Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies
Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capp...
Uloženo v:
| Vydáno v: | Journal of photochemistry and photobiology. B, Biology Ročník 180; s. 243 - 252 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Elsevier B.V
01.03.2018
Elsevier BV |
| Témata: | |
| ISSN: | 1011-1344, 1873-2682, 1873-2682 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV–Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.
[Display omitted]
•We report green extracts-mediated phytosynthesis of AgNPs.•XRD patterns confirmed the face centered cubic (fcc) structure of AgNPs.•SEM and TEM analysis confirmed the morphology and size of the AgNPs.•In vitro antioxidant activity was tested by five different assays.•Turmeric extract mediated AgNPs exhibit higher biological activity. |
|---|---|
| AbstractList | Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV–Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV–Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. [Display omitted] •We report green extracts-mediated phytosynthesis of AgNPs.•XRD patterns confirmed the face centered cubic (fcc) structure of AgNPs.•SEM and TEM analysis confirmed the morphology and size of the AgNPs.•In vitro antioxidant activity was tested by five different assays.•Turmeric extract mediated AgNPs exhibit higher biological activity. Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H O and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. |
| Author | Kalilur Rahiman, A. Senthil Kumar, R. Arumai Selvan, D. Mahendiran, D. |
| Author_xml | – sequence: 1 givenname: D. surname: Arumai Selvan fullname: Arumai Selvan, D. organization: Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India – sequence: 2 givenname: D. orcidid: 0000-0001-8430-827X surname: Mahendiran fullname: Mahendiran, D. organization: Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India – sequence: 3 givenname: R. surname: Senthil Kumar fullname: Senthil Kumar, R. organization: Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637 205, India – sequence: 4 givenname: A. surname: Kalilur Rahiman fullname: Kalilur Rahiman, A. email: akrahmanjkr@thenewcollege.in organization: Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29476965$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9u1DAQxi1URP_AKyBLXDg0wU4cx-GABBUUpEpwgLPlTCaso8RebGfVfRGeF5fdCqkX6stY8m--kb_5zsmJ8w4JoZyVnHH5Ziqn7cYn31s_lxXjqmRVybh4Qs64auuikqo6yXfGecFrIU7JeYwTy6eR7TNyWnWilZ1szsjvaxNmC5f0Z0B0NKGhxg00rWHBYIHibQoGUiwWHKxJOBzBuHdpg9FG6kca7bzDQJ1xfmtCsjBjfEu_bfbJwwYXC2a-zLLJ-ls75Pp3hHV0Z1PwFDKW8gvYtKcxrYPF-Jw8Hc0c8cWxXpAfnz5-v_pc3Hy9_nL1_qYAoZpU8MZIpmpg2DFQveSSM-gAR-Cy57UcmrYXNVSqkX0jum4cmazrQYx8BKaqqr4grw-62-B_rRiTXmwEnGfj0K9RV6ypVSs6KR-BsrZrVduKjL56gE5-DS5_JFNSCK6ars3UyyO19tldvQ12MWGv75eTgXcHAIKPMeCos0Umu-jyTuysOdN3adCT_pcGfZcGzSqd05AF1AOB-xmPaP1waMXs_s5i0BEsOsgpCAhJD97-X-QPJ1vX8g |
| CitedBy_id | crossref_primary_10_3390_molecules27010110 crossref_primary_10_3390_molecules28145439 crossref_primary_10_1007_s13197_025_06382_0 crossref_primary_10_1007_s13399_022_02743_3 crossref_primary_10_1016_j_fbio_2023_103332 crossref_primary_10_1080_02726351_2022_2156415 crossref_primary_10_1007_s11468_025_03186_y crossref_primary_10_1016_j_molstruc_2025_143793 crossref_primary_10_3389_fphar_2022_1025160 crossref_primary_10_1007_s11144_022_02299_3 crossref_primary_10_3389_fphar_2023_1149554 crossref_primary_10_3390_nano11081883 crossref_primary_10_1007_s00339_023_06832_6 crossref_primary_10_1007_s12649_024_02711_0 crossref_primary_10_1007_s10876_024_02619_8 crossref_primary_10_1007_s11696_023_02851_y crossref_primary_10_1016_j_jwpe_2023_104020 crossref_primary_10_1016_j_jhazmat_2020_122442 crossref_primary_10_1155_2021_6515419 crossref_primary_10_1002_jssc_202300678 crossref_primary_10_1016_j_colsurfa_2021_126675 crossref_primary_10_1002_masy_202100377 crossref_primary_10_1016_j_bpc_2025_107440 crossref_primary_10_1080_17518253_2021_1941306 crossref_primary_10_1007_s10722_024_02011_5 crossref_primary_10_1016_j_biopha_2018_11_006 crossref_primary_10_1016_j_inoche_2023_111193 crossref_primary_10_1016_j_jphotobiol_2018_05_032 crossref_primary_10_1016_j_radphyschem_2022_109990 crossref_primary_10_1007_s12668_022_00958_2 crossref_primary_10_1007_s12010_022_04145_7 crossref_primary_10_1016_j_scp_2021_100425 crossref_primary_10_1039_D0RA08206F crossref_primary_10_1142_S0219581X24500327 crossref_primary_10_1108_IJIUS_07_2021_0085 crossref_primary_10_1016_j_bcab_2020_101776 crossref_primary_10_1016_j_talanta_2022_123908 crossref_primary_10_1155_2022_3923812 crossref_primary_10_1007_s10570_023_05099_7 crossref_primary_10_1016_j_ijbiomac_2024_138619 crossref_primary_10_3233_MNM_211521 crossref_primary_10_1016_j_chemosphere_2021_133111 crossref_primary_10_1016_j_jddst_2022_103876 crossref_primary_10_3389_fphar_2022_865801 crossref_primary_10_1155_2022_8874003 crossref_primary_10_1088_1755_1315_1201_1_012084 crossref_primary_10_1007_s40089_021_00341_1 crossref_primary_10_1007_s41742_019_00220_w crossref_primary_10_3389_fphar_2023_1319613 crossref_primary_10_1039_D3RA06723H crossref_primary_10_1007_s00289_024_05344_4 crossref_primary_10_1007_s12648_025_03581_5 crossref_primary_10_3390_pr9081304 crossref_primary_10_1016_j_jphotobiol_2020_111984 crossref_primary_10_1016_j_matchemphys_2021_124903 crossref_primary_10_1016_j_partic_2024_09_018 crossref_primary_10_1016_j_heliyon_2023_e14538 crossref_primary_10_1080_10667857_2020_1863571 crossref_primary_10_1002_aoc_5597 crossref_primary_10_1016_j_jddst_2021_102838 crossref_primary_10_1016_j_sjbs_2020_10_034 crossref_primary_10_1016_j_jcrysgro_2025_128087 crossref_primary_10_1111_jam_15195 crossref_primary_10_1007_s00299_020_02539_7 crossref_primary_10_1007_s13204_023_02812_7 crossref_primary_10_1016_j_colsurfb_2021_111935 crossref_primary_10_3390_pharmaceutics13101719 crossref_primary_10_1007_s13204_022_02513_7 crossref_primary_10_1155_2021_2058149 crossref_primary_10_3389_fchem_2023_1187808 crossref_primary_10_1080_17458080_2022_2120193 crossref_primary_10_1016_j_heliyon_2024_e25454 crossref_primary_10_1016_j_jece_2025_115998 crossref_primary_10_3390_molecules28031213 crossref_primary_10_1016_j_jddst_2018_11_001 crossref_primary_10_1002_jemt_24309 crossref_primary_10_1016_j_procbio_2022_10_033 crossref_primary_10_1007_s10876_019_01639_z crossref_primary_10_1016_j_bcab_2023_102868 crossref_primary_10_1038_s41598_022_15648_y crossref_primary_10_1016_j_mtcomm_2025_113609 crossref_primary_10_1111_ijfs_15329 crossref_primary_10_1016_j_gene_2022_146401 crossref_primary_10_1002_slct_202402100 crossref_primary_10_1007_s12032_025_02953_5 crossref_primary_10_1007_s12668_019_00693_1 crossref_primary_10_3389_fbioe_2025_1637589 crossref_primary_10_1002_slct_202402068 crossref_primary_10_1039_D2RA00231K crossref_primary_10_3390_suschem4010007 crossref_primary_10_1016_j_molstruc_2022_132455 crossref_primary_10_1039_D5RA00739A crossref_primary_10_1016_j_inoche_2023_111163 crossref_primary_10_1016_j_jphotobiol_2018_07_014 crossref_primary_10_3390_nano8090681 crossref_primary_10_1016_j_jksus_2022_102001 crossref_primary_10_1049_iet_nbt_2020_0001 crossref_primary_10_1016_j_carbpol_2021_118258 crossref_primary_10_1016_j_molstruc_2021_130829 crossref_primary_10_1088_1361_6528_ac19d5 crossref_primary_10_1093_toxres_tfaf037 crossref_primary_10_1007_s42114_024_01133_9 crossref_primary_10_1016_j_jddst_2018_08_004 crossref_primary_10_1080_15421406_2020_1723895 crossref_primary_10_1016_j_diamond_2022_109430 crossref_primary_10_1016_j_procbio_2022_05_021 crossref_primary_10_1515_ntrev_2024_0030 crossref_primary_10_1007_s13205_020_02516_7 crossref_primary_10_1039_D3EN00835E crossref_primary_10_1016_j_matpr_2021_02_232 crossref_primary_10_1038_s41598_019_50906_6 crossref_primary_10_1016_j_fct_2022_113271 crossref_primary_10_1016_j_saa_2023_122540 crossref_primary_10_1007_s11696_023_02723_5 crossref_primary_10_1016_j_heliyon_2020_e04830 crossref_primary_10_1016_j_inoche_2022_109869 crossref_primary_10_1016_j_molstruc_2025_142672 crossref_primary_10_1088_1361_6528_ad10e4 crossref_primary_10_3390_molecules25143191 crossref_primary_10_1007_s11356_024_32983_x crossref_primary_10_3389_fphar_2023_1154034 crossref_primary_10_21597_jist_533115 crossref_primary_10_1007_s40089_022_00367_z crossref_primary_10_1007_s10876_020_01818_3 crossref_primary_10_1002_slct_202503423 crossref_primary_10_1016_j_nexres_2025_100447 crossref_primary_10_3390_polym16192683 crossref_primary_10_5004_dwt_2019_23605 crossref_primary_10_3390_nu13010154 crossref_primary_10_3390_ma15145006 crossref_primary_10_1007_s10876_018_01491_7 crossref_primary_10_1016_j_rechem_2025_102395 crossref_primary_10_1002_cbf_3844 crossref_primary_10_1002_slct_202501282 crossref_primary_10_1155_2021_2270472 crossref_primary_10_5004_dwt_2020_25237 crossref_primary_10_1038_s41598_023_29412_3 crossref_primary_10_1177_27551857251338287 crossref_primary_10_1155_2021_3155962 crossref_primary_10_1039_D5NA00115C crossref_primary_10_1038_s41598_023_28356_y crossref_primary_10_1021_acsbiomaterials_9b01685 crossref_primary_10_1016_j_colsurfb_2018_07_059 crossref_primary_10_1007_s13399_023_04456_7 crossref_primary_10_1007_s12088_024_01229_2 crossref_primary_10_1080_17518253_2021_2018507 crossref_primary_10_3390_coatings11040429 crossref_primary_10_1007_s13205_024_04058_8 crossref_primary_10_3390_ma14164726 crossref_primary_10_3390_pharmaceutics16070923 crossref_primary_10_3390_min12010085 crossref_primary_10_1007_s10876_019_01598_5 crossref_primary_10_1007_s10876_019_01670_0 crossref_primary_10_1016_j_jksus_2023_102972 crossref_primary_10_1080_02726351_2021_1977443 crossref_primary_10_3390_j7030016 crossref_primary_10_1016_j_ijpharm_2021_120311 crossref_primary_10_15864_ijiip_2404 crossref_primary_10_3390_ph18030286 crossref_primary_10_1007_s10876_019_01697_3 crossref_primary_10_1007_s12602_023_10179_y crossref_primary_10_1016_j_canlet_2023_216079 crossref_primary_10_1155_2022_6859637 crossref_primary_10_1016_j_matchemphys_2019_122438 crossref_primary_10_1016_j_ijbiomac_2024_137035 crossref_primary_10_3390_nano11102757 crossref_primary_10_1016_j_phrs_2021_105837 crossref_primary_10_1016_j_jclepro_2019_04_128 crossref_primary_10_1080_17518253_2023_2174818 crossref_primary_10_3390_antiox9101003 crossref_primary_10_1039_D3RA06145K crossref_primary_10_1111_ijfs_15489 crossref_primary_10_3390_s21041176 crossref_primary_10_1016_j_saa_2023_122638 crossref_primary_10_3390_molecules27072186 crossref_primary_10_1016_j_heliyon_2023_e18788 crossref_primary_10_1016_j_jece_2022_108889 |
| Cites_doi | 10.1016/j.cis.2008.09.002 10.1016/j.colsurfa.2011.08.028 10.1626/pps.10.151 10.1016/j.biortech.2010.05.051 10.1016/j.colsurfb.2017.07.020 10.1021/sc500237k 10.1016/j.biopha.2017.02.101 10.1016/j.matchemphys.2011.04.068 10.1016/j.physe.2011.02.014 10.1007/s12668-017-0418-y 10.1039/c1gc15386b 10.1016/0022-1759(83)90303-4 10.1016/j.foodchem.2005.06.037 10.1080/09637480500450248 10.1016/j.saa.2009.02.037 10.1021/jf0400056 10.1016/j.colsurfa.2013.01.059 10.1021/ja029267j 10.1016/j.cbi.2008.05.003 10.1016/j.colsurfb.2011.03.009 10.1016/S0308-8146(99)00269-1 10.1007/s00449-008-0224-6 10.1016/j.molstruc.2017.07.002 10.1016/j.procbio.2010.03.024 10.1248/bpb.21.978 10.1016/S0969-806X(02)00273-6 10.1016/S0144-8617(00)00151-X 10.1007/s002990050481 10.1021/ie3001869 10.1016/j.cis.2010.02.001 10.1016/j.colsurfa.2004.12.058 10.1007/s00449-017-1758-2 10.1016/j.ijbiomac.2017.06.010 10.1016/j.jcis.2004.03.003 10.1016/S0965-9773(98)00087-7 10.1007/s00449-015-1477-5 10.1016/S2221-1691(12)60100-2 10.1039/C4RA12784F 10.1016/j.bmc.2004.07.028 10.1016/S0891-5849(98)00315-3 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier BV Mar 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Mar 2018 |
| DBID | AAYXX CITATION NPM 7QP 7TK 7U7 C1K 7X8 7S9 L.6 |
| DOI | 10.1016/j.jphotobiol.2018.02.014 |
| DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Toxicology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA PubMed Toxicology Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1873-2682 |
| EndPage | 252 |
| ExternalDocumentID | 29476965 10_1016_j_jphotobiol_2018_02_014 S1011134417313118 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARLI AATLK AAXUO ABBQC ABFNM ABGRD ABGSF ABLVK ABMAC ABMZM ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACNNM ACPRK ACRLP ADBBV ADECG ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AEQOU AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJRQY AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HMU HVGLF HZ~ IHE J1W KOM LCYCR LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SCB SCH SDF SDG SDP SES SEW SPC SPD SSA SSG SSH SSK SSU SSZ T5K WUQ YK3 ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU CITATION EFKBS ~HD NPM 7QP 7TK 7U7 AGCQF C1K 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c485t-15a6083c0e90c8b61610c9cefc16b136d57b43c2856b5499ff0633d4f1fc08223 |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428490800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1011-1344 1873-2682 |
| IngestDate | Sun Nov 09 09:36:27 EST 2025 Thu Oct 02 05:45:48 EDT 2025 Wed Aug 13 11:31:12 EDT 2025 Wed Feb 19 02:42:33 EST 2025 Sat Nov 29 07:07:42 EST 2025 Tue Nov 18 22:42:50 EST 2025 Fri Feb 23 02:20:17 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Garlic extract Green tea extract Turmeric extract Antioxidant activity Apoptosis |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c485t-15a6083c0e90c8b61610c9cefc16b136d57b43c2856b5499ff0633d4f1fc08223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8430-827X |
| OpenAccessLink | http://hdl.handle.net/10072/399958 |
| PMID | 29476965 |
| PQID | 2064418597 |
| PQPubID | 2045445 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2053874966 proquest_miscellaneous_2007978774 proquest_journals_2064418597 pubmed_primary_29476965 crossref_citationtrail_10_1016_j_jphotobiol_2018_02_014 crossref_primary_10_1016_j_jphotobiol_2018_02_014 elsevier_sciencedirect_doi_10_1016_j_jphotobiol_2018_02_014 |
| PublicationCentury | 2000 |
| PublicationDate | March 2018 2018-03-00 2018-Mar 20180301 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Journal of photochemistry and photobiology. B, Biology |
| PublicationTitleAlternate | J Photochem Photobiol B |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Sathishkumar, Sneha, Yun (bb0240) 2010; 141 Jayaprakasha, Rao, Sakariah (bb0125) 2004; 12 Mahendiran, Subash, Selvan, Rehana, Kumar, Rahiman (bb0195) 2017; 7 Rehana, Mahendiran, Kumar, Rahiman (bb0050) 2017; 89 Akamine, Hossain, Ishimine, Yogi, Hokama, Iraha, Aniya (bb0090) 2007; 10 Zhang, Cheng, Xue, Fu (bb0065) 2013; 423 Philip (bb0160) 2009; 73 Sharma, Yngard, Lin (bb0045) 2009; 145 Mubarakali, Thajuddin, Jeganathan, Gunasekaran (bb0135) 2011; 85 Song, Kim (bb0015) 2009; 32 Iravani (bb0035) 2011; 13 Raveendran, Fu, Wallen (bb0040) 2003; 125 Sun, Li, He, Huang, Wang (bb0010) 2011; 40 Ayabe, Sumi (bb0080) 1998; 17 Re, Pellegrini, Proteggente, Pannala, Yang, Rice (bb0120) 1999; 26 Wang, Qiao, Chen, Ding (bb0095) 2005; 256 Boopathi, Gopinath, Boopathi, Balamurugan, Rajeshkumar, Sundararaman (bb0165) 2012; 51 Kubelka, Munk (bb0175) 2011; 12 Gulcin (bb0190) 2005; 56 Azizi, Mohamad, Rahim, Mohammadinejad, Ariff (bb0070) 2017; 104 Vignesh, Anbarasi, Sathiyanarayanan, Subramanian, Thirumurugan (bb0205) 2013; 12 Kacurakova, Capek, Sasinkova, Wellnes, Ebringerova (bb0170) 2000; 43 Jayaprakasha, Rao, Sakariah (bb0230) 2006; 98 Jo, Son, Lee, Byun (bb0085) 2003; 66 Rani, Rajasekharredy (bb0030) 2011; 389 Varadavenkatesan, Vinayagam, Selvaraj (bb0155) 2017 Wettasinghe, Shahidi (bb0225) 2000; 70 Nadagouda, Iyanna, Lalley, Han, Varma (bb0060) 2014; 2 Rastogi, Arunachalam (bb0025) 2011; 129 Huong, Malsumato, Kasai, Yamasaki, Watanabeth (bb0115) 1998; 21 Tuba, Gulcin (bb0215) 2008; 174 Ahmad, Sharma, Alam, Singh, Shamsi, Mehta (bb0145) 2010; 81 Dubey, Lahtinen, Sillanpaa (bb0150) 2010; 45 Shanker, Rai, Ahmad, Sastry (bb0005) 2004; 275 Harborne (bb0100) 1984 Rehana, Mahendiran, Kumar, Rahiman (bb0110) 2017; 40 Narayanan, Sakthivel (bb0020) 2010; 156 Ahamed, Khan, Siddiqui, Alsalhi, Alrokayan (bb0055) 2011; 43 Lin, Tzeng, Hsiac, Tsai (bb0180) 1998; 10 Bala, Saha, Chakraborty, Maiti, Das, Basu, Nandy (bb0200) 2015; 5 Ponarulselvam, Panneerselvam, Murugan, Aarthi, Kalimuthu, Thangaman (bb0075) 2012; 2 Moghaddam, Dabanlou (bb0140) 2014; 20 Wagner, Bladt, Zgainski (bb0105) 1984 Mosmann (bb0130) 1983; 65 Nenadis, Wang, Tsimidou, Zhang (bb0210) 2004; 52 Rasheed, Bilal, Iqbal, Li (bb0220) 2017; 158 Khan, Khan, Khan, Thabaiti (bb0185) 2015; 38 Ponarulselvam (10.1016/j.jphotobiol.2018.02.014_bb0075) 2012; 2 Mubarakali (10.1016/j.jphotobiol.2018.02.014_bb0135) 2011; 85 Bala (10.1016/j.jphotobiol.2018.02.014_bb0200) 2015; 5 Kacurakova (10.1016/j.jphotobiol.2018.02.014_bb0170) 2000; 43 Mahendiran (10.1016/j.jphotobiol.2018.02.014_bb0195) 2017; 7 Rasheed (10.1016/j.jphotobiol.2018.02.014_bb0220) 2017; 158 Khan (10.1016/j.jphotobiol.2018.02.014_bb0185) 2015; 38 Akamine (10.1016/j.jphotobiol.2018.02.014_bb0090) 2007; 10 Wang (10.1016/j.jphotobiol.2018.02.014_bb0095) 2005; 256 Lin (10.1016/j.jphotobiol.2018.02.014_bb0180) 1998; 10 Wettasinghe (10.1016/j.jphotobiol.2018.02.014_bb0225) 2000; 70 Ahamed (10.1016/j.jphotobiol.2018.02.014_bb0055) 2011; 43 Narayanan (10.1016/j.jphotobiol.2018.02.014_bb0020) 2010; 156 Rastogi (10.1016/j.jphotobiol.2018.02.014_bb0025) 2011; 129 Sathishkumar (10.1016/j.jphotobiol.2018.02.014_bb0240) 2010; 141 Ayabe (10.1016/j.jphotobiol.2018.02.014_bb0080) 1998; 17 Boopathi (10.1016/j.jphotobiol.2018.02.014_bb0165) 2012; 51 Ahmad (10.1016/j.jphotobiol.2018.02.014_bb0145) 2010; 81 Azizi (10.1016/j.jphotobiol.2018.02.014_bb0070) 2017; 104 Kubelka (10.1016/j.jphotobiol.2018.02.014_bb0175) 2011; 12 Varadavenkatesan (10.1016/j.jphotobiol.2018.02.014_bb0155) 2017 Wagner (10.1016/j.jphotobiol.2018.02.014_bb0105) 1984 Sharma (10.1016/j.jphotobiol.2018.02.014_bb0045) 2009; 145 Harborne (10.1016/j.jphotobiol.2018.02.014_bb0100) 1984 Shanker (10.1016/j.jphotobiol.2018.02.014_bb0005) 2004; 275 Jayaprakasha (10.1016/j.jphotobiol.2018.02.014_bb0230) 2006; 98 Sun (10.1016/j.jphotobiol.2018.02.014_bb0010) 2011; 40 Jayaprakasha (10.1016/j.jphotobiol.2018.02.014_bb0125) 2004; 12 Gulcin (10.1016/j.jphotobiol.2018.02.014_bb0190) 2005; 56 Re (10.1016/j.jphotobiol.2018.02.014_bb0120) 1999; 26 Zhang (10.1016/j.jphotobiol.2018.02.014_bb0065) 2013; 423 Rehana (10.1016/j.jphotobiol.2018.02.014_bb0110) 2017; 40 Vignesh (10.1016/j.jphotobiol.2018.02.014_bb0205) 2013; 12 Iravani (10.1016/j.jphotobiol.2018.02.014_bb0035) 2011; 13 Nenadis (10.1016/j.jphotobiol.2018.02.014_bb0210) 2004; 52 Dubey (10.1016/j.jphotobiol.2018.02.014_bb0150) 2010; 45 Jo (10.1016/j.jphotobiol.2018.02.014_bb0085) 2003; 66 Huong (10.1016/j.jphotobiol.2018.02.014_bb0115) 1998; 21 Rani (10.1016/j.jphotobiol.2018.02.014_bb0030) 2011; 389 Tuba (10.1016/j.jphotobiol.2018.02.014_bb0215) 2008; 174 Song (10.1016/j.jphotobiol.2018.02.014_bb0015) 2009; 32 Mosmann (10.1016/j.jphotobiol.2018.02.014_bb0130) 1983; 65 Philip (10.1016/j.jphotobiol.2018.02.014_bb0160) 2009; 73 Nadagouda (10.1016/j.jphotobiol.2018.02.014_bb0060) 2014; 2 Raveendran (10.1016/j.jphotobiol.2018.02.014_bb0040) 2003; 125 Rehana (10.1016/j.jphotobiol.2018.02.014_bb0050) 2017; 89 Moghaddam (10.1016/j.jphotobiol.2018.02.014_bb0140) 2014; 20 |
| References_xml | – volume: 141 start-page: 7958 year: 2010 end-page: 7965 ident: bb0240 article-title: Immobilization of silver nanoparticles synthesized using publication-title: Bioresour. Technol. – volume: 129 start-page: 558 year: 2011 end-page: 563 ident: bb0025 article-title: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic ( publication-title: Mater. Chem. Phys. – volume: 104 start-page: 423 year: 2017 end-page: 431 ident: bb0070 article-title: Hydrogel beads bio-nanocomposite based on publication-title: Int. J. Biol. Macromol. – volume: 51 start-page: 5976 year: 2012 end-page: 5985 ident: bb0165 article-title: Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated publication-title: Ind. Eng. Chem. Res. – volume: 40 start-page: 148 year: 2011 end-page: 151 ident: bb0010 article-title: Stability of colloidal silver nanoparticles prepared by bioreduction publication-title: Rare Metal Mater. Eng. – volume: 423 start-page: 63 year: 2013 end-page: 68 ident: bb0065 article-title: Biosynthesis of silver nanoparticles at room temperature using aqueous publication-title: Physicochem. Eng. Aspects – start-page: 629 year: 2017 end-page: 635 ident: bb0155 article-title: Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of publication-title: J. Mol. Struct. – volume: 7 start-page: 530 year: 2017 end-page: 545 ident: bb0195 article-title: Biosynthesis of zinc oxide nanoparticles using plant extracts of publication-title: Bionano Sci. – volume: 10 start-page: 151 year: 2007 end-page: 154 ident: bb0090 article-title: Effects of application of N, P and K alone or in combination on growth, yield and curcumin content of turmeric ( publication-title: Plant Prod. Sci. – volume: 81 start-page: 81 year: 2010 end-page: 86 ident: bb0145 article-title: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil publication-title: J. Colloid Interface Sci. – volume: 174 start-page: 27 year: 2008 end-page: 37 ident: bb0215 article-title: Antioxidant and radical scavenging properties of curcumin publication-title: Chem. Biol. Interact. – volume: 5 start-page: 4993 year: 2015 end-page: 5003 ident: bb0200 article-title: Green synthesis of zinc oxide nanoparticles using publication-title: RSC Adv. – volume: 45 start-page: 1065 year: 2010 end-page: 1071 ident: bb0150 article-title: Green synthesis of gold and silver nanoparticles using publication-title: Process Biochem. – volume: 156 start-page: 1 year: 2010 end-page: 13 ident: bb0020 article-title: Biological synthesis of metal nanoparticles by microbes publication-title: Adv. Colloid Interf. Sci. – volume: 43 start-page: 1266 year: 2011 end-page: 1271 ident: bb0055 article-title: Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles publication-title: Phys. E. – volume: 98 start-page: 720 year: 2006 end-page: 724 ident: bb0230 article-title: Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin publication-title: Food Chem. – volume: 21 start-page: 978 year: 1998 end-page: 981 ident: bb0115 article-title: In vitro antioxidant activity of Vietnamese ginseng saponin and its components publication-title: Biol. Pharm. Bull. – volume: 12 start-page: 37 year: 2013 end-page: 46 ident: bb0205 article-title: Green synthesis of biogenic silver nanomaterials using publication-title: Physicochem. Eng. Aspects – volume: 158 start-page: 408 year: 2017 end-page: 415 ident: bb0220 article-title: Green biosynthesis of silver nanoparticles using leaves extract of publication-title: Colloids Surf. B – volume: 56 start-page: 491 year: 2005 end-page: 499 ident: bb0190 article-title: The antioxidant and radical scavenging activities of black pepper ( publication-title: Int. J. Food Sci. Nutr. – volume: 73 start-page: 374 year: 2009 end-page: 383 ident: bb0160 article-title: Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract publication-title: Spectrochim. Acta A – volume: 52 start-page: 4669 year: 2004 end-page: 4674 ident: bb0210 article-title: Estimation of scavenging activity of phenolic compounds using the ABTS publication-title: J. Agric. Food Chem. – volume: 38 start-page: 2397 year: 2015 end-page: 2416 ident: bb0185 article-title: Green synthesis of biogenic silver nanomaterials using publication-title: Bioprocess Biosyst. Eng. – volume: 70 start-page: 17 year: 2000 end-page: 26 ident: bb0225 article-title: Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals publication-title: Food Chem. – volume: 40 start-page: 943 year: 2017 end-page: 957 ident: bb0110 article-title: In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts publication-title: Bioprocess Biosyst. Eng. – volume: 2 start-page: 1717 year: 2014 end-page: 1723 ident: bb0060 article-title: Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts publication-title: ACS Sustain. Chem. Eng. – volume: 389 start-page: 188 year: 2011 end-page: 194 ident: bb0030 article-title: Green synthesis of silver-protein (core–shell) nanoparticles using publication-title: Physicochem. Eng. Aspects – volume: 66 start-page: 179 year: 2003 end-page: 184 ident: bb0085 article-title: Irradiation application for colour removed and purification of green tea leaves extract publication-title: Radiat. Phys. Chem. – volume: 12 start-page: 593 year: 2011 end-page: 601 ident: bb0175 article-title: Ein Beitrag zur Optik der Farbanstriche publication-title: Z. Tech. Phys. – volume: 275 start-page: 496 year: 2004 end-page: 502 ident: bb0005 article-title: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem ( publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 2638 year: 2011 end-page: 2650 ident: bb0035 article-title: Green synthesis of metal nanoparticles using plants publication-title: Green Chem. – volume: 2 start-page: 574 year: 2012 end-page: 580 ident: bb0075 article-title: Synthesis of silver nanoparticles using leaves of publication-title: Asian Pac. J. Trop. Biomed. – year: 1984 ident: bb0100 article-title: Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis – volume: 43 start-page: 195 year: 2000 end-page: 203 ident: bb0170 article-title: FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses publication-title: Carbohydr. Polym. – volume: 85 start-page: 360 year: 2011 end-page: 365 ident: bb0135 article-title: Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens publication-title: Colloids Surf. B – volume: 89 start-page: 1067 year: 2017 end-page: 1077 ident: bb0050 article-title: Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts publication-title: Biomed Pharmacother – volume: 256 start-page: 111 year: 2005 end-page: 115 ident: bb0095 article-title: Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles publication-title: Physicochem. Eng. Aspects – volume: 65 start-page: 55 year: 1983 end-page: 63 ident: bb0130 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods – volume: 17 start-page: 773 year: 1998 end-page: 779 ident: bb0080 article-title: Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic ( publication-title: Plant Cell Rep. – volume: 26 start-page: 1231 year: 1999 end-page: 1237 ident: bb0120 article-title: Antioxidant activity applying an improved ABTS radical cation decolorization assay publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 739 year: 2014 end-page: 744 ident: bb0140 article-title: Biological activities of silver nanoparticles from publication-title: J. Ind. Eng. Chem. – volume: 125 start-page: 13940 year: 2003 end-page: 13941 ident: bb0040 article-title: Completely green synthesis and stabilization of metal nanoparticles publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 5141 year: 2004 end-page: 5146 ident: bb0125 article-title: Antioxidant activities of flavidin in different in vitro model systems publication-title: Bioorg. Med. Chem. – volume: 10 start-page: 465 year: 1998 end-page: 477 ident: bb0180 article-title: Electrode effects on gas sensing properties of nanocrystalline zinc oxide publication-title: Nanostruct. Mater. – start-page: 298 year: 1984 end-page: 334 ident: bb0105 article-title: Plant Drug Analysis – volume: 32 start-page: 79 year: 2009 end-page: 84 ident: bb0015 article-title: Rapid biological synthesis of silver nanoparticles using plant leaf extract publication-title: Bioprocess Biosyst. Eng. – volume: 145 start-page: 83 year: 2009 end-page: 96 ident: bb0045 article-title: Silver nanoparticles: green synthesis and their antimicrobial activities publication-title: Adv. Colloid Interf. Sci. – volume: 145 start-page: 83 year: 2009 ident: 10.1016/j.jphotobiol.2018.02.014_bb0045 article-title: Silver nanoparticles: green synthesis and their antimicrobial activities publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2008.09.002 – year: 1984 ident: 10.1016/j.jphotobiol.2018.02.014_bb0100 – volume: 389 start-page: 188 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0030 article-title: Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its biological applications publication-title: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2011.08.028 – volume: 12 start-page: 593 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0175 article-title: Ein Beitrag zur Optik der Farbanstriche publication-title: Z. Tech. Phys. – volume: 10 start-page: 151 year: 2007 ident: 10.1016/j.jphotobiol.2018.02.014_bb0090 article-title: Effects of application of N, P and K alone or in combination on growth, yield and curcumin content of turmeric (Curcuma longa L.) publication-title: Plant Prod. Sci. doi: 10.1626/pps.10.151 – volume: 141 start-page: 7958 year: 2010 ident: 10.1016/j.jphotobiol.2018.02.014_bb0240 article-title: Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.05.051 – volume: 40 start-page: 148 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0010 article-title: Stability of colloidal silver nanoparticles prepared by bioreduction publication-title: Rare Metal Mater. Eng. – volume: 158 start-page: 408 year: 2017 ident: 10.1016/j.jphotobiol.2018.02.014_bb0220 article-title: Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2017.07.020 – volume: 2 start-page: 1717 year: 2014 ident: 10.1016/j.jphotobiol.2018.02.014_bb0060 article-title: Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc500237k – volume: 89 start-page: 1067 year: 2017 ident: 10.1016/j.jphotobiol.2018.02.014_bb0050 article-title: Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2017.02.101 – volume: 129 start-page: 558 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0025 article-title: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.04.068 – volume: 43 start-page: 1266 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0055 article-title: Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles publication-title: Phys. E. doi: 10.1016/j.physe.2011.02.014 – volume: 7 start-page: 530 year: 2017 ident: 10.1016/j.jphotobiol.2018.02.014_bb0195 article-title: Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies publication-title: Bionano Sci. doi: 10.1007/s12668-017-0418-y – volume: 13 start-page: 2638 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0035 article-title: Green synthesis of metal nanoparticles using plants publication-title: Green Chem. doi: 10.1039/c1gc15386b – volume: 65 start-page: 55 year: 1983 ident: 10.1016/j.jphotobiol.2018.02.014_bb0130 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 81 start-page: 81 year: 2010 ident: 10.1016/j.jphotobiol.2018.02.014_bb0145 article-title: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil publication-title: J. Colloid Interface Sci. – volume: 98 start-page: 720 year: 2006 ident: 10.1016/j.jphotobiol.2018.02.014_bb0230 article-title: Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.06.037 – volume: 56 start-page: 491 year: 2005 ident: 10.1016/j.jphotobiol.2018.02.014_bb0190 article-title: The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds publication-title: Int. J. Food Sci. Nutr. doi: 10.1080/09637480500450248 – volume: 73 start-page: 374 year: 2009 ident: 10.1016/j.jphotobiol.2018.02.014_bb0160 article-title: Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2009.02.037 – volume: 52 start-page: 4669 year: 2004 ident: 10.1016/j.jphotobiol.2018.02.014_bb0210 article-title: Estimation of scavenging activity of phenolic compounds using the ABTS+ assay publication-title: J. Agric. Food Chem. doi: 10.1021/jf0400056 – volume: 423 start-page: 63 year: 2013 ident: 10.1016/j.jphotobiol.2018.02.014_bb0065 article-title: Biosynthesis of silver nanoparticles at room temperature using aqueous Aloe leaf extract and antibacterial properties publication-title: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2013.01.059 – volume: 125 start-page: 13940 year: 2003 ident: 10.1016/j.jphotobiol.2018.02.014_bb0040 article-title: Completely green synthesis and stabilization of metal nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029267j – volume: 174 start-page: 27 year: 2008 ident: 10.1016/j.jphotobiol.2018.02.014_bb0215 article-title: Antioxidant and radical scavenging properties of curcumin publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2008.05.003 – volume: 85 start-page: 360 year: 2011 ident: 10.1016/j.jphotobiol.2018.02.014_bb0135 article-title: Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2011.03.009 – volume: 70 start-page: 17 year: 2000 ident: 10.1016/j.jphotobiol.2018.02.014_bb0225 article-title: Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals publication-title: Food Chem. doi: 10.1016/S0308-8146(99)00269-1 – volume: 32 start-page: 79 year: 2009 ident: 10.1016/j.jphotobiol.2018.02.014_bb0015 article-title: Rapid biological synthesis of silver nanoparticles using plant leaf extract publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-008-0224-6 – start-page: 629 year: 2017 ident: 10.1016/j.jphotobiol.2018.02.014_bb0155 article-title: Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of vinga mungo and their biological applications publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.07.002 – volume: 45 start-page: 1065 year: 2010 ident: 10.1016/j.jphotobiol.2018.02.014_bb0150 article-title: Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract publication-title: Process Biochem. doi: 10.1016/j.procbio.2010.03.024 – volume: 21 start-page: 978 year: 1998 ident: 10.1016/j.jphotobiol.2018.02.014_bb0115 article-title: In vitro antioxidant activity of Vietnamese ginseng saponin and its components publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.21.978 – volume: 66 start-page: 179 year: 2003 ident: 10.1016/j.jphotobiol.2018.02.014_bb0085 article-title: Irradiation application for colour removed and purification of green tea leaves extract publication-title: Radiat. Phys. Chem. doi: 10.1016/S0969-806X(02)00273-6 – volume: 43 start-page: 195 year: 2000 ident: 10.1016/j.jphotobiol.2018.02.014_bb0170 article-title: FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses publication-title: Carbohydr. Polym. doi: 10.1016/S0144-8617(00)00151-X – start-page: 298 year: 1984 ident: 10.1016/j.jphotobiol.2018.02.014_bb0105 – volume: 17 start-page: 773 year: 1998 ident: 10.1016/j.jphotobiol.2018.02.014_bb0080 article-title: Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic (Allium sativum L.) publication-title: Plant Cell Rep. doi: 10.1007/s002990050481 – volume: 20 start-page: 739 year: 2014 ident: 10.1016/j.jphotobiol.2018.02.014_bb0140 article-title: Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts publication-title: J. Ind. Eng. Chem. – volume: 51 start-page: 5976 year: 2012 ident: 10.1016/j.jphotobiol.2018.02.014_bb0165 article-title: Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie3001869 – volume: 156 start-page: 1 year: 2010 ident: 10.1016/j.jphotobiol.2018.02.014_bb0020 article-title: Biological synthesis of metal nanoparticles by microbes publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2010.02.001 – volume: 256 start-page: 111 year: 2005 ident: 10.1016/j.jphotobiol.2018.02.014_bb0095 article-title: Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles publication-title: Physicochem. Eng. Aspects doi: 10.1016/j.colsurfa.2004.12.058 – volume: 40 start-page: 943 year: 2017 ident: 10.1016/j.jphotobiol.2018.02.014_bb0110 article-title: In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-017-1758-2 – volume: 12 start-page: 37 year: 2013 ident: 10.1016/j.jphotobiol.2018.02.014_bb0205 article-title: Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities publication-title: Physicochem. Eng. Aspects – volume: 104 start-page: 423 year: 2017 ident: 10.1016/j.jphotobiol.2018.02.014_bb0070 article-title: Hydrogel beads bio-nanocomposite based on kappa-carrageenan and green synthesized silver nanoparticles for biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.06.010 – volume: 275 start-page: 496 year: 2004 ident: 10.1016/j.jphotobiol.2018.02.014_bb0005 article-title: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.03.003 – volume: 10 start-page: 465 year: 1998 ident: 10.1016/j.jphotobiol.2018.02.014_bb0180 article-title: Electrode effects on gas sensing properties of nanocrystalline zinc oxide publication-title: Nanostruct. Mater. doi: 10.1016/S0965-9773(98)00087-7 – volume: 38 start-page: 2397 year: 2015 ident: 10.1016/j.jphotobiol.2018.02.014_bb0185 article-title: Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-015-1477-5 – volume: 2 start-page: 574 year: 2012 ident: 10.1016/j.jphotobiol.2018.02.014_bb0075 article-title: Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities publication-title: Asian Pac. J. Trop. Biomed. doi: 10.1016/S2221-1691(12)60100-2 – volume: 5 start-page: 4993 year: 2015 ident: 10.1016/j.jphotobiol.2018.02.014_bb0200 article-title: Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity publication-title: RSC Adv. doi: 10.1039/C4RA12784F – volume: 12 start-page: 5141 year: 2004 ident: 10.1016/j.jphotobiol.2018.02.014_bb0125 article-title: Antioxidant activities of flavidin in different in vitro model systems publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2004.07.028 – volume: 26 start-page: 1231 year: 1999 ident: 10.1016/j.jphotobiol.2018.02.014_bb0120 article-title: Antioxidant activity applying an improved ABTS radical cation decolorization assay publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(98)00315-3 |
| SSID | ssj0000567 |
| Score | 2.6217172 |
| Snippet | Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 243 |
| SubjectTerms | 2,2-diphenyl-1-picrylhydrazyl Adenocarcinoma Antioxidant activity Antioxidants Apoptosis Ascorbic acid Biomolecules breasts cell lines Cervix Cytotoxicity dimethyl sulfoxide energy-dispersive X-ray analysis Fibroblasts Garlic Garlic extract Green tea Green tea extract humans Hydrogen peroxide Infrared spectroscopy Lungs Nanoparticles nanosilver particle size Phytochemicals Rutin scanning electron microscopy Silver Silver nitrate Skin Synthesis Tea Toxicity testing transmission electron microscopy Tumor cell lines turmeric Turmeric extract ultraviolet-visible spectroscopy X-ray diffraction |
| Title | Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies |
| URI | https://dx.doi.org/10.1016/j.jphotobiol.2018.02.014 https://www.ncbi.nlm.nih.gov/pubmed/29476965 https://www.proquest.com/docview/2064418597 https://www.proquest.com/docview/2007978774 https://www.proquest.com/docview/2053874966 |
| Volume | 180 |
| WOSCitedRecordID | wos000428490800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000567 issn: 1011-1344 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQQvCMatMCYjIV6yVrnbgacydVxUygQd6luUuAlNFdySplX3R_iL_A2OYydN6YbKAy9R6zhJ3fPlXOzP5yD0wvIc0I0shPebiKmbyGiJ2lbw1bNoAPbaKJYLvvZIv0-HQ--80fhV7oVZpoRzulp5s_8qamgDYYuts_8g7uqm0ACfQehwBLHDcSfBvw2yNCnqln8TnBoNpChpkotM8uZBHYutURDjFmU6wOOUHeeXHLxBlaBkngjKtMYDDlF1jTx3Pr7MRZGtIsuApH7CUFbJKFBc9YRryyTPphqDjjmcYcLPn9foituu8Gw8VTcVpedk7gLRpDJEtbU3BQyTjSWATrb4HiSg7FK1llVxlz8G44iDrf6j-QvY13GSamtWeWVtIBhJF5n2ORgnaka4U58OMeiaD6Y0OCVWy3RlRaN2dEVbpfb1uuKWyaK2DIqc25i0J9WwBR2QFnle5e7XzRze_U_-2UWv5w-6w8HL2Y-WKG8maACq1sseOjCJ44H6Pei87w4_rJ0Gpyh2XP1SRTqTVMSrH36dJ3VdpFR4TIO76I6SL-5I9NxDjYgfoptKiofo1mkp8PvopwTtCS6QiAGyGECAS8jiLciqjhVk8TTGErJ4A7Kv8AZgT3ANrsUjEo4LuOI6XLGC6wN0cdYdnL5rqYohLWZTJ28ZTuBCTMH0yNMZDV0IZ3TmsShmhhsaljtySGhbzKSOG4qJkTgGD90a2bERM1H6wHqI9vmUR48RpqGYNoogmg6I7TjCrY_A2TfByIUsGpEmIuW_7zOVTl9UdUn9kjc58ddy84XcfN30QW5NZFRXzmRKmR2ueV0K2FeusXR5fQDqDlcflZjwlaaaw3kRClHHg6E8r06D3MWKYcCj6UL00YkHJp3Yf-sDPhOxPddtokcSb9WwTM8mruc6T3Z4wlN0e_0-H6H9PFtEz9ANtsyTeXaM9siQHqu35jdeBw61 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Garlic%2C+green+tea+and+turmeric+extracts-mediated+green+synthesis+of+silver+nanoparticles%3A+Phytochemical%2C+antioxidant+and+in+vitro+cytotoxicity+studies&rft.jtitle=Journal+of+photochemistry+and+photobiology.+B%2C+Biology&rft.au=Arumai+Selvan%2C+D&rft.au=Mahendiran%2C+D&rft.au=Senthil+Kumar%2C+R&rft.au=Kalilur+Rahiman%2C+A&rft.date=2018-03-01&rft.issn=1873-2682&rft.eissn=1873-2682&rft.volume=180&rft.spage=243&rft_id=info:doi/10.1016%2Fj.jphotobiol.2018.02.014&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-1344&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-1344&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-1344&client=summon |