Encompass obstacle image detection method based on U-V disparity map and RANSAC algorithm
With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 6164 - 18 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
20.02.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition. |
|---|---|
| AbstractList | With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition. Abstract With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition. With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition.With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition. |
| ArticleNumber | 6164 |
| Author | Xu, Huiqiong |
| Author_xml | – sequence: 1 givenname: Huiqiong surname: Xu fullname: Xu, Huiqiong email: xyz_13099056693@sina.com organization: Department of Artificial Intelligence, Shanxi Polytechnic College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39979361$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxSNURP_QL8ABWeLCJWA7dmIfV6tCK1UgAUXiZI3tyTarJF5s76HfHm_TAuqhvtge_d7TzLzT6mgOM1bVG0Y_MNqoj0kwqVVNuayV7pSs5YvqhFMha95wfvTf-7g6T2lLy5FcC6ZfVceN1p1uWnZS_bqYXZh2kBIJNmVwI5Jhgg0SjxldHsJMJsy3wRMLCT0p_5v6J_FD2kEc8h2ZYEdg9uTb6sv31ZrAuAmlfju9rl72MCY8f7jPqptPFz_Wl_X1189X69V17YSSuWbUaWat4NiD57zjHlpHqWe0V9zbvneCQWcRgFHNlVVNKymyVvYehRW0OauuFl8fYGt2sXQf70yAwdwXQtwYiHkog5kOmOytkLbBTvgWrOyYQ-1k8ZVlOcXr_eK1i-H3HlM205AcjiPMGPbJNKzVrFOlh4K-e4Juwz7OZdIDpTSXSotCvX2g9nZC_7e9xwAKoBbAxZBSxN64IcNh7TnCMBpGzSFus8RtStzmPm4ji5Q_kT66PytqFlEq8LzB-K_tZ1R_AG_curs |
| CitedBy_id | crossref_primary_10_1088_1361_6501_adf7c7 |
| Cites_doi | 10.1109/TCSVT.2021.3054062 10.1109/IVS.2005.1505076 10.1007/s10898-020-00950-8 10.1364/opticaopen.24916026.v1 10.1109/TCSVT.2021.3061704 10.1016/j.imed.2022.05.001 10.1109/TITS.2022.3195297 10.25165/j.ijabe.20211406.5953 10.1109/TCYB.2021.3085856 10.1007/s11042-022-13021-9 10.1007/s12517-022-10303-2 10.1631/FITEE.1900518 10.47852/bonviewJCCE512522514 10.1002/rob.21937 10.1007/s11803-023-2173-0 10.47852/bonviewJCCE2202144 10.1109/TGRS.2020.3045456 10.1080/01691864.2022.2153080 10.47852/bonviewJCCE2202406 10.1109/TCYB.2021.3060461 10.1007/s10044-021-00956-2 10.1109/TCSVT.2021.3062811 10.1109/ICITIS.2010.5689679 10.1007/s13198-021-01127-6 10.1007/s10209-022-00868-w 10.1109/TPAMI.2021.3071812 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
| DOI | 10.1038/s41598-025-89785-5 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_7a15fb45b3e74d6ab571ce9c528b5529 39979361 10_1038_s41598_025_89785_5 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c485t-10c91bb42efad2272da6c00d10f82dbffc41a7beaa10928b83650e165fde4b403 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464636900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:07:01 EDT 2025 Thu Oct 02 11:15:06 EDT 2025 Tue Oct 07 09:13:25 EDT 2025 Mon Feb 24 01:20:19 EST 2025 Tue Nov 18 21:31:48 EST 2025 Sat Nov 29 08:20:33 EST 2025 Fri Feb 21 04:10:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Random sampling consistency algorithm Obstacle detection Image recognition Autonomous driving U-V disparity map |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-10c91bb42efad2272da6c00d10f82dbffc41a7beaa10928b83650e165fde4b403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3168925894?pq-origsite=%requestingapplication% |
| PMID | 39979361 |
| PQID | 3168925894 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7a15fb45b3e74d6ab571ce9c528b5529 proquest_miscellaneous_3169178836 proquest_journals_3168925894 pubmed_primary_39979361 crossref_citationtrail_10_1038_s41598_025_89785_5 crossref_primary_10_1038_s41598_025_89785_5 springer_journals_10_1038_s41598_025_89785_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-20 |
| PublicationDateYYYYMMDD | 2025-02-20 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 89785_CR3 89785_CR4 89785_CR5 89785_CR6 89785_CR7 89785_CR8 89785_CR9 89785_CR25 89785_CR26 89785_CR23 89785_CR24 89785_CR21 89785_CR22 89785_CR1 89785_CR2 89785_CR20 89785_CR18 89785_CR19 89785_CR16 89785_CR17 89785_CR14 89785_CR15 89785_CR12 89785_CR13 89785_CR10 89785_CR11 89785_CR27 |
| References_xml | – ident: 89785_CR15 doi: 10.1109/TCSVT.2021.3054062 – ident: 89785_CR16 doi: 10.1109/IVS.2005.1505076 – ident: 89785_CR24 doi: 10.1007/s10898-020-00950-8 – ident: 89785_CR26 doi: 10.1364/opticaopen.24916026.v1 – ident: 89785_CR19 doi: 10.1109/TCSVT.2021.3061704 – ident: 89785_CR18 doi: 10.1016/j.imed.2022.05.001 – ident: 89785_CR4 doi: 10.1109/TITS.2022.3195297 – ident: 89785_CR23 doi: 10.25165/j.ijabe.20211406.5953 – ident: 89785_CR6 – ident: 89785_CR7 doi: 10.1109/TCYB.2021.3085856 – ident: 89785_CR13 doi: 10.1007/s11042-022-13021-9 – ident: 89785_CR25 doi: 10.1007/s12517-022-10303-2 – ident: 89785_CR22 doi: 10.1631/FITEE.1900518 – ident: 89785_CR3 doi: 10.47852/bonviewJCCE512522514 – ident: 89785_CR21 doi: 10.1002/rob.21937 – ident: 89785_CR14 doi: 10.1007/s11803-023-2173-0 – ident: 89785_CR1 doi: 10.47852/bonviewJCCE2202144 – ident: 89785_CR10 doi: 10.1109/TGRS.2020.3045456 – ident: 89785_CR27 doi: 10.1080/01691864.2022.2153080 – ident: 89785_CR2 doi: 10.47852/bonviewJCCE2202406 – ident: 89785_CR5 doi: 10.1109/TCYB.2021.3060461 – ident: 89785_CR20 doi: 10.1007/s10044-021-00956-2 – ident: 89785_CR12 doi: 10.1109/TCSVT.2021.3062811 – ident: 89785_CR17 doi: 10.1109/ICITIS.2010.5689679 – ident: 89785_CR8 doi: 10.1007/s13198-021-01127-6 – ident: 89785_CR9 doi: 10.1007/s10209-022-00868-w – ident: 89785_CR11 doi: 10.1109/TPAMI.2021.3071812 |
| SSID | ssj0000529419 |
| Score | 2.4544585 |
| Snippet | With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve.... Abstract With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6164 |
| SubjectTerms | 639/705/117 639/705/531 639/705/794 Algorithms Autonomous driving Autonomous vehicles Humanities and Social Sciences Image recognition multidisciplinary Obstacle detection Random sampling consistency algorithm Science Science (multidisciplinary) Statistical sampling U-V disparity map |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiJZXSqmMxA2ixo4d28elasUBrRDQqpwsP2GlbrZqUqT-e8Z2dinideEYZxLZ47HnG9kzH0Ivg7UiYYeE3FzNWhlqoxpWOwPugooQu5zFf_ZOzOfy_Fy9v0X1le6ElfLARXGHwhAeLeO2DYL5zlguiAvKcSot5zSn7jVC3QqmSlVvqhhRU5ZM08rDATxVyiajvJYQOfGa_-SJcsH-36HMX05Is-M5eYDuT4gRz0pPd9Cd0O-iu4VD8uYh-nzc53vkw4BXFqAeyODFEnYJ7MOY71n1uNBE4-SxPIbn0_oM-8WQCAjHG7w0l9j0Hn-YzT_OjrC5-LKC9q_LR-j05PjT0dt64kuoHZN8hB3VKWItoyEaT6mg3nSuaTxpoqTexugYMcIGY0ijQH2yBXgWSMejD8yypn2MtvpVH54irLrIIklZrAYAEw2yNSz6GGmgNgrhKkTWutNuKiaeOC0udD7UbqUu-tagb531rXmFXm2-uSylNP4q_SZNyUYylcHODWAcejIO_S_jqND-ekL1tDYHnai6FOVSsQq92LyGVZWOSkwfVtdZBuJYCRqq0JNiCJueAKSDTa0jFXq9towfP__zgPb-x4CeoXs0mXDKqW_20dZ4dR2eo233bVwMVwd5DXwH7jcGMg priority: 102 providerName: Directory of Open Access Journals |
| Title | Encompass obstacle image detection method based on U-V disparity map and RANSAC algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-025-89785-5 https://www.ncbi.nlm.nih.gov/pubmed/39979361 https://www.proquest.com/docview/3168925894 https://www.proquest.com/docview/3169178836 https://doaj.org/article/7a15fb45b3e74d6ab571ce9c528b5529 |
| Volume | 15 |
| WOSCitedRecordID | wos001464636900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFSRe-P4IjMpIvEG02LFj5wl1UyeQWFUNNnVPkT9HpTUtTYa0_x7bSTshYC-8WEpyiezc-e5nn-8O4J1VigfsEJCbTmkubCrLjKZaenNBuHVFjOI_-8InEzGbldN-w63pj1VudGJU1Gapwx75fiiwVBImSvpx9SMNVaOCd7UvobEDA49scDjSdUym2z2W4MWiuOxjZbJc7DfeXoWYMsJS4ddPLGW_2aOYtv9vWPMPP2k0P0cP_7fjj-BBDzzRqJOUx3DH1k_gXleK8vopnI_reBy9adBSecToadB84ZUNMraNx7Vq1FWbRsHwGeSvT9MzZOZNqGPYXqOFXCFZG3QymnwdHSJ5eeF70X5fPIPTo_G3w09pX3Yh1VSw1itmXWKlKLFOGkI4MbLQWWZw5gQxyjlNseTKSomzkgglco_yLC6YM5YqmuXPYbde1vYloLJw1OEQDCs97iJW5JI64xyxRDnOdQJ48_Mr3eckD6UxLqvoG89F1TGs8gyrIsMqlsD77TurLiPHrdQHgadbypBNO95Yri-qfnJWXGLmFGUqt5yaQirGsbalZn50zMtQAnsb1lb9FG-qG74m8Hb72E_O4HGRtV1eRRq_HBb-DyXwopOkbU88MvS6scAJfNiI1s3H_z2gV7f35TXcJ0G6Q9B9tge77frKvoG7-mc7b9ZD2OEzHlsxhMHBeDI9GcZdiGGcOKHlvh1MPx9Pz38BpEIbRQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwEhwgqixYyfOAaGltGrVZVVBW5VT8LOs1M0umxS0f4rfyNhJtkJAbz1wTOJYfnyeGXs88yH0wiqVe9vBW246ZqmwsSwSFmsJ6oLm1mUhiv9wmI9G4uio2FtBP_tYGH-tspeJQVCbqfZn5OueYKmgXBTs7exb7FmjvHe1p9BoYbFrFz9gy1a_2XkP8_uS0q3N_Y3tuGMViDUTvAG5owuiFKPWSUNpTo3MdJIYkjhBjXJOMyJzZaUkSUGFEikYMZZk3BnLFEtSqPcSusx8ZjF_VZDuLc90vNeMkaKLzUlSsV6DfvQxbJTHAvZrPOa_6b9AE_A32_YPv2xQd1s3_7eBuoVudIY1HrQr4TZasdUddLWl2lzcRZ83q3Ddvq7xVIFFDGXweALCFBvbhOtoFW7ZtLFX7AbD80F8iM249jyNzQJP5AzLyuCPg9GnwQaWJ8fQ6-br5B46uJB-3Uer1bSyDxEuMscc8cG-EuxKakUqmTPOUUuVy3MdIdJPdqm7nOue-uOkDL7_VJQtQEoASBkAUvIIvVr-M2szjpxb-p3H0LKkzxYeXkznx2UnfMpcEu4U4yq1OTOZVDwn2haaQ-84YDZCaz2Uyk6E1eUZjiL0fPkZhI_3KMnKTk9DGdjuCxihCD1okbtsCVi-IPszEqHXPZTPKv93hx6d35Zn6Nr2_odhOdwZ7T5G16lfWT7BQLKGVpv5qX2CrujvzbiePw1LE6MvFw3xX9f3cqU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3o9AASPBiUYbO3biHBBa-hCrltUKaNWegp9lpW522aSg_Wv8OsZ5bIWA3nrgmMSJMsnnmc_2jD-EXlqlUs8dPHPTIYuFDWUWsVBLCBc0tS6pq_gP99PRSBwdZeM19LOrhfFplZ1PrB21mWk_R973AksZ5SJjfdemRYy3d9_Ov4VeQcqvtHZyGg1E9uzyBwzfyjfDbfjXryjd3fm89T5sFQZCzQSvwAfpjCjFqHXSUJpSIxMdRYZETlCjnNOMyFRZKUmUUaFEDITGkoQ7Y5liUQzPvYLWgZIz2kPr4-GH8fFqhsevoTGStZU6USz6JURLX9FGeShg9MZD_ls0rEUD_sZ0_1ilrYPf7q3_-bPdRjdbyo0HTR-5g9ZscRdda0Q4l_fQ8U5RJ-KXJZ4p4MrQBk-m4GaxsVWdqFbgRmcb-5BvMBwfhIfYTEqv4Fgt8VTOsSwM_jgYfRpsYXl6AlZXX6f30cGl2PUA9YpZYR8hnCWOOeLLgCUwTmpFLJkzzlFLlUtTHSDS_fhct7uxe1GQ07zOCohF3oAlB7DkNVhyHqDXq3vmzV4kF7Z-5_G0aun3Ea9PzBYneeuW8lQS7hTjKrYpM4lUPCXaZpqDdRzwG6CNDlZ569zK_BxTAXqxugxuya81ycLOzuo2GUkFfKEAPWxQvHoT4MQQFRISoM0O1ucP_7dBjy9-l-foOiA73x-O9p6gG9R3Mr_zQLSBetXizD5FV_X3alIunrX9FKMvl43xXzSAfO4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encompass+obstacle+image+detection+method+based+on+U-V+disparity+map+and+RANSAC+algorithm&rft.jtitle=Scientific+reports&rft.date=2025-02-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=6164&rft_id=info:doi/10.1038%2Fs41598-025-89785-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |