Understanding of strain-induced crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate), PET

Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) Jg. 203; S. 122755
Hauptverfasser: Forestier, Emilie, Combeaud, Christelle, Guigo, Nathanael, Sbirrazzuoli, Nicolas, Billon, Noelle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 26.08.2020
Elsevier BV
Elsevier
Schlagworte:
ISSN:0032-3861, 1873-2291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was intensively documented in case of poly(ethylene terephthalate), PET. More recently, some studies focused on SIC development in biobased poly(ethylene furandicarboxylate), PEF. Comparison of these crystallization abilities and crystallization kinetics upon stretching in the two materials allows to describe main differences between them, and to enlighten the role of chain architecture on SIC. To achieve that point, different mechanical tensile tests were conducted using well controlled loading paths to explore the different steps of the microstructural changes induced by the stretching and their correlation with mechanical behaviour. Several macroscopic equivalence in the effects of SIC were found, such as increase in modulus, appearance of organized phase, increase I n α−relaxation temperature despite some differences in chain architecture. Combining both loading-unloading tests and quenching protocols, it was found that inducing more or less strong interactions between constitutive units, and more or less stable crystalline phases, leads to differences in apparent strain induced crystallization kinetics: • PET stretching can induce, prior to main strain hardening step, the formation of re-enforcing intermediate phases (or imperfect crystal) being stable upon unloading and able to be improved upon relaxation or thermal treatments; • PEF stretching exhibits a more “simple” two-steps path with no intermediate phases stable upon unloading. This can be related with the weaker stability of PEF crystal compared to PET (PEF quiescent crystallization temperature and melting temperature are very close to each other), and to the more complex crystalline lattice in PEF (two units are needed instead of one due to furanic cycle). In addition, for PET, Young modulus increases more gradually during strain hardening than for PEF. The final microstructure after stretching is therefore more dependent on thermomechanical treatments (annealing or relaxation steps) in PET in comparison to PEF. [Display omitted] •Stretch ability of PEF.•Stretch ability of PET.•Strain induced crystallization of PEF.•Strain induced crystallization of PET.
AbstractList Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was intensively documented in case of poly(ethylene terephthalate), PET. More recently, some studies focused on SIC development in biobased poly(ethylene furandicarboxylate), PEF. Comparison of these crystallization abilities and crystallization kinetics upon stretching in the two materials allows to describe main differences between them, and to enlighten the role of chain architecture on SIC. To achieve that point, different mechanical tensile tests were conducted using well controlled loading paths to explore the different steps of the microstructural changes induced by the stretching and their correlation with mechanical behaviour. Several macroscopic equivalence in the effects of SIC were found, such as increase in modulus, appearance of organized phase, increase I n α−relaxation temperature despite some differences in chain architecture. Combining both loading-unloading tests and quenching protocols, it was found that inducing more or less strong interactions between constitutive units, and more or less stable crystalline phases, leads to differences in apparent strain induced crystallization kinetics: • PET stretching can induce, prior to main strain hardening step, the formation of re-enforcing intermediate phases (or imperfect crystal) being stable upon unloading and able to be improved upon relaxation or thermal treatments; • PEF stretching exhibits a more “simple” two-steps path with no intermediate phases stable upon unloading. This can be related with the weaker stability of PEF crystal compared to PET (PEF quiescent crystallization temperature and melting temperature are very close to each other), and to the more complex crystalline lattice in PEF (two units are needed instead of one due to furanic cycle). In addition, for PET, Young modulus increases more gradually during strain hardening than for PEF. The final microstructure after stretching is therefore more dependent on thermomechanical treatments (annealing or relaxation steps) in PET in comparison to PEF. [Display omitted] •Stretch ability of PEF.•Stretch ability of PET.•Strain induced crystallization of PEF.•Strain induced crystallization of PET.
Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was intensively documented in case of poly(ethylene terephthalate), PET. More recently, some studies focused on SIC development in biobased poly(ethylene furandicarboxylate), PEF. Comparison of these crystallization abilities and crystallization kinetics upon stretching in the two materials allows to describe main differences between them, and to enlighten the role of chain architecture on SIC. To achieve that point, different mechanical tensile tests were conducted using well controlled loading paths to explore the different steps of the microstructural changes induced by the stretching and their correlation with mechanical behaviour. Several macroscopic equivalence in the effects of SIC were found, such as increase in modulus, appearance of organized phase, increase I n α−relaxation temperature despite some differences in chain architecture. Combining both loading-unloading tests and quenching protocols, it was found that inducing more or less strong interactions between constitutive units, and more or less stable crystalline phases, leads to differences in apparent strain induced crystallization kinetics: • PET stretching can induce, prior to main strain hardening step, the formation of re-enforcing intermediate phases (or imperfect crystal) being stable upon unloading and able to be improved upon relaxation or thermal treatments; • PEF stretching exhibits a more "simple" two-steps path with no intermediate phases stable upon unloading. This can be related with the weaker stability of PEF crystal compared to PET (PEF quiescent crystallization temperature and melting temperature are very close to each other), and to the more complex crystalline lattice in PEF (two units are needed instead of one due to furanic cycle). In addition, for PET, Young modulus increases more gradually during strain hardening than for PEF. The final microstructure after stretching is therefore more dependent on thermomechanical treatments (annealing or relaxation steps) in PET in comparison to PEF.
ArticleNumber 122755
Author Forestier, Emilie
Sbirrazzuoli, Nicolas
Billon, Noelle
Guigo, Nathanael
Combeaud, Christelle
Author_xml – sequence: 1
  givenname: Emilie
  surname: Forestier
  fullname: Forestier, Emilie
  organization: MINES ParisTech, PSL Research University, CNRS, Centre de Mise en Forme des Matériaux (CEMEF), UMR 7635, 06904, Sophia Antipolis Cedex, France
– sequence: 2
  givenname: Christelle
  surname: Combeaud
  fullname: Combeaud, Christelle
  organization: MINES ParisTech, PSL Research University, CNRS, Centre de Mise en Forme des Matériaux (CEMEF), UMR 7635, 06904, Sophia Antipolis Cedex, France
– sequence: 3
  givenname: Nathanael
  surname: Guigo
  fullname: Guigo, Nathanael
  organization: Université Côte D’Azur, CNRS, Institut de Chimie de Nice (ICN), UMR 7272, 06108, Nice, Cedex 2, France
– sequence: 4
  givenname: Nicolas
  surname: Sbirrazzuoli
  fullname: Sbirrazzuoli, Nicolas
  organization: Université Côte D’Azur, CNRS, Institut de Chimie de Nice (ICN), UMR 7272, 06108, Nice, Cedex 2, France
– sequence: 5
  givenname: Noelle
  surname: Billon
  fullname: Billon, Noelle
  email: noelle.billon@mines-paristech.fr
  organization: MINES ParisTech, PSL Research University, CNRS, Centre de Mise en Forme des Matériaux (CEMEF), UMR 7635, 06904, Sophia Antipolis Cedex, France
BackLink https://hal.science/hal-02958220$$DView record in HAL
BookMark eNqFUctqGzEUFSWFOmk_oSDopoGMK2lemnZRgkmagiFZJGshpDu1zFiaSrLB_aP8Ze50kk02WQnuedyje07JiQ8eCPnM2ZIz3nzbLscwHHcQl4IJnAnR1vU7suCyLQshOn5CFoyVoihlwz-Q05S2jDFRi2pBHh-8hZiy9tb5PzT0NOWonS-ct3sDlpp4RHQY3D-dXfDUwgGGMO7A50STAa-jC4n2IdIpBaSMdt_pKuxGRBIq0HNCvkLeHAfwQPt91D7oDOcX9O7q-oLi8lcUNIFxkzd6eKHdfyTvez0k-PT8npGH66v71U2xvv31e3W5Lkwlq1xYoaHuGsGk7WQJldWiq3vNGs1b4NJKW4G2tgcrOyaBsZ53ugNbNoa1jTHlGTmffXG5GqPb6XhUQTt1c7lW04yhoRSCHThyv8zcMYa_e_y72oZ99BhPiapq67Zp2hpZP2aWiSGlCL0yLv-_5nTqQXGmph7VVj33qKYe1dwjqutX6pdQb-l-zjrAYx0cosk48Nipi2CyssG94fAEx23BBQ
CitedBy_id crossref_primary_10_1016_j_polymertesting_2021_107404
crossref_primary_10_3390_polym15030661
crossref_primary_10_1002_app_57762
crossref_primary_10_1021_acs_macromol_5c00607
crossref_primary_10_3390_molecules30010037
crossref_primary_10_1016_j_nbt_2022_02_006
crossref_primary_10_1016_j_polymer_2022_125218
crossref_primary_10_1016_j_polymer_2021_124145
crossref_primary_10_1016_j_mtcomm_2024_108538
crossref_primary_10_3390_polym17111508
crossref_primary_10_1002_macp_202100427
crossref_primary_10_1016_j_polymertesting_2025_108969
crossref_primary_10_1070_RCR5018
crossref_primary_10_1016_j_polymer_2022_124775
crossref_primary_10_3390_polym13193295
crossref_primary_10_1021_acsapm_5c01295
crossref_primary_10_1007_s13399_021_01871_6
crossref_primary_10_1016_j_polymer_2021_124078
crossref_primary_10_3390_ma14051172
crossref_primary_10_1016_j_polymer_2021_123441
crossref_primary_10_3390_polym14050943
crossref_primary_10_1016_j_cherd_2022_01_007
crossref_primary_10_1002_bbb_70000
crossref_primary_10_1039_D4PY00779D
crossref_primary_10_3390_polym16141975
crossref_primary_10_3390_ma14041044
crossref_primary_10_1021_acsomega_5c06288
Cites_doi 10.1080/00222349708220415
10.1016/j.polymer.2015.07.014
10.1023/A:1004820824004
10.1002/1521-3900(200208)185:1<15::AID-MASY15>3.0.CO;2-J
10.1016/j.polymer.2016.08.052
10.1002/macp.201600278
10.1016/j.polymer.2019.122126
10.1016/S0032-3861(98)00770-8
10.1016/j.polymer.2018.01.062
10.1016/0032-3861(96)00175-9
10.1021/ma702554t
10.1021/ma021252i
10.1002/app.1990.070390210
10.1016/0032-3861(96)88476-X
10.1002/macp.1994.021950236
10.1016/S0032-3861(01)00497-9
10.1016/j.polymer.2014.10.065
10.1021/acs.macromol.8b01831
10.1021/acs.macromol.0c00691
10.1021/acs.macromol.8b00192
10.1016/0032-3861(92)90232-L
10.1021/ma5000199
10.1016/j.polymer.2014.07.041
10.1016/j.polymer.2018.10.054
10.1002/pola.26833
10.1016/j.polymer.2017.11.071
10.1039/C6CP01227B
10.1039/C4CP00518J
10.1016/S0032-3861(00)00128-2
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 26, 2020
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 26, 2020
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
1XC
VOOES
DOI 10.1016/j.polymer.2020.122755
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Architecture
Physics
EISSN 1873-2291
ExternalDocumentID oai:HAL:hal-02958220v1
10_1016_j_polymer_2020_122755
S0032386120305851
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
6TJ
6TU
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SCB
SEW
T9H
WUQ
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
1XC
VOOES
ID FETCH-LOGICAL-c484t-d2ae596208d983e4da295fa06a17e18d8d4eaddfed8908e00f19a9ed36c076cc3
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569405600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-3861
IngestDate Wed Nov 19 06:41:06 EST 2025
Wed Aug 13 04:19:12 EDT 2025
Sat Nov 29 07:28:36 EST 2025
Tue Nov 18 22:26:15 EST 2025
Fri Feb 23 02:41:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Viscoelasticity
Loading and unloading mechanical behaviour
Crystallization kinetics
Biobased polymer
Strain induced crystallization
poly(ethylene 2,5-furandicarboxylate)
poly(ethylene terephthalate)
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-d2ae596208d983e4da295fa06a17e18d8d4eaddfed8908e00f19a9ed36c076cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4030-7595
0000-0002-6031-5448
0000-0003-2978-4614
0000-0002-1452-6930
OpenAccessLink https://hal.science/hal-02958220
PQID 2447576675
PQPubID 2045419
ParticipantIDs hal_primary_oai_HAL_hal_02958220v1
proquest_journals_2447576675
crossref_citationtrail_10_1016_j_polymer_2020_122755
crossref_primary_10_1016_j_polymer_2020_122755
elsevier_sciencedirect_doi_10_1016_j_polymer_2020_122755
PublicationCentury 2000
PublicationDate 2020-08-26
PublicationDateYYYYMMDD 2020-08-26
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-26
  day: 26
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Polymer (Guilford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Stoclet, Lefebvre, Yeniad, Gobius du Sart, de Vos (bib1) 2018; 134
Burgess, Mikkilineni, Yu, Kim, Mubarak, Kriegel, Koros (bib21) 2014; 55
Picard (bib31) 2008
Menager, Guigo, Martino, Sbirrazzuoli, Visser, Boyer, Billon, Monge, Combeaud (bib29) 2018; 158
Papageorgiou, Tsanaktsis, Bikiaris (bib30) 2014; 16
Ajji, Guèvremont, Cole, Dumoulin (bib9) 1996; 37
Ran, Wang, Burger, Chu, Hsiao (bib13) 2002; 35
(bib36) 2002
Welsh, Blundell, Windle (bib8) 2000; 35
van Berkel, Guigo, Visser, Sbirrazzuoli (bib28) 2018; 51
Forestier, Combeaud, Guigo, Monge, Haudin, Sbirrazzuoli, Billon (bib24) 2020
Mahendrasingam, Martin, Fuller, Blundell, Oldman, MacKerron, Harvie, Riekel (bib12) 2000
Fu, Busing, Jin, Affholter, Wunderlich (bib34) 1994; 195
Burgess, Leisen, Kraftschik, Mubarak, Kriegel, Koros (bib15) 2014; 47
Marco, Chevalier, Régnier, Poitou (bib14) 2002; 185
Liu, Geil (bib35) 1997; 36
Le Bourvellec, Beautemps (bib7) 1990; 39
Kazaryan, Medvedeva (bib23) 1968; 10
Codou, Moncel, van Berkel, Guigo, Sbirrazzuoli (bib16) 2016; 18
Burgess, Karvan, Johnson, Kriegel, Koros (bib20) 2014; 55
Salem (bib6) 1992; 33
Daubeny (bib22) 1954; 226
Araujo, Nolasco, Ribeiro-Claro, Rudić, Silvestre, Vaz, Sousa, Inside (bib25) 2018; 51
Knoop, Vogelzang, van Haveren, van Es (bib17) 2013; 51
Stoclet, Gobius du Sart, Yeniad, de Vos, Lefebvre (bib27) 2015; 72
Mao, Bucknall, Kriegel (bib2) 2018; 139
Quandalle (bib32) 2017
A. Codou, N. Guigo, J. Van Berkel, E. De Jong, N. Sbirrazzuoli, Non-isothermal Crystallization Kinetics of Synthesized via the Direct Esterifi Cation Process, (n.d.) 2065–22074.
Forestier, Guigo, Combeaud, Billon, Sbirrazzuoli (bib26) 2020
Blundell, MacKerron, Fuller, Mahendrasingam, Martin, Oldman, Rule, Riekel (bib11) 1996; 37
Blundell, Mahendrasingam, Martin, Fuller, MacKerron, Harvie, Oldman, Riekel (bib10) 2000; 41
Mao, Kriegel, Bucknall (bib3) 2016; 102
Dimitriadis, Bikiaris, Papageorgiou, Floudas (bib18) 2016; 217
Kawakami, Burger, Ran, Avila-Orta, Sics, Chu, Chiao, Hsiao, Kikutani (bib5) 2008; 41
Gorlier, Haudin, Billon (bib4) 2001; 42
Mahendrasingam, Martin, Fuller, Blundell, Oldman, Harvie, MacKerron, Riekel, Engström (bib33) 1999; 40
van Berkel (10.1016/j.polymer.2020.122755_bib28) 2018; 51
Picard (10.1016/j.polymer.2020.122755_bib31) 2008
Mao (10.1016/j.polymer.2020.122755_bib3) 2016; 102
Daubeny (10.1016/j.polymer.2020.122755_bib22) 1954; 226
Quandalle (10.1016/j.polymer.2020.122755_bib32) 2017
Papageorgiou (10.1016/j.polymer.2020.122755_bib30) 2014; 16
Forestier (10.1016/j.polymer.2020.122755_bib26) 2020
Stoclet (10.1016/j.polymer.2020.122755_bib1) 2018; 134
Blundell (10.1016/j.polymer.2020.122755_bib10) 2000; 41
Codou (10.1016/j.polymer.2020.122755_bib16) 2016; 18
Burgess (10.1016/j.polymer.2020.122755_bib21) 2014; 55
Le Bourvellec (10.1016/j.polymer.2020.122755_bib7) 1990; 39
Blundell (10.1016/j.polymer.2020.122755_bib11) 1996; 37
Mao (10.1016/j.polymer.2020.122755_bib2) 2018; 139
(10.1016/j.polymer.2020.122755_bib36) 2002
Kazaryan (10.1016/j.polymer.2020.122755_bib23) 1968; 10
Fu (10.1016/j.polymer.2020.122755_bib34) 1994; 195
Menager (10.1016/j.polymer.2020.122755_bib29) 2018; 158
Welsh (10.1016/j.polymer.2020.122755_bib8) 2000; 35
Kawakami (10.1016/j.polymer.2020.122755_bib5) 2008; 41
Knoop (10.1016/j.polymer.2020.122755_bib17) 2013; 51
Burgess (10.1016/j.polymer.2020.122755_bib15) 2014; 47
10.1016/j.polymer.2020.122755_bib19
Liu (10.1016/j.polymer.2020.122755_bib35) 1997; 36
Forestier (10.1016/j.polymer.2020.122755_bib24) 2020
Salem (10.1016/j.polymer.2020.122755_bib6) 1992; 33
Mahendrasingam (10.1016/j.polymer.2020.122755_bib33) 1999; 40
Dimitriadis (10.1016/j.polymer.2020.122755_bib18) 2016; 217
Burgess (10.1016/j.polymer.2020.122755_bib20) 2014; 55
Stoclet (10.1016/j.polymer.2020.122755_bib27) 2015; 72
Ajji (10.1016/j.polymer.2020.122755_bib9) 1996; 37
Gorlier (10.1016/j.polymer.2020.122755_bib4) 2001; 42
Mahendrasingam (10.1016/j.polymer.2020.122755_bib12) 2000
Marco (10.1016/j.polymer.2020.122755_bib14) 2002; 185
Araujo (10.1016/j.polymer.2020.122755_bib25) 2018; 51
Ran (10.1016/j.polymer.2020.122755_bib13) 2002; 35
References_xml – volume: 72
  start-page: 165
  year: 2015
  end-page: 176
  ident: bib27
  article-title: Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate)
  publication-title: Polymer
– year: 2020
  ident: bib26
  article-title: Conformational changes analysis of PEF (polyethylene 2,5-furandicarboxylate), and PET (polyethylene terephthalate) under uniaxial stretching
  publication-title: Macromolecules
– year: 2020
  ident: bib24
  article-title: Strain-induced crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysis
  publication-title: Polymer
– volume: 102
  start-page: 308
  year: 2016
  end-page: 314
  ident: bib3
  article-title: The crystal structure of poly(ethylene furanoate)
  publication-title: Polymer
– volume: 47
  start-page: 1383
  year: 2014
  end-page: 1391
  ident: bib15
  article-title: Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate)
  publication-title: Macromolecules
– volume: 217
  start-page: 2056
  year: 2016
  end-page: 2062
  ident: bib18
  article-title: Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry
  publication-title: Macromol. Chem. Phys.
– volume: 51
  start-page: 8539
  year: 2018
  end-page: 8549
  ident: bib28
  article-title: Chain structure and molecular weight dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate)
  publication-title: Macromolecules
– volume: 35
  start-page: 5225
  year: 2000
  end-page: 5240
  ident: bib8
  article-title: A transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN)
  publication-title: J. Mater. Sci.
– volume: 35
  start-page: 10102
  year: 2002
  end-page: 10107
  ident: bib13
  article-title: Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film
  publication-title: Macromolecules
– volume: 42
  start-page: 9541
  year: 2001
  end-page: 9549
  ident: bib4
  article-title: Strain-induced crystallisation in bulk amorphous PET under uni-axial loading
  publication-title: Polymer
– volume: 185
  start-page: 15
  year: 2002
  end-page: 34
  ident: bib14
  article-title: Induced crystallization and orientation of poly(ethylene terephthalate) during uniaxial and biaxial elongation
  publication-title: Macromol. Symp.
– volume: 40
  start-page: 5553
  year: 1999
  end-page: 5565
  ident: bib33
  article-title: Effect of draw ratio and temperature on the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates
  publication-title: Polymer
– volume: 41
  start-page: 2859
  year: 2008
  end-page: 2867
  ident: bib5
  article-title: New insights into lamellar structure development and SAXSA/WAXD sequence appearance during uniaxial stretching of amorphous polyethylene terephthalate above glass transition temperature
  publication-title: Macromolecules
– volume: 36
  start-page: 61
  year: 1997
  end-page: 85
  ident: bib35
  article-title: Crystal structure and morphology of poly(ethylene terephthalate) single crystals prepared by melt polymerization
  publication-title: J. Macromol. Sci. Phys.
– year: 2002
  ident: bib36
  publication-title: Handbook of Thermoplastic Polyesters
– volume: 55
  start-page: 6870
  year: 2014
  end-page: 6882
  ident: bib21
  article-title: Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: kinetic sorption
  publication-title: Polymer
– volume: 37
  start-page: 3707
  year: 1996
  end-page: 3714
  ident: bib9
  article-title: Orientation and structure of drawn poly(ethylene terephthalate)
  publication-title: Polymer
– volume: 41
  start-page: 7793
  year: 2000
  end-page: 7802
  ident: bib10
  article-title: Orientation prior to crystallisation during drawing of poly(ethylene terephthalate)
  publication-title: Polymer
– volume: 226
  start-page: 531
  year: 1954
  end-page: 542
  ident: bib22
  article-title: The crystal structure of polyethylene terephthalate
  publication-title: Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
– reference: A. Codou, N. Guigo, J. Van Berkel, E. De Jong, N. Sbirrazzuoli, Non-isothermal Crystallization Kinetics of Synthesized via the Direct Esterifi Cation Process, (n.d.) 2065–22074.
– volume: 134
  start-page: 227
  year: 2018
  end-page: 241
  ident: bib1
  article-title: On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: an in-situ SAXS-WAXS study
  publication-title: Polymer
– volume: 33
  start-page: 3182
  year: 1992
  end-page: 3188
  ident: bib6
  article-title: Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: influence of strain rate
  publication-title: Polymer
– volume: 16
  start-page: 7946
  year: 2014
  end-page: 7958
  ident: bib30
  article-title: Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 4748
  year: 2014
  end-page: 4756
  ident: bib20
  article-title: Oxygen sorption and transport in amorphous poly(ethylene furanoate)
  publication-title: Polymer
– year: 2000
  ident: bib12
  article-title: Observation of a Transient Structure Prior to Strain-Induced Crystallization in Poly(ethylene Terephthalate)
– volume: 18
  start-page: 16647
  year: 2016
  end-page: 16658
  ident: bib16
  article-title: Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate)
  publication-title: Phys. Chem. Chem. Phys.
– year: 2008
  ident: bib31
  article-title: Strain Induced Crystallisation during Stretch Blow Moulding of PET; Correlation with Strain Hardening
– volume: 51
  start-page: 3515
  year: 2018
  end-page: 3526
  ident: bib25
  article-title: Chain conformation and dynamics in crystalline and amorphous domains
  publication-title: Macromolecules
– year: 2017
  ident: bib32
  article-title: Study and Mechanical Modeling of the Strain-Induced-Crystallization of Polymers : Crosslinked Naturel Rubber and PET
– volume: 10
  year: 1968
  ident: bib23
  article-title: X-Ray study of the structure of the polyester of furan-2, 5-dicarboxylic acid
  publication-title: Vysokomol. Soedin. Seriya B
– volume: 37
  start-page: 3303
  year: 1996
  end-page: 3311
  ident: bib11
  article-title: Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation
  publication-title: Polymer
– volume: 51
  start-page: 4191
  year: 2013
  end-page: 4199
  ident: bib17
  article-title: High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination
  publication-title: J. Polym. Sci. Part A Polym. Chem.
– volume: 158
  start-page: 364
  year: 2018
  end-page: 371
  ident: bib29
  article-title: Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysis
  publication-title: Polymer
– volume: 39
  start-page: 329
  year: 1990
  end-page: 339
  ident: bib7
  article-title: Stretching of PET films under constant load. II. Structural analysis
  publication-title: J. Appl. Polym. Sci.
– volume: 139
  start-page: 60
  year: 2018
  end-page: 67
  ident: bib2
  article-title: Synchrotron X-ray scattering study on amorphous poly(ethylene furanoate) under uniaxial deformation
  publication-title: Polymer
– volume: 195
  start-page: 803
  year: 1994
  end-page: 822
  ident: bib34
  article-title: Structure analysis of the noncrystalline material in poly(ethylene terephthalate) fibers
  publication-title: Macromol. Chem. Phys.
– volume: 36
  start-page: 61
  year: 1997
  ident: 10.1016/j.polymer.2020.122755_bib35
  article-title: Crystal structure and morphology of poly(ethylene terephthalate) single crystals prepared by melt polymerization
  publication-title: J. Macromol. Sci. Phys.
  doi: 10.1080/00222349708220415
– year: 2000
  ident: 10.1016/j.polymer.2020.122755_bib12
– volume: 72
  start-page: 165
  year: 2015
  ident: 10.1016/j.polymer.2020.122755_bib27
  article-title: Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.07.014
– volume: 35
  start-page: 5225
  year: 2000
  ident: 10.1016/j.polymer.2020.122755_bib8
  article-title: A transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN)
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004820824004
– volume: 185
  start-page: 15
  year: 2002
  ident: 10.1016/j.polymer.2020.122755_bib14
  article-title: Induced crystallization and orientation of poly(ethylene terephthalate) during uniaxial and biaxial elongation
  publication-title: Macromol. Symp.
  doi: 10.1002/1521-3900(200208)185:1<15::AID-MASY15>3.0.CO;2-J
– volume: 102
  start-page: 308
  year: 2016
  ident: 10.1016/j.polymer.2020.122755_bib3
  article-title: The crystal structure of poly(ethylene furanoate)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.08.052
– volume: 10
  year: 1968
  ident: 10.1016/j.polymer.2020.122755_bib23
  article-title: X-Ray study of the structure of the polyester of furan-2, 5-dicarboxylic acid
  publication-title: Vysokomol. Soedin. Seriya B
– volume: 217
  start-page: 2056
  year: 2016
  ident: 10.1016/j.polymer.2020.122755_bib18
  article-title: Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201600278
– year: 2020
  ident: 10.1016/j.polymer.2020.122755_bib24
  article-title: Strain-induced crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysis
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.122126
– volume: 40
  start-page: 5553
  year: 1999
  ident: 10.1016/j.polymer.2020.122755_bib33
  article-title: Effect of draw ratio and temperature on the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00770-8
– volume: 139
  start-page: 60
  year: 2018
  ident: 10.1016/j.polymer.2020.122755_bib2
  article-title: Synchrotron X-ray scattering study on amorphous poly(ethylene furanoate) under uniaxial deformation
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.01.062
– volume: 37
  start-page: 3707
  year: 1996
  ident: 10.1016/j.polymer.2020.122755_bib9
  article-title: Orientation and structure of drawn poly(ethylene terephthalate)
  publication-title: Polymer
  doi: 10.1016/0032-3861(96)00175-9
– volume: 41
  start-page: 2859
  year: 2008
  ident: 10.1016/j.polymer.2020.122755_bib5
  article-title: New insights into lamellar structure development and SAXSA/WAXD sequence appearance during uniaxial stretching of amorphous polyethylene terephthalate above glass transition temperature
  publication-title: Macromolecules
  doi: 10.1021/ma702554t
– volume: 35
  start-page: 10102
  year: 2002
  ident: 10.1016/j.polymer.2020.122755_bib13
  article-title: Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film
  publication-title: Macromolecules
  doi: 10.1021/ma021252i
– volume: 39
  start-page: 329
  year: 1990
  ident: 10.1016/j.polymer.2020.122755_bib7
  article-title: Stretching of PET films under constant load. II. Structural analysis
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1990.070390210
– volume: 37
  start-page: 3303
  year: 1996
  ident: 10.1016/j.polymer.2020.122755_bib11
  article-title: Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation
  publication-title: Polymer
  doi: 10.1016/0032-3861(96)88476-X
– volume: 195
  start-page: 803
  year: 1994
  ident: 10.1016/j.polymer.2020.122755_bib34
  article-title: Structure analysis of the noncrystalline material in poly(ethylene terephthalate) fibers
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.1994.021950236
– volume: 42
  start-page: 9541
  year: 2001
  ident: 10.1016/j.polymer.2020.122755_bib4
  article-title: Strain-induced crystallisation in bulk amorphous PET under uni-axial loading
  publication-title: Polymer
  doi: 10.1016/S0032-3861(01)00497-9
– volume: 55
  start-page: 6870
  year: 2014
  ident: 10.1016/j.polymer.2020.122755_bib21
  article-title: Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: kinetic sorption
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.10.065
– volume: 51
  start-page: 8539
  year: 2018
  ident: 10.1016/j.polymer.2020.122755_bib28
  article-title: Chain structure and molecular weight dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate)
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01831
– year: 2020
  ident: 10.1016/j.polymer.2020.122755_bib26
  article-title: Conformational changes analysis of PEF (polyethylene 2,5-furandicarboxylate), and PET (polyethylene terephthalate) under uniaxial stretching
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00691
– volume: 51
  start-page: 3515
  year: 2018
  ident: 10.1016/j.polymer.2020.122755_bib25
  article-title: Chain conformation and dynamics in crystalline and amorphous domains
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00192
– volume: 33
  start-page: 3182
  year: 1992
  ident: 10.1016/j.polymer.2020.122755_bib6
  article-title: Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: influence of strain rate
  publication-title: Polymer
  doi: 10.1016/0032-3861(92)90232-L
– volume: 47
  start-page: 1383
  year: 2014
  ident: 10.1016/j.polymer.2020.122755_bib15
  article-title: Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate)
  publication-title: Macromolecules
  doi: 10.1021/ma5000199
– year: 2002
  ident: 10.1016/j.polymer.2020.122755_bib36
– ident: 10.1016/j.polymer.2020.122755_bib19
– volume: 55
  start-page: 4748
  year: 2014
  ident: 10.1016/j.polymer.2020.122755_bib20
  article-title: Oxygen sorption and transport in amorphous poly(ethylene furanoate)
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.07.041
– volume: 158
  start-page: 364
  year: 2018
  ident: 10.1016/j.polymer.2020.122755_bib29
  article-title: Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysis
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.10.054
– volume: 51
  start-page: 4191
  year: 2013
  ident: 10.1016/j.polymer.2020.122755_bib17
  article-title: High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.26833
– volume: 134
  start-page: 227
  year: 2018
  ident: 10.1016/j.polymer.2020.122755_bib1
  article-title: On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: an in-situ SAXS-WAXS study
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.11.071
– volume: 18
  start-page: 16647
  year: 2016
  ident: 10.1016/j.polymer.2020.122755_bib16
  article-title: Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate)
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01227B
– volume: 16
  start-page: 7946
  year: 2014
  ident: 10.1016/j.polymer.2020.122755_bib30
  article-title: Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00518J
– volume: 41
  start-page: 7793
  year: 2000
  ident: 10.1016/j.polymer.2020.122755_bib10
  article-title: Orientation prior to crystallisation during drawing of poly(ethylene terephthalate)
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00128-2
– volume: 226
  start-page: 531
  year: 1954
  ident: 10.1016/j.polymer.2020.122755_bib22
  article-title: The crystal structure of polyethylene terephthalate
  publication-title: Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
– year: 2017
  ident: 10.1016/j.polymer.2020.122755_bib32
– year: 2008
  ident: 10.1016/j.polymer.2020.122755_bib31
SSID ssj0002524
Score 2.5338862
Snippet Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122755
SubjectTerms Architecture
Biobased polymer
Chemical Physics
Chemical Sciences
Cristallography
Crystal defects
Crystal structure
Crystallinity
Crystallization
Crystallization kinetics
Engineering Sciences
Ethylene
Kinetics
Loading and unloading mechanical behaviour
Material chemistry
Materials
Mechanical properties
Mechanics
Mechanics of materials
Melt temperature
Microstructure
Modulus of elasticity
Phases
Physics
poly(ethylene 2,5-furandicarboxylate)
poly(ethylene terephthalate)
Polyester resins
Polyesters
Polyethylene terephthalate
Polymers
Strain hardening
Strain induced crystallization
Strain rate
Stretching
Tensile tests
Thermomechanical treatment
Unloading
Viscoelasticity
Title Understanding of strain-induced crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate), PET
URI https://dx.doi.org/10.1016/j.polymer.2020.122755
https://www.proquest.com/docview/2447576675
https://hal.science/hal-02958220
Volume 203
WOSCitedRecordID wos000569405600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002524
  issn: 0032-3861
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DYkPCUEZojCQhRACsZTEaWObt6pqGagqe0hR36IkdmmnrCltU237j_gTeeMcJ2lSDQYPvERt_JHI98v5bN_9DqFXKn6ECdB-gR2EBqw3JgansEqhMrT9gIJWFill_oAOh2w85qe12s88FmYT0fmcXVzwxX8VNdwDYavQ2X8Qd9Ep3IDfIHS4gtjh-leCH1XCVcAWXKVpIAxYfCfqsD9cXkJpFGUBmHnYlA51U9xOsHqOU5YGlcHhMmVSSP3muuWUhWkZWKcSBA0Tl3w3SWDWixUPBuGpadrr556hu1WhQ7mYrqd-VK7ulu3kU2hyrlguCPuYzCLtgV_sWShmkCxO53wWzQpswhsG0k_EljVBHUsULkbJ7FusZxR1XpAHC6jtpWC2XPpXV0msg8XTz8Ov7IiQ1B9Ph93rbboiVOdrWfPbxLCZJn5vSq3sGbUNQnS2sHw2IKZd0ufWtbOM3vA4ay70WDTVSzQtQqhmHK6yeg-_eP3RYOC5vbH7evHdUAnPlGNAlv1lDx1AOw4K-aDzqTf-XJgRpE00hXj24tvws_fXPvl3htXeVHn47hgaqfXkPkD3s2UP7mi4PkQ1Oa-je53SKVYd3e7myQfr6G6JJ_MR-lHBNI4nuIppvINpXMY0LjCNAUZ4i-kPeIto1acqeZODFBd4fnuMAcvHGB6-U6WC47Sae4hG_Z7bPTGyHCNG2GKttSGIL1UCKpMJzmzZEj7h7YlvOr5FpcUEEy3QtWIiBeMmk6Y5sbjPpbCd0KROGNqP0f48nssnCLcF5dIJOCAoaEkasjb8tUwqOLVDImUDtXIBeWFGwK8GK_JyT8szL5Orp-Tqabk2ULNottAMNDc1YLn0vcyM1uaxB_i9qelLGLPiMYp6_qQz8NQ9E8YFFhPmxmqgoxxMXqb3Vh5RxKHUcWj76Z-Ln6E722_2CO2vl4l8jm6Fm_VstXyRfQS_AEa0B2Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+strain-induced+crystallization+developments+scenarios+for+polyesters%3A+Comparison+of+poly%28ethylene+furanoate%29%2C+PEF%2C+and+poly%28ethylene+terephthalate%29%2C+PET&rft.jtitle=Polymer+%28Guilford%29&rft.au=estier%2C+Emilie&rft.au=Combeaud%2C+Christelle&rft.au=Guigo%2C+Nathanael&rft.au=Sbirrazzuoli%2C+Nicolas&rft.date=2020-08-26&rft.pub=Elsevier+BV&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=203&rft.spage=1&rft_id=info:doi/10.1016%2Fj.polymer.2020.122755&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon