Arora, M., Zambrzycki, S. C., Levy, J. M., Esper, A., Frediani, J. K., Quave, C. L., . . . Kamaleswaran, R. (2022). Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS. Metabolites, 12(3), 232. https://doi.org/10.3390/metabo12030232
Chicago Style (17th ed.) CitationArora, Mehak, Stephen C. Zambrzycki, Joshua M. Levy, Annette Esper, Jennifer K. Frediani, Cassandra L. Quave, Facundo M. Fernández, and Rishikesan Kamaleswaran. "Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS." Metabolites 12, no. 3 (2022): 232. https://doi.org/10.3390/metabo12030232.
MLA (9th ed.) CitationArora, Mehak, et al. "Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS." Metabolites, vol. 12, no. 3, 2022, p. 232, https://doi.org/10.3390/metabo12030232.