Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies

Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of photochemistry and photobiology. B, Biology Ročník 180; s. 243 - 252
Hlavní autoři: Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R., Kalilur Rahiman, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Elsevier B.V 01.03.2018
Elsevier BV
Témata:
ISSN:1011-1344, 1873-2682, 1873-2682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV–Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. [Display omitted] •We report green extracts-mediated phytosynthesis of AgNPs.•XRD patterns confirmed the face centered cubic (fcc) structure of AgNPs.•SEM and TEM analysis confirmed the morphology and size of the AgNPs.•In vitro antioxidant activity was tested by five different assays.•Turmeric extract mediated AgNPs exhibit higher biological activity.
AbstractList Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV–Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.
Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV–Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. [Display omitted] •We report green extracts-mediated phytosynthesis of AgNPs.•XRD patterns confirmed the face centered cubic (fcc) structure of AgNPs.•SEM and TEM analysis confirmed the morphology and size of the AgNPs.•In vitro antioxidant activity was tested by five different assays.•Turmeric extract mediated AgNPs exhibit higher biological activity.
Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H O and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.
Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.
Author Kalilur Rahiman, A.
Senthil Kumar, R.
Arumai Selvan, D.
Mahendiran, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Arumai Selvan
  fullname: Arumai Selvan, D.
  organization: Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
– sequence: 2
  givenname: D.
  orcidid: 0000-0001-8430-827X
  surname: Mahendiran
  fullname: Mahendiran, D.
  organization: Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
– sequence: 3
  givenname: R.
  surname: Senthil Kumar
  fullname: Senthil Kumar, R.
  organization: Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637 205, India
– sequence: 4
  givenname: A.
  surname: Kalilur Rahiman
  fullname: Kalilur Rahiman, A.
  email: akrahmanjkr@thenewcollege.in
  organization: Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29476965$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxi1URP_AKyBLXDg0wU4cx-GABBUUpEpwgLPlTCaso8RebGfVfRGeF5fdCqkX6stY8m--kb_5zsmJ8w4JoZyVnHH5Ziqn7cYn31s_lxXjqmRVybh4Qs64auuikqo6yXfGecFrIU7JeYwTy6eR7TNyWnWilZ1szsjvaxNmC5f0Z0B0NKGhxg00rWHBYIHibQoGUiwWHKxJOBzBuHdpg9FG6kca7bzDQJ1xfmtCsjBjfEu_bfbJwwYXC2a-zLLJ-ls75Pp3hHV0Z1PwFDKW8gvYtKcxrYPF-Jw8Hc0c8cWxXpAfnz5-v_pc3Hy9_nL1_qYAoZpU8MZIpmpg2DFQveSSM-gAR-Cy57UcmrYXNVSqkX0jum4cmazrQYx8BKaqqr4grw-62-B_rRiTXmwEnGfj0K9RV6ypVSs6KR-BsrZrVduKjL56gE5-DS5_JFNSCK6ars3UyyO19tldvQ12MWGv75eTgXcHAIKPMeCos0Umu-jyTuysOdN3adCT_pcGfZcGzSqd05AF1AOB-xmPaP1waMXs_s5i0BEsOsgpCAhJD97-X-QPJ1vX8g
CitedBy_id crossref_primary_10_3390_molecules27010110
crossref_primary_10_3390_molecules28145439
crossref_primary_10_1007_s13197_025_06382_0
crossref_primary_10_1007_s13399_022_02743_3
crossref_primary_10_1016_j_fbio_2023_103332
crossref_primary_10_1080_02726351_2022_2156415
crossref_primary_10_1007_s11468_025_03186_y
crossref_primary_10_1016_j_molstruc_2025_143793
crossref_primary_10_3389_fphar_2022_1025160
crossref_primary_10_1007_s11144_022_02299_3
crossref_primary_10_3389_fphar_2023_1149554
crossref_primary_10_3390_nano11081883
crossref_primary_10_1007_s00339_023_06832_6
crossref_primary_10_1007_s12649_024_02711_0
crossref_primary_10_1007_s10876_024_02619_8
crossref_primary_10_1007_s11696_023_02851_y
crossref_primary_10_1016_j_jwpe_2023_104020
crossref_primary_10_1016_j_jhazmat_2020_122442
crossref_primary_10_1155_2021_6515419
crossref_primary_10_1002_jssc_202300678
crossref_primary_10_1016_j_colsurfa_2021_126675
crossref_primary_10_1002_masy_202100377
crossref_primary_10_1016_j_bpc_2025_107440
crossref_primary_10_1080_17518253_2021_1941306
crossref_primary_10_1007_s10722_024_02011_5
crossref_primary_10_1016_j_biopha_2018_11_006
crossref_primary_10_1016_j_inoche_2023_111193
crossref_primary_10_1016_j_jphotobiol_2018_05_032
crossref_primary_10_1016_j_radphyschem_2022_109990
crossref_primary_10_1007_s12668_022_00958_2
crossref_primary_10_1007_s12010_022_04145_7
crossref_primary_10_1016_j_scp_2021_100425
crossref_primary_10_1039_D0RA08206F
crossref_primary_10_1142_S0219581X24500327
crossref_primary_10_1108_IJIUS_07_2021_0085
crossref_primary_10_1016_j_bcab_2020_101776
crossref_primary_10_1016_j_talanta_2022_123908
crossref_primary_10_1155_2022_3923812
crossref_primary_10_1007_s10570_023_05099_7
crossref_primary_10_1016_j_ijbiomac_2024_138619
crossref_primary_10_3233_MNM_211521
crossref_primary_10_1016_j_chemosphere_2021_133111
crossref_primary_10_1016_j_jddst_2022_103876
crossref_primary_10_3389_fphar_2022_865801
crossref_primary_10_1155_2022_8874003
crossref_primary_10_1088_1755_1315_1201_1_012084
crossref_primary_10_1007_s40089_021_00341_1
crossref_primary_10_1007_s41742_019_00220_w
crossref_primary_10_3389_fphar_2023_1319613
crossref_primary_10_1039_D3RA06723H
crossref_primary_10_1007_s00289_024_05344_4
crossref_primary_10_1007_s12648_025_03581_5
crossref_primary_10_3390_pr9081304
crossref_primary_10_1016_j_jphotobiol_2020_111984
crossref_primary_10_1016_j_matchemphys_2021_124903
crossref_primary_10_1016_j_partic_2024_09_018
crossref_primary_10_1016_j_heliyon_2023_e14538
crossref_primary_10_1080_10667857_2020_1863571
crossref_primary_10_1002_aoc_5597
crossref_primary_10_1016_j_jddst_2021_102838
crossref_primary_10_1016_j_sjbs_2020_10_034
crossref_primary_10_1016_j_jcrysgro_2025_128087
crossref_primary_10_1111_jam_15195
crossref_primary_10_1007_s00299_020_02539_7
crossref_primary_10_1007_s13204_023_02812_7
crossref_primary_10_1016_j_colsurfb_2021_111935
crossref_primary_10_3390_pharmaceutics13101719
crossref_primary_10_1007_s13204_022_02513_7
crossref_primary_10_1155_2021_2058149
crossref_primary_10_3389_fchem_2023_1187808
crossref_primary_10_1080_17458080_2022_2120193
crossref_primary_10_1016_j_heliyon_2024_e25454
crossref_primary_10_1016_j_jece_2025_115998
crossref_primary_10_3390_molecules28031213
crossref_primary_10_1016_j_jddst_2018_11_001
crossref_primary_10_1002_jemt_24309
crossref_primary_10_1016_j_procbio_2022_10_033
crossref_primary_10_1007_s10876_019_01639_z
crossref_primary_10_1016_j_bcab_2023_102868
crossref_primary_10_1038_s41598_022_15648_y
crossref_primary_10_1016_j_mtcomm_2025_113609
crossref_primary_10_1111_ijfs_15329
crossref_primary_10_1016_j_gene_2022_146401
crossref_primary_10_1002_slct_202402100
crossref_primary_10_1007_s12032_025_02953_5
crossref_primary_10_1007_s12668_019_00693_1
crossref_primary_10_3389_fbioe_2025_1637589
crossref_primary_10_1002_slct_202402068
crossref_primary_10_1039_D2RA00231K
crossref_primary_10_3390_suschem4010007
crossref_primary_10_1016_j_molstruc_2022_132455
crossref_primary_10_1039_D5RA00739A
crossref_primary_10_1016_j_inoche_2023_111163
crossref_primary_10_1016_j_jphotobiol_2018_07_014
crossref_primary_10_3390_nano8090681
crossref_primary_10_1016_j_jksus_2022_102001
crossref_primary_10_1049_iet_nbt_2020_0001
crossref_primary_10_1016_j_carbpol_2021_118258
crossref_primary_10_1016_j_molstruc_2021_130829
crossref_primary_10_1088_1361_6528_ac19d5
crossref_primary_10_1093_toxres_tfaf037
crossref_primary_10_1007_s42114_024_01133_9
crossref_primary_10_1016_j_jddst_2018_08_004
crossref_primary_10_1080_15421406_2020_1723895
crossref_primary_10_1016_j_diamond_2022_109430
crossref_primary_10_1016_j_procbio_2022_05_021
crossref_primary_10_1515_ntrev_2024_0030
crossref_primary_10_1007_s13205_020_02516_7
crossref_primary_10_1039_D3EN00835E
crossref_primary_10_1016_j_matpr_2021_02_232
crossref_primary_10_1038_s41598_019_50906_6
crossref_primary_10_1016_j_fct_2022_113271
crossref_primary_10_1016_j_saa_2023_122540
crossref_primary_10_1007_s11696_023_02723_5
crossref_primary_10_1016_j_heliyon_2020_e04830
crossref_primary_10_1016_j_inoche_2022_109869
crossref_primary_10_1016_j_molstruc_2025_142672
crossref_primary_10_1088_1361_6528_ad10e4
crossref_primary_10_3390_molecules25143191
crossref_primary_10_1007_s11356_024_32983_x
crossref_primary_10_3389_fphar_2023_1154034
crossref_primary_10_21597_jist_533115
crossref_primary_10_1007_s40089_022_00367_z
crossref_primary_10_1007_s10876_020_01818_3
crossref_primary_10_1002_slct_202503423
crossref_primary_10_1016_j_nexres_2025_100447
crossref_primary_10_3390_polym16192683
crossref_primary_10_5004_dwt_2019_23605
crossref_primary_10_3390_nu13010154
crossref_primary_10_3390_ma15145006
crossref_primary_10_1007_s10876_018_01491_7
crossref_primary_10_1016_j_rechem_2025_102395
crossref_primary_10_1002_cbf_3844
crossref_primary_10_1002_slct_202501282
crossref_primary_10_1155_2021_2270472
crossref_primary_10_5004_dwt_2020_25237
crossref_primary_10_1038_s41598_023_29412_3
crossref_primary_10_1177_27551857251338287
crossref_primary_10_1155_2021_3155962
crossref_primary_10_1039_D5NA00115C
crossref_primary_10_1038_s41598_023_28356_y
crossref_primary_10_1021_acsbiomaterials_9b01685
crossref_primary_10_1016_j_colsurfb_2018_07_059
crossref_primary_10_1007_s13399_023_04456_7
crossref_primary_10_1007_s12088_024_01229_2
crossref_primary_10_1080_17518253_2021_2018507
crossref_primary_10_3390_coatings11040429
crossref_primary_10_1007_s13205_024_04058_8
crossref_primary_10_3390_ma14164726
crossref_primary_10_3390_pharmaceutics16070923
crossref_primary_10_3390_min12010085
crossref_primary_10_1007_s10876_019_01598_5
crossref_primary_10_1007_s10876_019_01670_0
crossref_primary_10_1016_j_jksus_2023_102972
crossref_primary_10_1080_02726351_2021_1977443
crossref_primary_10_3390_j7030016
crossref_primary_10_1016_j_ijpharm_2021_120311
crossref_primary_10_15864_ijiip_2404
crossref_primary_10_3390_ph18030286
crossref_primary_10_1007_s10876_019_01697_3
crossref_primary_10_1007_s12602_023_10179_y
crossref_primary_10_1016_j_canlet_2023_216079
crossref_primary_10_1155_2022_6859637
crossref_primary_10_1016_j_matchemphys_2019_122438
crossref_primary_10_1016_j_ijbiomac_2024_137035
crossref_primary_10_3390_nano11102757
crossref_primary_10_1016_j_phrs_2021_105837
crossref_primary_10_1016_j_jclepro_2019_04_128
crossref_primary_10_1080_17518253_2023_2174818
crossref_primary_10_3390_antiox9101003
crossref_primary_10_1039_D3RA06145K
crossref_primary_10_1111_ijfs_15489
crossref_primary_10_3390_s21041176
crossref_primary_10_1016_j_saa_2023_122638
crossref_primary_10_3390_molecules27072186
crossref_primary_10_1016_j_heliyon_2023_e18788
crossref_primary_10_1016_j_jece_2022_108889
Cites_doi 10.1016/j.cis.2008.09.002
10.1016/j.colsurfa.2011.08.028
10.1626/pps.10.151
10.1016/j.biortech.2010.05.051
10.1016/j.colsurfb.2017.07.020
10.1021/sc500237k
10.1016/j.biopha.2017.02.101
10.1016/j.matchemphys.2011.04.068
10.1016/j.physe.2011.02.014
10.1007/s12668-017-0418-y
10.1039/c1gc15386b
10.1016/0022-1759(83)90303-4
10.1016/j.foodchem.2005.06.037
10.1080/09637480500450248
10.1016/j.saa.2009.02.037
10.1021/jf0400056
10.1016/j.colsurfa.2013.01.059
10.1021/ja029267j
10.1016/j.cbi.2008.05.003
10.1016/j.colsurfb.2011.03.009
10.1016/S0308-8146(99)00269-1
10.1007/s00449-008-0224-6
10.1016/j.molstruc.2017.07.002
10.1016/j.procbio.2010.03.024
10.1248/bpb.21.978
10.1016/S0969-806X(02)00273-6
10.1016/S0144-8617(00)00151-X
10.1007/s002990050481
10.1021/ie3001869
10.1016/j.cis.2010.02.001
10.1016/j.colsurfa.2004.12.058
10.1007/s00449-017-1758-2
10.1016/j.ijbiomac.2017.06.010
10.1016/j.jcis.2004.03.003
10.1016/S0965-9773(98)00087-7
10.1007/s00449-015-1477-5
10.1016/S2221-1691(12)60100-2
10.1039/C4RA12784F
10.1016/j.bmc.2004.07.028
10.1016/S0891-5849(98)00315-3
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Mar 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Mar 2018
DBID AAYXX
CITATION
NPM
7QP
7TK
7U7
C1K
7X8
7S9
L.6
DOI 10.1016/j.jphotobiol.2018.02.014
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed
Toxicology Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1873-2682
EndPage 252
ExternalDocumentID 29476965
10_1016_j_jphotobiol_2018_02_014
S1011134417313118
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATLK
AAXUO
ABBQC
ABFNM
ABGRD
ABGSF
ABLVK
ABMAC
ABMZM
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACNNM
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJRQY
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCB
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPD
SSA
SSG
SSH
SSK
SSU
SSZ
T5K
WUQ
YK3
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
CITATION
EFKBS
~HD
NPM
7QP
7TK
7U7
AGCQF
C1K
7X8
7S9
L.6
ID FETCH-LOGICAL-c485t-15a6083c0e90c8b61610c9cefc16b136d57b43c2856b5499ff0633d4f1fc08223
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428490800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1011-1344
1873-2682
IngestDate Sun Nov 09 09:36:27 EST 2025
Thu Oct 02 05:45:48 EDT 2025
Wed Aug 13 11:31:12 EDT 2025
Wed Feb 19 02:42:33 EST 2025
Sat Nov 29 07:07:42 EST 2025
Tue Nov 18 22:42:50 EST 2025
Fri Feb 23 02:20:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Garlic extract
Green tea extract
Turmeric extract
Antioxidant activity
Apoptosis
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c485t-15a6083c0e90c8b61610c9cefc16b136d57b43c2856b5499ff0633d4f1fc08223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8430-827X
OpenAccessLink http://hdl.handle.net/10072/399958
PMID 29476965
PQID 2064418597
PQPubID 2045445
PageCount 10
ParticipantIDs proquest_miscellaneous_2053874966
proquest_miscellaneous_2007978774
proquest_journals_2064418597
pubmed_primary_29476965
crossref_citationtrail_10_1016_j_jphotobiol_2018_02_014
crossref_primary_10_1016_j_jphotobiol_2018_02_014
elsevier_sciencedirect_doi_10_1016_j_jphotobiol_2018_02_014
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
2018-Mar
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Journal of photochemistry and photobiology. B, Biology
PublicationTitleAlternate J Photochem Photobiol B
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Sathishkumar, Sneha, Yun (bb0240) 2010; 141
Jayaprakasha, Rao, Sakariah (bb0125) 2004; 12
Mahendiran, Subash, Selvan, Rehana, Kumar, Rahiman (bb0195) 2017; 7
Rehana, Mahendiran, Kumar, Rahiman (bb0050) 2017; 89
Akamine, Hossain, Ishimine, Yogi, Hokama, Iraha, Aniya (bb0090) 2007; 10
Zhang, Cheng, Xue, Fu (bb0065) 2013; 423
Philip (bb0160) 2009; 73
Sharma, Yngard, Lin (bb0045) 2009; 145
Mubarakali, Thajuddin, Jeganathan, Gunasekaran (bb0135) 2011; 85
Song, Kim (bb0015) 2009; 32
Iravani (bb0035) 2011; 13
Raveendran, Fu, Wallen (bb0040) 2003; 125
Sun, Li, He, Huang, Wang (bb0010) 2011; 40
Ayabe, Sumi (bb0080) 1998; 17
Re, Pellegrini, Proteggente, Pannala, Yang, Rice (bb0120) 1999; 26
Wang, Qiao, Chen, Ding (bb0095) 2005; 256
Boopathi, Gopinath, Boopathi, Balamurugan, Rajeshkumar, Sundararaman (bb0165) 2012; 51
Kubelka, Munk (bb0175) 2011; 12
Gulcin (bb0190) 2005; 56
Azizi, Mohamad, Rahim, Mohammadinejad, Ariff (bb0070) 2017; 104
Vignesh, Anbarasi, Sathiyanarayanan, Subramanian, Thirumurugan (bb0205) 2013; 12
Kacurakova, Capek, Sasinkova, Wellnes, Ebringerova (bb0170) 2000; 43
Jayaprakasha, Rao, Sakariah (bb0230) 2006; 98
Jo, Son, Lee, Byun (bb0085) 2003; 66
Rani, Rajasekharredy (bb0030) 2011; 389
Varadavenkatesan, Vinayagam, Selvaraj (bb0155) 2017
Wettasinghe, Shahidi (bb0225) 2000; 70
Nadagouda, Iyanna, Lalley, Han, Varma (bb0060) 2014; 2
Rastogi, Arunachalam (bb0025) 2011; 129
Huong, Malsumato, Kasai, Yamasaki, Watanabeth (bb0115) 1998; 21
Tuba, Gulcin (bb0215) 2008; 174
Ahmad, Sharma, Alam, Singh, Shamsi, Mehta (bb0145) 2010; 81
Dubey, Lahtinen, Sillanpaa (bb0150) 2010; 45
Shanker, Rai, Ahmad, Sastry (bb0005) 2004; 275
Harborne (bb0100) 1984
Rehana, Mahendiran, Kumar, Rahiman (bb0110) 2017; 40
Narayanan, Sakthivel (bb0020) 2010; 156
Ahamed, Khan, Siddiqui, Alsalhi, Alrokayan (bb0055) 2011; 43
Lin, Tzeng, Hsiac, Tsai (bb0180) 1998; 10
Bala, Saha, Chakraborty, Maiti, Das, Basu, Nandy (bb0200) 2015; 5
Ponarulselvam, Panneerselvam, Murugan, Aarthi, Kalimuthu, Thangaman (bb0075) 2012; 2
Moghaddam, Dabanlou (bb0140) 2014; 20
Wagner, Bladt, Zgainski (bb0105) 1984
Mosmann (bb0130) 1983; 65
Nenadis, Wang, Tsimidou, Zhang (bb0210) 2004; 52
Rasheed, Bilal, Iqbal, Li (bb0220) 2017; 158
Khan, Khan, Khan, Thabaiti (bb0185) 2015; 38
Ponarulselvam (10.1016/j.jphotobiol.2018.02.014_bb0075) 2012; 2
Mubarakali (10.1016/j.jphotobiol.2018.02.014_bb0135) 2011; 85
Bala (10.1016/j.jphotobiol.2018.02.014_bb0200) 2015; 5
Kacurakova (10.1016/j.jphotobiol.2018.02.014_bb0170) 2000; 43
Mahendiran (10.1016/j.jphotobiol.2018.02.014_bb0195) 2017; 7
Rasheed (10.1016/j.jphotobiol.2018.02.014_bb0220) 2017; 158
Khan (10.1016/j.jphotobiol.2018.02.014_bb0185) 2015; 38
Akamine (10.1016/j.jphotobiol.2018.02.014_bb0090) 2007; 10
Wang (10.1016/j.jphotobiol.2018.02.014_bb0095) 2005; 256
Lin (10.1016/j.jphotobiol.2018.02.014_bb0180) 1998; 10
Wettasinghe (10.1016/j.jphotobiol.2018.02.014_bb0225) 2000; 70
Ahamed (10.1016/j.jphotobiol.2018.02.014_bb0055) 2011; 43
Narayanan (10.1016/j.jphotobiol.2018.02.014_bb0020) 2010; 156
Rastogi (10.1016/j.jphotobiol.2018.02.014_bb0025) 2011; 129
Sathishkumar (10.1016/j.jphotobiol.2018.02.014_bb0240) 2010; 141
Ayabe (10.1016/j.jphotobiol.2018.02.014_bb0080) 1998; 17
Boopathi (10.1016/j.jphotobiol.2018.02.014_bb0165) 2012; 51
Ahmad (10.1016/j.jphotobiol.2018.02.014_bb0145) 2010; 81
Azizi (10.1016/j.jphotobiol.2018.02.014_bb0070) 2017; 104
Kubelka (10.1016/j.jphotobiol.2018.02.014_bb0175) 2011; 12
Varadavenkatesan (10.1016/j.jphotobiol.2018.02.014_bb0155) 2017
Wagner (10.1016/j.jphotobiol.2018.02.014_bb0105) 1984
Sharma (10.1016/j.jphotobiol.2018.02.014_bb0045) 2009; 145
Harborne (10.1016/j.jphotobiol.2018.02.014_bb0100) 1984
Shanker (10.1016/j.jphotobiol.2018.02.014_bb0005) 2004; 275
Jayaprakasha (10.1016/j.jphotobiol.2018.02.014_bb0230) 2006; 98
Sun (10.1016/j.jphotobiol.2018.02.014_bb0010) 2011; 40
Jayaprakasha (10.1016/j.jphotobiol.2018.02.014_bb0125) 2004; 12
Gulcin (10.1016/j.jphotobiol.2018.02.014_bb0190) 2005; 56
Re (10.1016/j.jphotobiol.2018.02.014_bb0120) 1999; 26
Zhang (10.1016/j.jphotobiol.2018.02.014_bb0065) 2013; 423
Rehana (10.1016/j.jphotobiol.2018.02.014_bb0110) 2017; 40
Vignesh (10.1016/j.jphotobiol.2018.02.014_bb0205) 2013; 12
Iravani (10.1016/j.jphotobiol.2018.02.014_bb0035) 2011; 13
Nenadis (10.1016/j.jphotobiol.2018.02.014_bb0210) 2004; 52
Dubey (10.1016/j.jphotobiol.2018.02.014_bb0150) 2010; 45
Jo (10.1016/j.jphotobiol.2018.02.014_bb0085) 2003; 66
Huong (10.1016/j.jphotobiol.2018.02.014_bb0115) 1998; 21
Rani (10.1016/j.jphotobiol.2018.02.014_bb0030) 2011; 389
Tuba (10.1016/j.jphotobiol.2018.02.014_bb0215) 2008; 174
Song (10.1016/j.jphotobiol.2018.02.014_bb0015) 2009; 32
Mosmann (10.1016/j.jphotobiol.2018.02.014_bb0130) 1983; 65
Philip (10.1016/j.jphotobiol.2018.02.014_bb0160) 2009; 73
Nadagouda (10.1016/j.jphotobiol.2018.02.014_bb0060) 2014; 2
Raveendran (10.1016/j.jphotobiol.2018.02.014_bb0040) 2003; 125
Rehana (10.1016/j.jphotobiol.2018.02.014_bb0050) 2017; 89
Moghaddam (10.1016/j.jphotobiol.2018.02.014_bb0140) 2014; 20
References_xml – volume: 141
  start-page: 7958
  year: 2010
  end-page: 7965
  ident: bb0240
  article-title: Immobilization of silver nanoparticles synthesized using
  publication-title: Bioresour. Technol.
– volume: 129
  start-page: 558
  year: 2011
  end-page: 563
  ident: bb0025
  article-title: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (
  publication-title: Mater. Chem. Phys.
– volume: 104
  start-page: 423
  year: 2017
  end-page: 431
  ident: bb0070
  article-title: Hydrogel beads bio-nanocomposite based on
  publication-title: Int. J. Biol. Macromol.
– volume: 51
  start-page: 5976
  year: 2012
  end-page: 5985
  ident: bb0165
  article-title: Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated
  publication-title: Ind. Eng. Chem. Res.
– volume: 40
  start-page: 148
  year: 2011
  end-page: 151
  ident: bb0010
  article-title: Stability of colloidal silver nanoparticles prepared by bioreduction
  publication-title: Rare Metal Mater. Eng.
– volume: 423
  start-page: 63
  year: 2013
  end-page: 68
  ident: bb0065
  article-title: Biosynthesis of silver nanoparticles at room temperature using aqueous
  publication-title: Physicochem. Eng. Aspects
– start-page: 629
  year: 2017
  end-page: 635
  ident: bb0155
  article-title: Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of
  publication-title: J. Mol. Struct.
– volume: 7
  start-page: 530
  year: 2017
  end-page: 545
  ident: bb0195
  article-title: Biosynthesis of zinc oxide nanoparticles using plant extracts of
  publication-title: Bionano Sci.
– volume: 10
  start-page: 151
  year: 2007
  end-page: 154
  ident: bb0090
  article-title: Effects of application of N, P and K alone or in combination on growth, yield and curcumin content of turmeric (
  publication-title: Plant Prod. Sci.
– volume: 81
  start-page: 81
  year: 2010
  end-page: 86
  ident: bb0145
  article-title: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil
  publication-title: J. Colloid Interface Sci.
– volume: 174
  start-page: 27
  year: 2008
  end-page: 37
  ident: bb0215
  article-title: Antioxidant and radical scavenging properties of curcumin
  publication-title: Chem. Biol. Interact.
– volume: 5
  start-page: 4993
  year: 2015
  end-page: 5003
  ident: bb0200
  article-title: Green synthesis of zinc oxide nanoparticles using
  publication-title: RSC Adv.
– volume: 45
  start-page: 1065
  year: 2010
  end-page: 1071
  ident: bb0150
  article-title: Green synthesis of gold and silver nanoparticles using
  publication-title: Process Biochem.
– volume: 156
  start-page: 1
  year: 2010
  end-page: 13
  ident: bb0020
  article-title: Biological synthesis of metal nanoparticles by microbes
  publication-title: Adv. Colloid Interf. Sci.
– volume: 43
  start-page: 1266
  year: 2011
  end-page: 1271
  ident: bb0055
  article-title: Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles
  publication-title: Phys. E.
– volume: 98
  start-page: 720
  year: 2006
  end-page: 724
  ident: bb0230
  article-title: Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin
  publication-title: Food Chem.
– volume: 21
  start-page: 978
  year: 1998
  end-page: 981
  ident: bb0115
  article-title: In vitro antioxidant activity of Vietnamese ginseng saponin and its components
  publication-title: Biol. Pharm. Bull.
– volume: 12
  start-page: 37
  year: 2013
  end-page: 46
  ident: bb0205
  article-title: Green synthesis of biogenic silver nanomaterials using
  publication-title: Physicochem. Eng. Aspects
– volume: 158
  start-page: 408
  year: 2017
  end-page: 415
  ident: bb0220
  article-title: Green biosynthesis of silver nanoparticles using leaves extract of
  publication-title: Colloids Surf. B
– volume: 56
  start-page: 491
  year: 2005
  end-page: 499
  ident: bb0190
  article-title: The antioxidant and radical scavenging activities of black pepper (
  publication-title: Int. J. Food Sci. Nutr.
– volume: 73
  start-page: 374
  year: 2009
  end-page: 383
  ident: bb0160
  article-title: Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract
  publication-title: Spectrochim. Acta A
– volume: 52
  start-page: 4669
  year: 2004
  end-page: 4674
  ident: bb0210
  article-title: Estimation of scavenging activity of phenolic compounds using the ABTS
  publication-title: J. Agric. Food Chem.
– volume: 38
  start-page: 2397
  year: 2015
  end-page: 2416
  ident: bb0185
  article-title: Green synthesis of biogenic silver nanomaterials using
  publication-title: Bioprocess Biosyst. Eng.
– volume: 70
  start-page: 17
  year: 2000
  end-page: 26
  ident: bb0225
  article-title: Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals
  publication-title: Food Chem.
– volume: 40
  start-page: 943
  year: 2017
  end-page: 957
  ident: bb0110
  article-title: In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts
  publication-title: Bioprocess Biosyst. Eng.
– volume: 2
  start-page: 1717
  year: 2014
  end-page: 1723
  ident: bb0060
  article-title: Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts
  publication-title: ACS Sustain. Chem. Eng.
– volume: 389
  start-page: 188
  year: 2011
  end-page: 194
  ident: bb0030
  article-title: Green synthesis of silver-protein (core–shell) nanoparticles using
  publication-title: Physicochem. Eng. Aspects
– volume: 66
  start-page: 179
  year: 2003
  end-page: 184
  ident: bb0085
  article-title: Irradiation application for colour removed and purification of green tea leaves extract
  publication-title: Radiat. Phys. Chem.
– volume: 12
  start-page: 593
  year: 2011
  end-page: 601
  ident: bb0175
  article-title: Ein Beitrag zur Optik der Farbanstriche
  publication-title: Z. Tech. Phys.
– volume: 275
  start-page: 496
  year: 2004
  end-page: 502
  ident: bb0005
  article-title: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 2638
  year: 2011
  end-page: 2650
  ident: bb0035
  article-title: Green synthesis of metal nanoparticles using plants
  publication-title: Green Chem.
– volume: 2
  start-page: 574
  year: 2012
  end-page: 580
  ident: bb0075
  article-title: Synthesis of silver nanoparticles using leaves of
  publication-title: Asian Pac. J. Trop. Biomed.
– year: 1984
  ident: bb0100
  article-title: Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis
– volume: 43
  start-page: 195
  year: 2000
  end-page: 203
  ident: bb0170
  article-title: FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses
  publication-title: Carbohydr. Polym.
– volume: 85
  start-page: 360
  year: 2011
  end-page: 365
  ident: bb0135
  article-title: Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens
  publication-title: Colloids Surf. B
– volume: 89
  start-page: 1067
  year: 2017
  end-page: 1077
  ident: bb0050
  article-title: Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts
  publication-title: Biomed Pharmacother
– volume: 256
  start-page: 111
  year: 2005
  end-page: 115
  ident: bb0095
  article-title: Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles
  publication-title: Physicochem. Eng. Aspects
– volume: 65
  start-page: 55
  year: 1983
  end-page: 63
  ident: bb0130
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
– volume: 17
  start-page: 773
  year: 1998
  end-page: 779
  ident: bb0080
  article-title: Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic (
  publication-title: Plant Cell Rep.
– volume: 26
  start-page: 1231
  year: 1999
  end-page: 1237
  ident: bb0120
  article-title: Antioxidant activity applying an improved ABTS radical cation decolorization assay
  publication-title: Free Radic. Biol. Med.
– volume: 20
  start-page: 739
  year: 2014
  end-page: 744
  ident: bb0140
  article-title: Biological activities of silver nanoparticles from
  publication-title: J. Ind. Eng. Chem.
– volume: 125
  start-page: 13940
  year: 2003
  end-page: 13941
  ident: bb0040
  article-title: Completely green synthesis and stabilization of metal nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 5141
  year: 2004
  end-page: 5146
  ident: bb0125
  article-title: Antioxidant activities of flavidin in different in vitro model systems
  publication-title: Bioorg. Med. Chem.
– volume: 10
  start-page: 465
  year: 1998
  end-page: 477
  ident: bb0180
  article-title: Electrode effects on gas sensing properties of nanocrystalline zinc oxide
  publication-title: Nanostruct. Mater.
– start-page: 298
  year: 1984
  end-page: 334
  ident: bb0105
  article-title: Plant Drug Analysis
– volume: 32
  start-page: 79
  year: 2009
  end-page: 84
  ident: bb0015
  article-title: Rapid biological synthesis of silver nanoparticles using plant leaf extract
  publication-title: Bioprocess Biosyst. Eng.
– volume: 145
  start-page: 83
  year: 2009
  end-page: 96
  ident: bb0045
  article-title: Silver nanoparticles: green synthesis and their antimicrobial activities
  publication-title: Adv. Colloid Interf. Sci.
– volume: 145
  start-page: 83
  year: 2009
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0045
  article-title: Silver nanoparticles: green synthesis and their antimicrobial activities
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2008.09.002
– year: 1984
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0100
– volume: 389
  start-page: 188
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0030
  article-title: Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its biological applications
  publication-title: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2011.08.028
– volume: 12
  start-page: 593
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0175
  article-title: Ein Beitrag zur Optik der Farbanstriche
  publication-title: Z. Tech. Phys.
– volume: 10
  start-page: 151
  year: 2007
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0090
  article-title: Effects of application of N, P and K alone or in combination on growth, yield and curcumin content of turmeric (Curcuma longa L.)
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.10.151
– volume: 141
  start-page: 7958
  year: 2010
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0240
  article-title: Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.05.051
– volume: 40
  start-page: 148
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0010
  article-title: Stability of colloidal silver nanoparticles prepared by bioreduction
  publication-title: Rare Metal Mater. Eng.
– volume: 158
  start-page: 408
  year: 2017
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0220
  article-title: Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2017.07.020
– volume: 2
  start-page: 1717
  year: 2014
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0060
  article-title: Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc500237k
– volume: 89
  start-page: 1067
  year: 2017
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0050
  article-title: Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2017.02.101
– volume: 129
  start-page: 558
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0025
  article-title: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.04.068
– volume: 43
  start-page: 1266
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0055
  article-title: Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles
  publication-title: Phys. E.
  doi: 10.1016/j.physe.2011.02.014
– volume: 7
  start-page: 530
  year: 2017
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0195
  article-title: Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies
  publication-title: Bionano Sci.
  doi: 10.1007/s12668-017-0418-y
– volume: 13
  start-page: 2638
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0035
  article-title: Green synthesis of metal nanoparticles using plants
  publication-title: Green Chem.
  doi: 10.1039/c1gc15386b
– volume: 65
  start-page: 55
  year: 1983
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0130
  article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(83)90303-4
– volume: 81
  start-page: 81
  year: 2010
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0145
  article-title: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil
  publication-title: J. Colloid Interface Sci.
– volume: 98
  start-page: 720
  year: 2006
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0230
  article-title: Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.06.037
– volume: 56
  start-page: 491
  year: 2005
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0190
  article-title: The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds
  publication-title: Int. J. Food Sci. Nutr.
  doi: 10.1080/09637480500450248
– volume: 73
  start-page: 374
  year: 2009
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0160
  article-title: Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2009.02.037
– volume: 52
  start-page: 4669
  year: 2004
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0210
  article-title: Estimation of scavenging activity of phenolic compounds using the ABTS+ assay
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0400056
– volume: 423
  start-page: 63
  year: 2013
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0065
  article-title: Biosynthesis of silver nanoparticles at room temperature using aqueous Aloe leaf extract and antibacterial properties
  publication-title: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2013.01.059
– volume: 125
  start-page: 13940
  year: 2003
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0040
  article-title: Completely green synthesis and stabilization of metal nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029267j
– volume: 174
  start-page: 27
  year: 2008
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0215
  article-title: Antioxidant and radical scavenging properties of curcumin
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2008.05.003
– volume: 85
  start-page: 360
  year: 2011
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0135
  article-title: Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2011.03.009
– volume: 70
  start-page: 17
  year: 2000
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0225
  article-title: Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(99)00269-1
– volume: 32
  start-page: 79
  year: 2009
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0015
  article-title: Rapid biological synthesis of silver nanoparticles using plant leaf extract
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-008-0224-6
– start-page: 629
  year: 2017
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0155
  article-title: Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of vinga mungo and their biological applications
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2017.07.002
– volume: 45
  start-page: 1065
  year: 2010
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0150
  article-title: Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2010.03.024
– volume: 21
  start-page: 978
  year: 1998
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0115
  article-title: In vitro antioxidant activity of Vietnamese ginseng saponin and its components
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.21.978
– volume: 66
  start-page: 179
  year: 2003
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0085
  article-title: Irradiation application for colour removed and purification of green tea leaves extract
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/S0969-806X(02)00273-6
– volume: 43
  start-page: 195
  year: 2000
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0170
  article-title: FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses
  publication-title: Carbohydr. Polym.
  doi: 10.1016/S0144-8617(00)00151-X
– start-page: 298
  year: 1984
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0105
– volume: 17
  start-page: 773
  year: 1998
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0080
  article-title: Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic (Allium sativum L.)
  publication-title: Plant Cell Rep.
  doi: 10.1007/s002990050481
– volume: 20
  start-page: 739
  year: 2014
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0140
  article-title: Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts
  publication-title: J. Ind. Eng. Chem.
– volume: 51
  start-page: 5976
  year: 2012
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0165
  article-title: Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie3001869
– volume: 156
  start-page: 1
  year: 2010
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0020
  article-title: Biological synthesis of metal nanoparticles by microbes
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2010.02.001
– volume: 256
  start-page: 111
  year: 2005
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0095
  article-title: Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles
  publication-title: Physicochem. Eng. Aspects
  doi: 10.1016/j.colsurfa.2004.12.058
– volume: 40
  start-page: 943
  year: 2017
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0110
  article-title: In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-017-1758-2
– volume: 12
  start-page: 37
  year: 2013
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0205
  article-title: Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities
  publication-title: Physicochem. Eng. Aspects
– volume: 104
  start-page: 423
  year: 2017
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0070
  article-title: Hydrogel beads bio-nanocomposite based on kappa-carrageenan and green synthesized silver nanoparticles for biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.06.010
– volume: 275
  start-page: 496
  year: 2004
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0005
  article-title: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.03.003
– volume: 10
  start-page: 465
  year: 1998
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0180
  article-title: Electrode effects on gas sensing properties of nanocrystalline zinc oxide
  publication-title: Nanostruct. Mater.
  doi: 10.1016/S0965-9773(98)00087-7
– volume: 38
  start-page: 2397
  year: 2015
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0185
  article-title: Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-015-1477-5
– volume: 2
  start-page: 574
  year: 2012
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0075
  article-title: Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities
  publication-title: Asian Pac. J. Trop. Biomed.
  doi: 10.1016/S2221-1691(12)60100-2
– volume: 5
  start-page: 4993
  year: 2015
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0200
  article-title: Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12784F
– volume: 12
  start-page: 5141
  year: 2004
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0125
  article-title: Antioxidant activities of flavidin in different in vitro model systems
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2004.07.028
– volume: 26
  start-page: 1231
  year: 1999
  ident: 10.1016/j.jphotobiol.2018.02.014_bb0120
  article-title: Antioxidant activity applying an improved ABTS radical cation decolorization assay
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(98)00315-3
SSID ssj0000567
Score 2.6217172
Snippet Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 243
SubjectTerms 2,2-diphenyl-1-picrylhydrazyl
Adenocarcinoma
Antioxidant activity
Antioxidants
Apoptosis
Ascorbic acid
Biomolecules
breasts
cell lines
Cervix
Cytotoxicity
dimethyl sulfoxide
energy-dispersive X-ray analysis
Fibroblasts
Garlic
Garlic extract
Green tea
Green tea extract
humans
Hydrogen peroxide
Infrared spectroscopy
Lungs
Nanoparticles
nanosilver
particle size
Phytochemicals
Rutin
scanning electron microscopy
Silver
Silver nitrate
Skin
Synthesis
Tea
Toxicity testing
transmission electron microscopy
Tumor cell lines
turmeric
Turmeric extract
ultraviolet-visible spectroscopy
X-ray diffraction
Title Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies
URI https://dx.doi.org/10.1016/j.jphotobiol.2018.02.014
https://www.ncbi.nlm.nih.gov/pubmed/29476965
https://www.proquest.com/docview/2064418597
https://www.proquest.com/docview/2007978774
https://www.proquest.com/docview/2053874966
Volume 180
WOSCitedRecordID wos000428490800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000567
  issn: 1011-1344
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCMatMCYjIV6yVrnbgacydVxUygQd6luUuAlNFdySplX3R_iL_A2OYydN6YbKAy9R6zhJ3fPlXOzP5yD0wvIc0I0shPebiKmbyGiJ2lbw1bNoAPbaKJYLvvZIv0-HQ--80fhV7oVZpoRzulp5s_8qamgDYYuts_8g7uqm0ACfQehwBLHDcSfBvw2yNCnqln8TnBoNpChpkotM8uZBHYutURDjFmU6wOOUHeeXHLxBlaBkngjKtMYDDlF1jTx3Pr7MRZGtIsuApH7CUFbJKFBc9YRryyTPphqDjjmcYcLPn9foituu8Gw8VTcVpedk7gLRpDJEtbU3BQyTjSWATrb4HiSg7FK1llVxlz8G44iDrf6j-QvY13GSamtWeWVtIBhJF5n2ORgnaka4U58OMeiaD6Y0OCVWy3RlRaN2dEVbpfb1uuKWyaK2DIqc25i0J9WwBR2QFnle5e7XzRze_U_-2UWv5w-6w8HL2Y-WKG8maACq1sseOjCJ44H6Pei87w4_rJ0Gpyh2XP1SRTqTVMSrH36dJ3VdpFR4TIO76I6SL-5I9NxDjYgfoptKiofo1mkp8PvopwTtCS6QiAGyGECAS8jiLciqjhVk8TTGErJ4A7Kv8AZgT3ANrsUjEo4LuOI6XLGC6wN0cdYdnL5rqYohLWZTJ28ZTuBCTMH0yNMZDV0IZ3TmsShmhhsaljtySGhbzKSOG4qJkTgGD90a2bERM1H6wHqI9vmUR48RpqGYNoogmg6I7TjCrY_A2TfByIUsGpEmIuW_7zOVTl9UdUn9kjc58ddy84XcfN30QW5NZFRXzmRKmR2ueV0K2FeusXR5fQDqDlcflZjwlaaaw3kRClHHg6E8r06D3MWKYcCj6UL00YkHJp3Yf-sDPhOxPddtokcSb9WwTM8mruc6T3Z4wlN0e_0-H6H9PFtEz9ANtsyTeXaM9siQHqu35jdeBw61
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Garlic%2C+green+tea+and+turmeric+extracts-mediated+green+synthesis+of+silver+nanoparticles%3A+Phytochemical%2C+antioxidant+and+in+vitro+cytotoxicity+studies&rft.jtitle=Journal+of+photochemistry+and+photobiology.+B%2C+Biology&rft.au=Arumai+Selvan%2C+D&rft.au=Mahendiran%2C+D&rft.au=Senthil+Kumar%2C+R&rft.au=Kalilur+Rahiman%2C+A&rft.date=2018-03-01&rft.issn=1873-2682&rft.eissn=1873-2682&rft.volume=180&rft.spage=243&rft_id=info:doi/10.1016%2Fj.jphotobiol.2018.02.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-1344&client=summon