86YJ7X12WIIesA4Z8UZZQCSN1DQL6_QTZxTqd9CUSrahhXq84GazRbdS3rPrSkALIBNMeeE_QvCqNqPgFpGQJURUE8joPau4pXI-knv2zgl7cPbUr5Ic_lnWGP6l_YbqkeLmMVt
CitedBy_id crossref_primary_10_1016_j_scriptamat_2025_116802
crossref_primary_10_1016_j_surfcoat_2025_132493
crossref_primary_10_1115_1_4068122
crossref_primary_10_1016_j_msea_2025_148304
crossref_primary_10_1038_s41598_025_89743_1
Cites_doi 10.1007/978-3-319-03200-9_2
10.1006/game.1994.1008
10.1007/978-1-84996-098-4_4
10.1016/j.jappgeo.2016.03.027
10.1080/21642583.2019.1708830
10.1007/s00521-019-04620-z
10.1016/j.ins.2013.12.060
10.1007/s12540-020-00713-w
10.1007/s11837-020-04344-9
10.1007/s00521-020-05390-9
10.1016/j.advengsoft.2013.12.007
10.1016/j.jallcom.2018.11.417
10.1016/j.imavis.2020.104024
10.1007/s12540-020-00883-7
10.1007/s12540-020-00809-3
10.1016/S0921-5093(01)01965-7
10.1179/1878641315Y.0000000010
10.1145/3065386
10.1016/j.asoc.2019.105743
10.1016/j.asoc.2018.10.036
10.1016/j.actamat.2020.05.001
10.1016/j.jmat.2017.08.002
10.1016/j.tcs.2005.05.020
10.1007/BF01897163
10.1007/s12540-019-00435-8
10.1016/j.frl.2018.12.032
10.1016/S1369-7021(05)71123-8
10.1007/s10032-018-0310-5
10.1023/A:1010933404324
10.1016/j.asoc.2020.106198
10.1016/j.ijpvp.2017.08.001
10.1016/j.matdes.2017.06.007
10.1016/S0142-1123(98)00071-1
10.1109/4235.687885
10.1016/j.actamat.2009.08.018
10.1007/s12540-017-7089-7
10.3390/s19132969
10.1016/j.jallcom.2010.05.108
10.1007/978-1-4842-4470-8_18
10.1145/2939672.2939785
10.1145/3292500.3330701
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1038/s41598-024-71431-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_eb3fb189cabf4900b1821c021b89f8c3
39237729
10_1038_s41598_024_71431_1
Genre Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of Central South University
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-26fb3eb27d65a620cd6ee32c8cbd810cb2c0a2d3e9b685e103eb21bd6cb11be93
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001457725800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:06:45 EDT 2025
Fri Sep 05 09:47:20 EDT 2025
Tue Oct 07 08:04:44 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Sat Nov 29 05:24:08 EST 2025
Tue Nov 18 22:07:10 EST 2025
Fri Feb 21 02:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sparrow optimization algorithm
Creep property prediction
Shapley additive explanations
XGBoost
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-26fb3eb27d65a620cd6ee32c8cbd810cb2c0a2d3e9b685e103eb21bd6cb11be93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/eb3fb189cabf4900b1821c021b89f8c3
PMID 39237729
PQID 3101008541
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_eb3fb189cabf4900b1821c021b89f8c3
proquest_miscellaneous_3101229342
proquest_journals_3101008541
pubmed_primary_39237729
crossref_primary_10_1038_s41598_024_71431_1
crossref_citationtrail_10_1038_s41598_024_71431_1
springer_journals_10_1038_s41598_024_71431_1
PublicationCentury 2000
PublicationDate 2024-09-05
PublicationDateYYYYMMDD 2024-09-05
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Jain, Jain, Upadhyay, Kathuria, Lan (CR15) 2020; 32
Li, Wang, Shi, Yang, Qi (CR6) 2019; 783
Rutkowski, Jaworski, Pietruczuk, Duda (CR27) 2014; 266
de Sousa (CR36) 2019; 19
Jain, Lan, Manikandan (CR14) 2020; 103
Zhang, Xu (CR1) 2020
Thankachan, Soorya Prakash, Kavimani, Silambarasan (CR10) 2020; 27
Dang, Zhao, Yuan (CR7) 2016; 33
Rajan (CR3) 2005; 8
Milligan, Cooper (CR22) 1988; 5
CR35
Liu, Zhao, Ju, Shi (CR12) 2017; 3
CR33
CR32
Reed, Tao, Warnken (CR4) 2009; 57
Sibalija (CR39) 2019; 84
Sun, Liu, Sima (CR31) 2020; 32
Hong, Kwon, Yim (CR9) 2020
Rudolph (CR43) 1997; 1
Liu, Wu, Wang, Lu, Avdeev, Shi, Wang, Yu (CR19) 2020; 195
Nowak, Radzik (CR37) 1994; 6
Venkatesh, Rack (CR17) 1999; 21
Xue, Shen (CR38) 2020; 8
Rao, Shi, Rodrigue, Feng, Xia, Elhoseny, Yuan, Gu (CR24) 2019; 74
Abe, Abe (CR28) 2010
Lin, Yang, Chen, He (CR11) 2019
Weber, Pinz, Ghosh (CR26) 2020; 72
Lisboa, Masulli, Pasi, Yager (CR34) 2013
Liu, Fink, Govindaraju, Jin (CR29) 2018; 21
Conduit, Jones, Stone, Conduit (CR20) 2017; 131
Liu, Sun, Yu, Yue, Zhang (CR42) 2016; 129
Jain, Jain, Lan, Upadhyay, Thareja (CR13) 2020; 1
Breiman (CR30) 2001; 45
Bolton (CR8) 2017; 157
CR23
CR21
Terada, Sato (CR5) 2010; 504
Yoo, Jo, Jones (CR18) 2002; 336
Mirjalili, Mirjalili, Lewis (CR41) 2014; 69
Sutskever, Hinton, Krizhevsky (CR25) 2012
Jain, Kumar, Garg (CR16) 2020; 91
Dorigo, Blum (CR40) 2005; 344
Choi, Kim, Hong, Do, Jung, Jo (CR2) 2017; 23
DK Jain (71431_CR13) 2020; 1
C-L Liu (71431_CR29) 2018; 21
IP de Sousa (71431_CR36) 2019; 19
71431_CR33
S Li (71431_CR6) 2019; 783
71431_CR32
AS Nowak (71431_CR37) 1994; 6
71431_CR35
G Weber (71431_CR26) 2020; 72
S Mirjalili (71431_CR41) 2014; 69
PJG Lisboa (71431_CR34) 2013
YC Lin (71431_CR11) 2019
Y Terada (71431_CR5) 2010; 504
Y Liu (71431_CR19) 2020; 195
D Jain (71431_CR16) 2020; 91
BD Conduit (71431_CR20) 2017; 131
D Jain (71431_CR15) 2020; 32
71431_CR23
71431_CR21
L Rutkowski (71431_CR27) 2014; 266
X Sun (71431_CR31) 2020; 32
Y Liu (71431_CR12) 2017; 3
J Bolton (71431_CR8) 2017; 157
J Xue (71431_CR38) 2020; 8
Y Zhang (71431_CR1) 2020
BG Choi (71431_CR2) 2017; 23
YS Yoo (71431_CR18) 2002; 336
GW Milligan (71431_CR22) 1988; 5
S Abe (71431_CR28) 2010
RC Reed (71431_CR4) 2009; 57
H Rao (71431_CR24) 2019; 74
D Hong (71431_CR9) 2020
TV Sibalija (71431_CR39) 2019; 84
K Rajan (71431_CR3) 2005; 8
YY Dang (71431_CR7) 2016; 33
L Breiman (71431_CR30) 2001; 45
L Liu (71431_CR42) 2016; 129
I Sutskever (71431_CR25) 2012
DK Jain (71431_CR14) 2020; 103
M Dorigo (71431_CR40) 2005; 344
G Rudolph (71431_CR43) 1997; 1
T Thankachan (71431_CR10) 2020; 27
V Venkatesh (71431_CR17) 1999; 21
References_xml – start-page: 15
  year: 2013
  end-page: 21
  ident: CR34
  article-title: Interpretability in machine learning—Principles and practice
  publication-title: Fuzzy Logic and Applications
  doi: 10.1007/978-3-319-03200-9_2
– volume: 6
  start-page: 150
  year: 1994
  end-page: 161
  ident: CR37
  article-title: The Shapley value for n-Person games in generalized characteristic function form
  publication-title: Games Econom. Behav.
  doi: 10.1006/game.1994.1008
– start-page: 163
  year: 2010
  end-page: 226
  ident: CR28
  article-title: Variants of support vector machines
  publication-title: Support Vector Machines for Pattern Classification
  doi: 10.1007/978-1-84996-098-4_4
– volume: 129
  start-page: 28
  year: 2016
  end-page: 35
  ident: CR42
  article-title: A modified fuzzy C-means (FCM) clustering algorithm and its application on carbonate fluid identification
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2016.03.027
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: CR38
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 32
  start-page: 1
  year: 2020
  ident: CR15
  article-title: Deep refinement: Capsule network with attention mechanism-based system for text classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04620-z
– volume: 266
  start-page: 1
  year: 2014
  end-page: 15
  ident: CR27
  article-title: The CART decision tree for mining data streams
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.060
– ident: CR33
– year: 2020
  ident: CR9
  article-title: Exploration of machine learning to predict hot ductility of cast steel from chemical composition and thermal conditions
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00713-w
– volume: 72
  start-page: 4404
  year: 2020
  end-page: 4419
  ident: CR26
  article-title: Machine learning-aided parametrically homogenized crystal plasticity model (PHCPM) for single crystal Ni-based superalloys
  publication-title: JOM
  doi: 10.1007/s11837-020-04344-9
– ident: CR35
– volume: 1
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR13
  article-title: Driver distraction detection using capsule network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05390-9
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR41
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: CR23
– volume: 783
  start-page: 565
  year: 2019
  end-page: 573
  ident: CR6
  article-title: A physically based model for correlating the microstructural degradation and residual creep lifetime of a polycrystalline Ni-based superalloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.11.417
– volume: 103
  start-page: 104024
  year: 2020
  ident: CR14
  article-title: Fusion of iris and sclera using phase intensive rubbersheet mutual exclusion for periocular recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.104024
– year: 2020
  ident: CR1
  article-title: Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00883-7
– ident: CR21
– volume: 27
  start-page: 220
  year: 2020
  ident: CR10
  article-title: Machine learning and statistical approach to predict and analyze wear rates in copper surface composites
  publication-title: Metals Mater. Int.
  doi: 10.1007/s12540-020-00809-3
– volume: 336
  start-page: 22
  year: 2002
  end-page: 29
  ident: CR18
  article-title: Compositional prediction of creep rupture life of single crystal Ni base superalloy by Bayesian neural network
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01965-7
– volume: 33
  start-page: 1
  issue: 1
  year: 2016
  end-page: 5
  ident: CR7
  article-title: Predicting long-term creep-rupture property of Inconel 740 and 740H
  publication-title: Mater. High Temp.
  doi: 10.1179/1878641315Y.0000000010
– year: 2012
  ident: CR25
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
  doi: 10.1145/3065386
– volume: 84
  start-page: 105743
  year: 2019
  ident: CR39
  article-title: Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105743
– volume: 74
  start-page: 634
  year: 2019
  end-page: 642
  ident: CR24
  article-title: Feature selection based on artificial bee colony and gradient boosting decision tree
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.036
– volume: 195
  start-page: 454
  year: 2020
  end-page: 467
  ident: CR19
  article-title: Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.05.001
– volume: 3
  start-page: 159
  year: 2017
  end-page: 177
  ident: CR12
  article-title: Materials discovery and design using machine learning
  publication-title: J. Materiom.
  doi: 10.1016/j.jmat.2017.08.002
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: CR40
  article-title: Ant colony optimization theory: A survey
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– volume: 5
  start-page: 181
  year: 1988
  end-page: 204
  ident: CR22
  article-title: A study of standardization of variables in cluster analysis
  publication-title: J. Classif.
  doi: 10.1007/BF01897163
– year: 2019
  ident: CR11
  article-title: Stacked auto-encoder network to predict tensile deformation behavior of a typical nickel-based superalloy considering Portevin–Le Chatelier effects
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00435-8
– volume: 32
  start-page: 101084
  year: 2020
  ident: CR31
  article-title: A novel cryptocurrency price trend forecasting model based on LightGBM
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2018.12.032
– ident: CR32
– volume: 8
  start-page: 38
  year: 2005
  end-page: 45
  ident: CR3
  article-title: Materials informatics
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)71123-8
– volume: 21
  start-page: 159
  issue: 3
  year: 2018
  end-page: 160
  ident: CR29
  article-title: Special issue on deep learning for document analysis and recognition
  publication-title: Int. J. Doc. Anal. Recogn.
  doi: 10.1007/s10032-018-0310-5
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR30
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 91
  start-page: 106198
  year: 2020
  ident: CR16
  article-title: Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106198
– volume: 157
  start-page: 1
  year: 2017
  end-page: 19
  ident: CR8
  article-title: Reliable analysis and extrapolation of creep rupture data
  publication-title: Int. J. Press. Vessels Pip.
  doi: 10.1016/j.ijpvp.2017.08.001
– volume: 131
  start-page: 358
  year: 2017
  end-page: 365
  ident: CR20
  article-title: Design of a nickel-base superalloy using a neural network
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.06.007
– volume: 21
  start-page: 225
  year: 1999
  end-page: 234
  ident: CR17
  article-title: A neural network approach to elevated temperature creep–fatigue life prediction
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(98)00071-1
– volume: 1
  start-page: 249
  year: 1997
  end-page: 258
  ident: CR43
  article-title: Local convergence rates of simple evolutionary algorithms with Cauchy mutations
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.687885
– volume: 57
  start-page: 5898
  year: 2009
  end-page: 5913
  ident: CR4
  article-title: Alloys-by-design: Application to nickel-based single crystal superalloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.08.018
– volume: 23
  start-page: 877
  year: 2017
  end-page: 883
  ident: CR2
  article-title: Effect of Ti content on creep properties of Ni-base single crystal superalloys
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-017-7089-7
– volume: 19
  start-page: 969
  year: 2019
  ident: CR36
  article-title: Local interpretable model-agnostic explanations for classification of lymph node metastases
  publication-title: Sensors
  doi: 10.3390/s19132969
– volume: 504
  start-page: 261
  year: 2010
  end-page: 264
  ident: CR5
  article-title: Assessment of creep rupture life of heat resistant Mg–Al–Ca alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.05.108
– volume: 32
  start-page: 1
  year: 2020
  ident: 71431_CR15
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04620-z
– volume: 266
  start-page: 1
  year: 2014
  ident: 71431_CR27
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.060
– volume: 103
  start-page: 104024
  year: 2020
  ident: 71431_CR14
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.104024
– volume: 504
  start-page: 261
  year: 2010
  ident: 71431_CR5
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.05.108
– volume: 69
  start-page: 46
  year: 2014
  ident: 71431_CR41
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 45
  start-page: 5
  year: 2001
  ident: 71431_CR30
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 8
  start-page: 22
  year: 2020
  ident: 71431_CR38
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 33
  start-page: 1
  issue: 1
  year: 2016
  ident: 71431_CR7
  publication-title: Mater. High Temp.
  doi: 10.1179/1878641315Y.0000000010
– volume: 131
  start-page: 358
  year: 2017
  ident: 71431_CR20
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.06.007
– volume: 21
  start-page: 225
  year: 1999
  ident: 71431_CR17
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(98)00071-1
– volume: 84
  start-page: 105743
  year: 2019
  ident: 71431_CR39
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105743
– volume: 783
  start-page: 565
  year: 2019
  ident: 71431_CR6
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.11.417
– volume: 336
  start-page: 22
  year: 2002
  ident: 71431_CR18
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01965-7
– volume: 74
  start-page: 634
  year: 2019
  ident: 71431_CR24
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.036
– year: 2012
  ident: 71431_CR25
  publication-title: Adv. Neural. Inf. Process. Syst.
  doi: 10.1145/3065386
– volume: 72
  start-page: 4404
  year: 2020
  ident: 71431_CR26
  publication-title: JOM
  doi: 10.1007/s11837-020-04344-9
– start-page: 163
  volume-title: Support Vector Machines for Pattern Classification
  year: 2010
  ident: 71431_CR28
  doi: 10.1007/978-1-84996-098-4_4
– year: 2020
  ident: 71431_CR1
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00883-7
– year: 2020
  ident: 71431_CR9
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00713-w
– ident: 71431_CR32
  doi: 10.1007/978-1-4842-4470-8_18
– volume: 6
  start-page: 150
  year: 1994
  ident: 71431_CR37
  publication-title: Games Econom. Behav.
  doi: 10.1006/game.1994.1008
– volume: 195
  start-page: 454
  year: 2020
  ident: 71431_CR19
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.05.001
– volume: 27
  start-page: 220
  year: 2020
  ident: 71431_CR10
  publication-title: Metals Mater. Int.
  doi: 10.1007/s12540-020-00809-3
– volume: 129
  start-page: 28
  year: 2016
  ident: 71431_CR42
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2016.03.027
– volume: 5
  start-page: 181
  year: 1988
  ident: 71431_CR22
  publication-title: J. Classif.
  doi: 10.1007/BF01897163
– year: 2019
  ident: 71431_CR11
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-019-00435-8
– volume: 21
  start-page: 159
  issue: 3
  year: 2018
  ident: 71431_CR29
  publication-title: Int. J. Doc. Anal. Recogn.
  doi: 10.1007/s10032-018-0310-5
– volume: 57
  start-page: 5898
  year: 2009
  ident: 71431_CR4
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.08.018
– volume: 32
  start-page: 101084
  year: 2020
  ident: 71431_CR31
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2018.12.032
– ident: 71431_CR35
– ident: 71431_CR23
  doi: 10.1145/2939672.2939785
– volume: 91
  start-page: 106198
  year: 2020
  ident: 71431_CR16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106198
– volume: 8
  start-page: 38
  year: 2005
  ident: 71431_CR3
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)71123-8
– ident: 71431_CR21
– volume: 23
  start-page: 877
  year: 2017
  ident: 71431_CR2
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-017-7089-7
– volume: 1
  start-page: 1
  year: 2020
  ident: 71431_CR13
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05390-9
– volume: 3
  start-page: 159
  year: 2017
  ident: 71431_CR12
  publication-title: J. Materiom.
  doi: 10.1016/j.jmat.2017.08.002
– volume: 1
  start-page: 249
  year: 1997
  ident: 71431_CR43
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.687885
– volume: 19
  start-page: 969
  year: 2019
  ident: 71431_CR36
  publication-title: Sensors
  doi: 10.3390/s19132969
– start-page: 15
  volume-title: Fuzzy Logic and Applications
  year: 2013
  ident: 71431_CR34
  doi: 10.1007/978-3-319-03200-9_2
– volume: 344
  start-page: 243
  year: 2005
  ident: 71431_CR40
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– volume: 157
  start-page: 1
  year: 2017
  ident: 71431_CR8
  publication-title: Int. J. Press. Vessels Pip.
  doi: 10.1016/j.ijpvp.2017.08.001
– ident: 71431_CR33
  doi: 10.1145/3292500.3330701
SSID ssj0000529419
Score 2.4671178
Snippet The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to explore the...
Abstract The evaluation of creep rupture life is complex due to its variable formation mechanism. In this paper, machine learning algorithms are applied to...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20716
SubjectTerms 639/166/988
639/301/1034/1037
Accuracy
Algorithms
Alloys
Artificial intelligence
Creep property prediction
Datasets
Humanities and Social Sciences
Learning algorithms
Life span
Machine learning
multidisciplinary
Neural networks
Nickel
Optimization algorithms
Physical properties
Prediction models
R&D
Research & development
Rupture
Science
Science (multidisciplinary)
Shapley additive explanations
Single crystals
Sparrow optimization algorithm
Superalloys
Temperature
XGBoost
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9UwEA-6Knjxe93qKhG8adkmafvSk6i4eHAfe1DYW2i-lgelre17wvvvdyZNu4i6F6GF0kxC2plkfplJZgh5C2rUeuOKNKuFCUdyUq0ZS1cewFG9Ms7qEF3_22q9lhcX1Xk0uI1xW-U8J4aJ2nYGbeQnAEMwDk2Rsw_9zxSzRqF3NabQuE3uALJhuKXrjJ8vNhb0YuWsimdlMiFPRtBXeKaM4yZE0J0p-00fhbD9f8Oaf_hJg_o5ffi_HX9EHkTgST9OkvKY3HLtE3JvSkW5f0rGs7Cr0tGYRuIyRf1maT-gJycIJ61bCzcGMXEj7TwF7EgBdLqeDrsePRG02Xg3l6w3sQm0RjRIuQck2tBx16MdrOn2z8iP0y_fP39NY0KG1OSy2Ka89FrAUnxly6IueWZs6ZzgRhptJcuM5iaruRWu0qUsHPxxIGbalgbYr10lDslB27XuiFAuM-dKW-kC8Iwu4bJZ7g3MCNYjikgIm9miTIxWjkkzGhW85kKqiZUKWKkCKxXUebfU6adYHTdSf0JuL5QYZzu86IZLFYetclp4zWRlau3zKsvgmTMDuEjLyksjEnI8M13FwT-qa44n5M1SDMMWfTF167rdRMMBauU8Ic8nGVt6ApBV4KInIe9nobtu_N8f9OLmvrwk9znKPTrDimNysB127hW5a35tN-PwOgycK6riHxQ
  priority: 102
  providerName: ProQuest
Title Machine learning-based predictions and analyses of the creep rupture life of the Ni-based single crystal superalloy
URI https://link.springer.com/article/10.1038/s41598-024-71431-1
https://www.ncbi.nlm.nih.gov/pubmed/39237729
https://www.proquest.com/docview/3101008541
https://www.proquest.com/docview/3101229342
https://doaj.org/article/eb3fb189cabf4900b1821c021b89f8c3
Volume 14
WOSCitedRecordID wos001457725800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66q-CLeHfWdYjgm5ZN01vy6MouCs5QRGF8Cs1tGSidMp0R5t_vOUlnXPH2IrShtCe95JxwvvQk3yHkNbhR640rEtZkJizJSbRO06TyAI6ayjirA7v-p2o-F4uFrG-k-sI5YZEeODbcGQz2vE6FNI32uWQMjnlqwDNpIb0wgeeTVfLGYCqyenOZp3JcJcMycTaAp8LVZBynH4LXTNKfPFEg7P8dyvwlQhocz-UDcn9EjPRdfNOH5JbrHpG7MYfk7jEZZmE6pKNj_oerBB2Tpf0aQzDBqmjTWdiRfcQNdOUpgD4KaNH1dL3tMYRA26V3-yvz5XgL_I3QouQOIGRLh22PP7Da1e4J-Xp58eX9h2TMpJCYXBSbhJdeZzCGrmxZNCVnxpbOZdwIo61ImdHcsIbbzEldisJBg4Fwqm1pQG_ayewpOepWnXtOKBfMudJKXQAQ0SVsluXeQFe2Ht3_hKT7VlVmpBnHbBetCuHuTKioCQWaUEETCuq8OdTpI8nGX6XPUVkHSSTIDifAbNRoNupfZjMhp3tVq7HXDgqgLnIdFTk849XhMvQ3DKI0nVttowwHjJTzCXkWTeTwJoA1MxytTMjbvc38uPmfP-jkf3zQC3KPo3FjrKs4JUeb9da9JHfM981yWE_J7WpRhVJMyfH5xbz-PA09BsoZr7GsoDyuP87qb9fNmBim
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggJHgBFFt57HOASFeVatuVz0UqTcTP1KtFCUh2QXtn-I3MuM8KgT01gNSIkXJJIqTzzOfPeMZQl6CGbWFcUnI8sj4JTmh1pyHswLIUT4zzmqfXX8-Wyzk6Wl2vEV-jmthMKxy1IleUdva4Bz5LtAQzEOTxPxd8y3EqlHoXR1LaPSwOHSbHzBk694efIL_-0qIvc8nH_fDoapAaGKZrEKRFjqC8eTMpkmeCmZs6lwkjDTaSs6MFoblwkYu06lMHGcozLVNDbRBO0y-BCr_SoyZxTBUUBxPczroNYt5NqzNYZHc7cA-4ho2gUGPYKtD_pv982UC_sZt__DLenO3d-t_-1C3yc2BWNP3fU-4Q7ZcdZdc60ttbu6R7shHjTo6lMk4C9F-W9q06KnynY_mlYUdk7S4jtYFBW5MgVS7hrbrBj0ttFwWbryyWA6PwNmWEiU3wLRL2q0bnOcr68198uVSWvyAbFd15R4RKiRzLrWZToCv6RQ2y-LCgMazBbKkgPARBsoM2dixKEipfFRAJFUPHQXQUR46Cu55Pd3T9LlILpT-gOiaJDGPuD9Rt2dqUEvK6ajQXGYm10WcMQbHghvgfVpmhTRRQHZGkKlBuXXqHGEBeTFdBrWEvqa8cvW6lxFAJWMRkIc9pqc3AUoe4aAuIG9GkJ8__N8Nenzxuzwn1_dPjuZqfrA4fEJuCOxz6PhLdsj2ql27p-Sq-b5adu0z32kp-XrZ4P8FbdV-sQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAu5Q2BAosEJ7DiXT-yPiAElIiobZQDSOW09b6qSFHsxgkof41fx4wfqRDQWw9ItmTZY8trfzvz7c7sDMBLNKPWG5cEYR6ZeklOoDXnwdAjOcqHxlldZ9c_Gk4m8uQkm-7Az24tDIVVdjqxVtS2MDRHPkAaQnlokpgPfBsWMT0YvSvPA6ogRZ7WrpxGA5FDt_mBw7fq7fgA__UrIUafvnz8HLQVBgITy2QViNTrCMeWQ5smeSpCY1PnImGk0Vby0GhhwlzYyGU6lYnjIQlzbVOD7dGOEjGh-t9FSh6LHuxOx8fTb9sZHvKhxTxrV-qEkRxUaC1pRZugEEi03AH_zRrWRQP-xnT_8NLWxm9063_-bLdhr6Xc7H3TR-7AjlvchetNEc7NPaiO63hSx9oCGmcBWXbLyiX5sOpuyfKFxZ3St7iKFZ4ha2ZIt13JluuSfDBsPvOuuzKZtY-geZg5SW6Qg89ZtS5pBnBebO7D1ytp8QPoLYqFewRMyNC51GY6QSanU9xsGHuDutB64k994B0klGnztFO5kLmq4wUiqRoYKYSRqmGk8J7X23vKJkvJpdIfCGlbScowXp8olmeqVVjK6chrLjOTax9nYYjHghtkhFpmXpqoD_sd4FSr9ip1gbY-vNheRoVFXqh84Yp1IyOQZMaiDw8bfG_fBMl6RMO9PrzpAH_x8H836PHl7_IcbiDm1dF4cvgEbgrqfuQRTPaht1qu3VO4Zr6vZtXyWduDGZxeNfp_Ae57iPo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+predictions+and+analyses+of+the+creep+rupture+life+of+the+Ni-based+single+crystal+superalloy&rft.jtitle=Scientific+reports&rft.au=Fan+Zou&rft.au=Pengjie+Liu&rft.au=Yanzhan+Chen&rft.au=Yaohua+Zhao&rft.date=2024-09-05&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-024-71431-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eb3fb189cabf4900b1821c021b89f8c3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon