Encompass obstacle image detection method based on U-V disparity map and RANSAC algorithm

With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 6164 - 18
Hlavný autor: Xu, Huiqiong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 20.02.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition.
AbstractList With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition.
Abstract With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition.
With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition.With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve. Obstacle image detection accuracy directly affects the safety and reliability of autonomous vehicles. Currently, these methods often face issues such as sensitivity to lighting and weather conditions. In response to these problems, research has been conducted to combine U-V disparity maps for obstacle detection. This map is used for coarse filtering of non-road disparity and finding disparity coordinates and other information for each line segment in the disparity map based on projection information. Then, a random sampling consistency algorithm is combined to perform road line fitting and remove noise. Finally, a new obstacle image detection method is designed. The results showed that the classification loss value was 0.013, the generalized intersection to union ratio loss was 0.0072, the target loss converged to 0.0026, and the accuracy of the algorithm reached over 95%. The findings of this study offer novel insights into the advancement of obstacle image detection technology, with potential applications in autonomous driving and image recognition.
ArticleNumber 6164
Author Xu, Huiqiong
Author_xml – sequence: 1
  givenname: Huiqiong
  surname: Xu
  fullname: Xu, Huiqiong
  email: xyz_13099056693@sina.com
  organization: Department of Artificial Intelligence, Shanxi Polytechnic College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39979361$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxSNURP_QL8ABWeLCJWA7dmIfV6tCK1UgAUXiZI3tyTarJF5s76HfHm_TAuqhvtge_d7TzLzT6mgOM1bVG0Y_MNqoj0kwqVVNuayV7pSs5YvqhFMha95wfvTf-7g6T2lLy5FcC6ZfVceN1p1uWnZS_bqYXZh2kBIJNmVwI5Jhgg0SjxldHsJMJsy3wRMLCT0p_5v6J_FD2kEc8h2ZYEdg9uTb6sv31ZrAuAmlfju9rl72MCY8f7jPqptPFz_Wl_X1189X69V17YSSuWbUaWat4NiD57zjHlpHqWe0V9zbvneCQWcRgFHNlVVNKymyVvYehRW0OauuFl8fYGt2sXQf70yAwdwXQtwYiHkog5kOmOytkLbBTvgWrOyYQ-1k8ZVlOcXr_eK1i-H3HlM205AcjiPMGPbJNKzVrFOlh4K-e4Juwz7OZdIDpTSXSotCvX2g9nZC_7e9xwAKoBbAxZBSxN64IcNh7TnCMBpGzSFus8RtStzmPm4ji5Q_kT66PytqFlEq8LzB-K_tZ1R_AG_curs
CitedBy_id crossref_primary_10_1088_1361_6501_adf7c7
Cites_doi 10.1109/TCSVT.2021.3054062
10.1109/IVS.2005.1505076
10.1007/s10898-020-00950-8
10.1364/opticaopen.24916026.v1
10.1109/TCSVT.2021.3061704
10.1016/j.imed.2022.05.001
10.1109/TITS.2022.3195297
10.25165/j.ijabe.20211406.5953
10.1109/TCYB.2021.3085856
10.1007/s11042-022-13021-9
10.1007/s12517-022-10303-2
10.1631/FITEE.1900518
10.47852/bonviewJCCE512522514
10.1002/rob.21937
10.1007/s11803-023-2173-0
10.47852/bonviewJCCE2202144
10.1109/TGRS.2020.3045456
10.1080/01691864.2022.2153080
10.47852/bonviewJCCE2202406
10.1109/TCYB.2021.3060461
10.1007/s10044-021-00956-2
10.1109/TCSVT.2021.3062811
10.1109/ICITIS.2010.5689679
10.1007/s13198-021-01127-6
10.1007/s10209-022-00868-w
10.1109/TPAMI.2021.3071812
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1038/s41598-025-89785-5
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_7a15fb45b3e74d6ab571ce9c528b5529
39979361
10_1038_s41598_025_89785_5
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c485t-10c91bb42efad2272da6c00d10f82dbffc41a7beaa10928b83650e165fde4b403
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464636900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:07:01 EDT 2025
Thu Oct 02 11:15:06 EDT 2025
Tue Oct 07 09:13:25 EDT 2025
Mon Feb 24 01:20:19 EST 2025
Tue Nov 18 21:31:48 EST 2025
Sat Nov 29 08:20:33 EST 2025
Fri Feb 21 04:10:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Random sampling consistency algorithm
Obstacle detection
Image recognition
Autonomous driving
U-V disparity map
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-10c91bb42efad2272da6c00d10f82dbffc41a7beaa10928b83650e165fde4b403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3168925894?pq-origsite=%requestingapplication%
PMID 39979361
PQID 3168925894
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_7a15fb45b3e74d6ab571ce9c528b5529
proquest_miscellaneous_3169178836
proquest_journals_3168925894
pubmed_primary_39979361
crossref_citationtrail_10_1038_s41598_025_89785_5
crossref_primary_10_1038_s41598_025_89785_5
springer_journals_10_1038_s41598_025_89785_5
PublicationCentury 2000
PublicationDate 2025-02-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 89785_CR3
89785_CR4
89785_CR5
89785_CR6
89785_CR7
89785_CR8
89785_CR9
89785_CR25
89785_CR26
89785_CR23
89785_CR24
89785_CR21
89785_CR22
89785_CR1
89785_CR2
89785_CR20
89785_CR18
89785_CR19
89785_CR16
89785_CR17
89785_CR14
89785_CR15
89785_CR12
89785_CR13
89785_CR10
89785_CR11
89785_CR27
References_xml – ident: 89785_CR15
  doi: 10.1109/TCSVT.2021.3054062
– ident: 89785_CR16
  doi: 10.1109/IVS.2005.1505076
– ident: 89785_CR24
  doi: 10.1007/s10898-020-00950-8
– ident: 89785_CR26
  doi: 10.1364/opticaopen.24916026.v1
– ident: 89785_CR19
  doi: 10.1109/TCSVT.2021.3061704
– ident: 89785_CR18
  doi: 10.1016/j.imed.2022.05.001
– ident: 89785_CR4
  doi: 10.1109/TITS.2022.3195297
– ident: 89785_CR23
  doi: 10.25165/j.ijabe.20211406.5953
– ident: 89785_CR6
– ident: 89785_CR7
  doi: 10.1109/TCYB.2021.3085856
– ident: 89785_CR13
  doi: 10.1007/s11042-022-13021-9
– ident: 89785_CR25
  doi: 10.1007/s12517-022-10303-2
– ident: 89785_CR22
  doi: 10.1631/FITEE.1900518
– ident: 89785_CR3
  doi: 10.47852/bonviewJCCE512522514
– ident: 89785_CR21
  doi: 10.1002/rob.21937
– ident: 89785_CR14
  doi: 10.1007/s11803-023-2173-0
– ident: 89785_CR1
  doi: 10.47852/bonviewJCCE2202144
– ident: 89785_CR10
  doi: 10.1109/TGRS.2020.3045456
– ident: 89785_CR27
  doi: 10.1080/01691864.2022.2153080
– ident: 89785_CR2
  doi: 10.47852/bonviewJCCE2202406
– ident: 89785_CR5
  doi: 10.1109/TCYB.2021.3060461
– ident: 89785_CR20
  doi: 10.1007/s10044-021-00956-2
– ident: 89785_CR12
  doi: 10.1109/TCSVT.2021.3062811
– ident: 89785_CR17
  doi: 10.1109/ICITIS.2010.5689679
– ident: 89785_CR8
  doi: 10.1007/s13198-021-01127-6
– ident: 89785_CR9
  doi: 10.1007/s10209-022-00868-w
– ident: 89785_CR11
  doi: 10.1109/TPAMI.2021.3071812
SSID ssj0000529419
Score 2.4544585
Snippet With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must solve....
Abstract With the rapid development of autonomous driving technology, obstacle image detection has become an important problem that autonomous vehicles must...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6164
SubjectTerms 639/705/117
639/705/531
639/705/794
Algorithms
Autonomous driving
Autonomous vehicles
Humanities and Social Sciences
Image recognition
multidisciplinary
Obstacle detection
Random sampling consistency algorithm
Science
Science (multidisciplinary)
Statistical sampling
U-V disparity map
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiJZXSqmMxA2ixo4d28elasUBrRDQqpwsP2GlbrZqUqT-e8Z2dinideEYZxLZ47HnG9kzH0Ivg7UiYYeE3FzNWhlqoxpWOwPugooQu5zFf_ZOzOfy_Fy9v0X1le6ElfLARXGHwhAeLeO2DYL5zlguiAvKcSot5zSn7jVC3QqmSlVvqhhRU5ZM08rDATxVyiajvJYQOfGa_-SJcsH-36HMX05Is-M5eYDuT4gRz0pPd9Cd0O-iu4VD8uYh-nzc53vkw4BXFqAeyODFEnYJ7MOY71n1uNBE4-SxPIbn0_oM-8WQCAjHG7w0l9j0Hn-YzT_OjrC5-LKC9q_LR-j05PjT0dt64kuoHZN8hB3VKWItoyEaT6mg3nSuaTxpoqTexugYMcIGY0ijQH2yBXgWSMejD8yypn2MtvpVH54irLrIIklZrAYAEw2yNSz6GGmgNgrhKkTWutNuKiaeOC0udD7UbqUu-tagb531rXmFXm2-uSylNP4q_SZNyUYylcHODWAcejIO_S_jqND-ekL1tDYHnai6FOVSsQq92LyGVZWOSkwfVtdZBuJYCRqq0JNiCJueAKSDTa0jFXq9towfP__zgPb-x4CeoXs0mXDKqW_20dZ4dR2eo233bVwMVwd5DXwH7jcGMg
  priority: 102
  providerName: Directory of Open Access Journals
Title Encompass obstacle image detection method based on U-V disparity map and RANSAC algorithm
URI https://link.springer.com/article/10.1038/s41598-025-89785-5
https://www.ncbi.nlm.nih.gov/pubmed/39979361
https://www.proquest.com/docview/3168925894
https://www.proquest.com/docview/3169178836
https://doaj.org/article/7a15fb45b3e74d6ab571ce9c528b5529
Volume 15
WOSCitedRecordID wos001464636900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFSRe-P4IjMpIvEG02LFj5wl1UyeQWFUNNnVPkT9HpTUtTYa0_x7bSTshYC-8WEpyiezc-e5nn-8O4J1VigfsEJCbTmkubCrLjKZaenNBuHVFjOI_-8InEzGbldN-w63pj1VudGJU1Gapwx75fiiwVBImSvpx9SMNVaOCd7UvobEDA49scDjSdUym2z2W4MWiuOxjZbJc7DfeXoWYMsJS4ddPLGW_2aOYtv9vWPMPP2k0P0cP_7fjj-BBDzzRqJOUx3DH1k_gXleK8vopnI_reBy9adBSecToadB84ZUNMraNx7Vq1FWbRsHwGeSvT9MzZOZNqGPYXqOFXCFZG3QymnwdHSJ5eeF70X5fPIPTo_G3w09pX3Yh1VSw1itmXWKlKLFOGkI4MbLQWWZw5gQxyjlNseTKSomzkgglco_yLC6YM5YqmuXPYbde1vYloLJw1OEQDCs97iJW5JI64xyxRDnOdQJ48_Mr3eckD6UxLqvoG89F1TGs8gyrIsMqlsD77TurLiPHrdQHgadbypBNO95Yri-qfnJWXGLmFGUqt5yaQirGsbalZn50zMtQAnsb1lb9FG-qG74m8Hb72E_O4HGRtV1eRRq_HBb-DyXwopOkbU88MvS6scAJfNiI1s3H_z2gV7f35TXcJ0G6Q9B9tge77frKvoG7-mc7b9ZD2OEzHlsxhMHBeDI9GcZdiGGcOKHlvh1MPx9Pz38BpEIbRQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwEhwgqixYyfOAaGltGrVZVVBW5VT8LOs1M0umxS0f4rfyNhJtkJAbz1wTOJYfnyeGXs88yH0wiqVe9vBW246ZqmwsSwSFmsJ6oLm1mUhiv9wmI9G4uio2FtBP_tYGH-tspeJQVCbqfZn5OueYKmgXBTs7exb7FmjvHe1p9BoYbFrFz9gy1a_2XkP8_uS0q3N_Y3tuGMViDUTvAG5owuiFKPWSUNpTo3MdJIYkjhBjXJOMyJzZaUkSUGFEikYMZZk3BnLFEtSqPcSusx8ZjF_VZDuLc90vNeMkaKLzUlSsV6DfvQxbJTHAvZrPOa_6b9AE_A32_YPv2xQd1s3_7eBuoVudIY1HrQr4TZasdUddLWl2lzcRZ83q3Ddvq7xVIFFDGXweALCFBvbhOtoFW7ZtLFX7AbD80F8iM249jyNzQJP5AzLyuCPg9GnwQaWJ8fQ6-br5B46uJB-3Uer1bSyDxEuMscc8cG-EuxKakUqmTPOUUuVy3MdIdJPdqm7nOue-uOkDL7_VJQtQEoASBkAUvIIvVr-M2szjpxb-p3H0LKkzxYeXkznx2UnfMpcEu4U4yq1OTOZVDwn2haaQ-84YDZCaz2Uyk6E1eUZjiL0fPkZhI_3KMnKTk9DGdjuCxihCD1okbtsCVi-IPszEqHXPZTPKv93hx6d35Zn6Nr2_odhOdwZ7T5G16lfWT7BQLKGVpv5qX2CrujvzbiePw1LE6MvFw3xX9f3cqU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3o9AASPBiUYbO3biHBBa-hCrltUKaNWegp9lpW522aSg_Wv8OsZ5bIWA3nrgmMSJMsnnmc_2jD-EXlqlUs8dPHPTIYuFDWUWsVBLCBc0tS6pq_gP99PRSBwdZeM19LOrhfFplZ1PrB21mWk_R973AksZ5SJjfdemRYy3d9_Ov4VeQcqvtHZyGg1E9uzyBwzfyjfDbfjXryjd3fm89T5sFQZCzQSvwAfpjCjFqHXSUJpSIxMdRYZETlCjnNOMyFRZKUmUUaFEDITGkoQ7Y5liUQzPvYLWgZIz2kPr4-GH8fFqhsevoTGStZU6USz6JURLX9FGeShg9MZD_ls0rEUD_sZ0_1ilrYPf7q3_-bPdRjdbyo0HTR-5g9ZscRdda0Q4l_fQ8U5RJ-KXJZ4p4MrQBk-m4GaxsVWdqFbgRmcb-5BvMBwfhIfYTEqv4Fgt8VTOsSwM_jgYfRpsYXl6AlZXX6f30cGl2PUA9YpZYR8hnCWOOeLLgCUwTmpFLJkzzlFLlUtTHSDS_fhct7uxe1GQ07zOCohF3oAlB7DkNVhyHqDXq3vmzV4kF7Z-5_G0aun3Ea9PzBYneeuW8lQS7hTjKrYpM4lUPCXaZpqDdRzwG6CNDlZ569zK_BxTAXqxugxuya81ycLOzuo2GUkFfKEAPWxQvHoT4MQQFRISoM0O1ucP_7dBjy9-l-foOiA73x-O9p6gG9R3Mr_zQLSBetXizD5FV_X3alIunrX9FKMvl43xXzSAfO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encompass+obstacle+image+detection+method+based+on+U-V+disparity+map+and+RANSAC+algorithm&rft.jtitle=Scientific+reports&rft.date=2025-02-20&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=6164&rft_id=info:doi/10.1038%2Fs41598-025-89785-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon