Understanding of strain-induced crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate), PET
Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was inte...
Gespeichert in:
| Veröffentlicht in: | Polymer (Guilford) Jg. 203; S. 122755 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
26.08.2020
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 0032-3861, 1873-2291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was intensively documented in case of poly(ethylene terephthalate), PET. More recently, some studies focused on SIC development in biobased poly(ethylene furandicarboxylate), PEF. Comparison of these crystallization abilities and crystallization kinetics upon stretching in the two materials allows to describe main differences between them, and to enlighten the role of chain architecture on SIC. To achieve that point, different mechanical tensile tests were conducted using well controlled loading paths to explore the different steps of the microstructural changes induced by the stretching and their correlation with mechanical behaviour.
Several macroscopic equivalence in the effects of SIC were found, such as increase in modulus, appearance of organized phase, increase I n α−relaxation temperature despite some differences in chain architecture. Combining both loading-unloading tests and quenching protocols, it was found that inducing more or less strong interactions between constitutive units, and more or less stable crystalline phases, leads to differences in apparent strain induced crystallization kinetics:
• PET stretching can induce, prior to main strain hardening step, the formation of re-enforcing intermediate phases (or imperfect crystal) being stable upon unloading and able to be improved upon relaxation or thermal treatments;
• PEF stretching exhibits a more “simple” two-steps path with no intermediate phases stable upon unloading.
This can be related with the weaker stability of PEF crystal compared to PET (PEF quiescent crystallization temperature and melting temperature are very close to each other), and to the more complex crystalline lattice in PEF (two units are needed instead of one due to furanic cycle). In addition, for PET, Young modulus increases more gradually during strain hardening than for PEF. The final microstructure after stretching is therefore more dependent on thermomechanical treatments (annealing or relaxation steps) in PET in comparison to PEF.
[Display omitted]
•Stretch ability of PEF.•Stretch ability of PET.•Strain induced crystallization of PEF.•Strain induced crystallization of PET. |
|---|---|
| AbstractList | Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was intensively documented in case of poly(ethylene terephthalate), PET. More recently, some studies focused on SIC development in biobased poly(ethylene furandicarboxylate), PEF. Comparison of these crystallization abilities and crystallization kinetics upon stretching in the two materials allows to describe main differences between them, and to enlighten the role of chain architecture on SIC. To achieve that point, different mechanical tensile tests were conducted using well controlled loading paths to explore the different steps of the microstructural changes induced by the stretching and their correlation with mechanical behaviour.
Several macroscopic equivalence in the effects of SIC were found, such as increase in modulus, appearance of organized phase, increase I n α−relaxation temperature despite some differences in chain architecture. Combining both loading-unloading tests and quenching protocols, it was found that inducing more or less strong interactions between constitutive units, and more or less stable crystalline phases, leads to differences in apparent strain induced crystallization kinetics:
• PET stretching can induce, prior to main strain hardening step, the formation of re-enforcing intermediate phases (or imperfect crystal) being stable upon unloading and able to be improved upon relaxation or thermal treatments;
• PEF stretching exhibits a more “simple” two-steps path with no intermediate phases stable upon unloading.
This can be related with the weaker stability of PEF crystal compared to PET (PEF quiescent crystallization temperature and melting temperature are very close to each other), and to the more complex crystalline lattice in PEF (two units are needed instead of one due to furanic cycle). In addition, for PET, Young modulus increases more gradually during strain hardening than for PEF. The final microstructure after stretching is therefore more dependent on thermomechanical treatments (annealing or relaxation steps) in PET in comparison to PEF.
[Display omitted]
•Stretch ability of PEF.•Stretch ability of PET.•Strain induced crystallization of PEF.•Strain induced crystallization of PET. Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to occur. It leads to the formation of a crystal in different amorphous polymers, stretched above their glassy transition. This phenomenon was intensively documented in case of poly(ethylene terephthalate), PET. More recently, some studies focused on SIC development in biobased poly(ethylene furandicarboxylate), PEF. Comparison of these crystallization abilities and crystallization kinetics upon stretching in the two materials allows to describe main differences between them, and to enlighten the role of chain architecture on SIC. To achieve that point, different mechanical tensile tests were conducted using well controlled loading paths to explore the different steps of the microstructural changes induced by the stretching and their correlation with mechanical behaviour. Several macroscopic equivalence in the effects of SIC were found, such as increase in modulus, appearance of organized phase, increase I n α−relaxation temperature despite some differences in chain architecture. Combining both loading-unloading tests and quenching protocols, it was found that inducing more or less strong interactions between constitutive units, and more or less stable crystalline phases, leads to differences in apparent strain induced crystallization kinetics: • PET stretching can induce, prior to main strain hardening step, the formation of re-enforcing intermediate phases (or imperfect crystal) being stable upon unloading and able to be improved upon relaxation or thermal treatments; • PEF stretching exhibits a more "simple" two-steps path with no intermediate phases stable upon unloading. This can be related with the weaker stability of PEF crystal compared to PET (PEF quiescent crystallization temperature and melting temperature are very close to each other), and to the more complex crystalline lattice in PEF (two units are needed instead of one due to furanic cycle). In addition, for PET, Young modulus increases more gradually during strain hardening than for PEF. The final microstructure after stretching is therefore more dependent on thermomechanical treatments (annealing or relaxation steps) in PET in comparison to PEF. |
| ArticleNumber | 122755 |
| Author | Forestier, Emilie Sbirrazzuoli, Nicolas Billon, Noelle Guigo, Nathanael Combeaud, Christelle |
| Author_xml | – sequence: 1 givenname: Emilie surname: Forestier fullname: Forestier, Emilie organization: MINES ParisTech, PSL Research University, CNRS, Centre de Mise en Forme des Matériaux (CEMEF), UMR 7635, 06904, Sophia Antipolis Cedex, France – sequence: 2 givenname: Christelle surname: Combeaud fullname: Combeaud, Christelle organization: MINES ParisTech, PSL Research University, CNRS, Centre de Mise en Forme des Matériaux (CEMEF), UMR 7635, 06904, Sophia Antipolis Cedex, France – sequence: 3 givenname: Nathanael surname: Guigo fullname: Guigo, Nathanael organization: Université Côte D’Azur, CNRS, Institut de Chimie de Nice (ICN), UMR 7272, 06108, Nice, Cedex 2, France – sequence: 4 givenname: Nicolas surname: Sbirrazzuoli fullname: Sbirrazzuoli, Nicolas organization: Université Côte D’Azur, CNRS, Institut de Chimie de Nice (ICN), UMR 7272, 06108, Nice, Cedex 2, France – sequence: 5 givenname: Noelle surname: Billon fullname: Billon, Noelle email: noelle.billon@mines-paristech.fr organization: MINES ParisTech, PSL Research University, CNRS, Centre de Mise en Forme des Matériaux (CEMEF), UMR 7635, 06904, Sophia Antipolis Cedex, France |
| BackLink | https://hal.science/hal-02958220$$DView record in HAL |
| BookMark | eNqFUctqGzEUFSWFOmk_oSDopoGMK2lemnZRgkmagiFZJGshpDu1zFiaSrLB_aP8Ze50kk02WQnuedyje07JiQ8eCPnM2ZIz3nzbLscwHHcQl4IJnAnR1vU7suCyLQshOn5CFoyVoihlwz-Q05S2jDFRi2pBHh-8hZiy9tb5PzT0NOWonS-ct3sDlpp4RHQY3D-dXfDUwgGGMO7A50STAa-jC4n2IdIpBaSMdt_pKuxGRBIq0HNCvkLeHAfwQPt91D7oDOcX9O7q-oLi8lcUNIFxkzd6eKHdfyTvez0k-PT8npGH66v71U2xvv31e3W5Lkwlq1xYoaHuGsGk7WQJldWiq3vNGs1b4NJKW4G2tgcrOyaBsZ53ugNbNoa1jTHlGTmffXG5GqPb6XhUQTt1c7lW04yhoRSCHThyv8zcMYa_e_y72oZ99BhPiapq67Zp2hpZP2aWiSGlCL0yLv-_5nTqQXGmph7VVj33qKYe1dwjqutX6pdQb-l-zjrAYx0cosk48Nipi2CyssG94fAEx23BBQ |
| CitedBy_id | crossref_primary_10_1016_j_polymertesting_2021_107404 crossref_primary_10_3390_polym15030661 crossref_primary_10_1002_app_57762 crossref_primary_10_1021_acs_macromol_5c00607 crossref_primary_10_3390_molecules30010037 crossref_primary_10_1016_j_nbt_2022_02_006 crossref_primary_10_1016_j_polymer_2022_125218 crossref_primary_10_1016_j_polymer_2021_124145 crossref_primary_10_1016_j_mtcomm_2024_108538 crossref_primary_10_3390_polym17111508 crossref_primary_10_1002_macp_202100427 crossref_primary_10_1016_j_polymertesting_2025_108969 crossref_primary_10_1070_RCR5018 crossref_primary_10_1016_j_polymer_2022_124775 crossref_primary_10_3390_polym13193295 crossref_primary_10_1021_acsapm_5c01295 crossref_primary_10_1007_s13399_021_01871_6 crossref_primary_10_1016_j_polymer_2021_124078 crossref_primary_10_3390_ma14051172 crossref_primary_10_1016_j_polymer_2021_123441 crossref_primary_10_3390_polym14050943 crossref_primary_10_1016_j_cherd_2022_01_007 crossref_primary_10_1002_bbb_70000 crossref_primary_10_1039_D4PY00779D crossref_primary_10_3390_polym16141975 crossref_primary_10_3390_ma14041044 crossref_primary_10_1021_acsomega_5c06288 |
| Cites_doi | 10.1080/00222349708220415 10.1016/j.polymer.2015.07.014 10.1023/A:1004820824004 10.1002/1521-3900(200208)185:1<15::AID-MASY15>3.0.CO;2-J 10.1016/j.polymer.2016.08.052 10.1002/macp.201600278 10.1016/j.polymer.2019.122126 10.1016/S0032-3861(98)00770-8 10.1016/j.polymer.2018.01.062 10.1016/0032-3861(96)00175-9 10.1021/ma702554t 10.1021/ma021252i 10.1002/app.1990.070390210 10.1016/0032-3861(96)88476-X 10.1002/macp.1994.021950236 10.1016/S0032-3861(01)00497-9 10.1016/j.polymer.2014.10.065 10.1021/acs.macromol.8b01831 10.1021/acs.macromol.0c00691 10.1021/acs.macromol.8b00192 10.1016/0032-3861(92)90232-L 10.1021/ma5000199 10.1016/j.polymer.2014.07.041 10.1016/j.polymer.2018.10.054 10.1002/pola.26833 10.1016/j.polymer.2017.11.071 10.1039/C6CP01227B 10.1039/C4CP00518J 10.1016/S0032-3861(00)00128-2 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Aug 26, 2020 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Aug 26, 2020 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 1XC VOOES |
| DOI | 10.1016/j.polymer.2020.122755 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Architecture Physics |
| EISSN | 1873-2291 |
| ExternalDocumentID | oai:HAL:hal-02958220v1 10_1016_j_polymer_2020_122755 S0032386120305851 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SCB SEW T9H WUQ ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 1XC VOOES |
| ID | FETCH-LOGICAL-c484t-d2ae596208d983e4da295fa06a17e18d8d4eaddfed8908e00f19a9ed36c076cc3 |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569405600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-3861 |
| IngestDate | Wed Nov 19 06:41:06 EST 2025 Wed Aug 13 04:19:12 EDT 2025 Sat Nov 29 07:28:36 EST 2025 Tue Nov 18 22:26:15 EST 2025 Fri Feb 23 02:41:09 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Viscoelasticity Loading and unloading mechanical behaviour Crystallization kinetics Biobased polymer Strain induced crystallization poly(ethylene 2,5-furandicarboxylate) poly(ethylene terephthalate) |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c484t-d2ae596208d983e4da295fa06a17e18d8d4eaddfed8908e00f19a9ed36c076cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4030-7595 0000-0002-6031-5448 0000-0003-2978-4614 0000-0002-1452-6930 |
| OpenAccessLink | https://hal.science/hal-02958220 |
| PQID | 2447576675 |
| PQPubID | 2045419 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02958220v1 proquest_journals_2447576675 crossref_citationtrail_10_1016_j_polymer_2020_122755 crossref_primary_10_1016_j_polymer_2020_122755 elsevier_sciencedirect_doi_10_1016_j_polymer_2020_122755 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-26 |
| PublicationDateYYYYMMDD | 2020-08-26 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Polymer (Guilford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Stoclet, Lefebvre, Yeniad, Gobius du Sart, de Vos (bib1) 2018; 134 Burgess, Mikkilineni, Yu, Kim, Mubarak, Kriegel, Koros (bib21) 2014; 55 Picard (bib31) 2008 Menager, Guigo, Martino, Sbirrazzuoli, Visser, Boyer, Billon, Monge, Combeaud (bib29) 2018; 158 Papageorgiou, Tsanaktsis, Bikiaris (bib30) 2014; 16 Ajji, Guèvremont, Cole, Dumoulin (bib9) 1996; 37 Ran, Wang, Burger, Chu, Hsiao (bib13) 2002; 35 (bib36) 2002 Welsh, Blundell, Windle (bib8) 2000; 35 van Berkel, Guigo, Visser, Sbirrazzuoli (bib28) 2018; 51 Forestier, Combeaud, Guigo, Monge, Haudin, Sbirrazzuoli, Billon (bib24) 2020 Mahendrasingam, Martin, Fuller, Blundell, Oldman, MacKerron, Harvie, Riekel (bib12) 2000 Fu, Busing, Jin, Affholter, Wunderlich (bib34) 1994; 195 Burgess, Leisen, Kraftschik, Mubarak, Kriegel, Koros (bib15) 2014; 47 Marco, Chevalier, Régnier, Poitou (bib14) 2002; 185 Liu, Geil (bib35) 1997; 36 Le Bourvellec, Beautemps (bib7) 1990; 39 Kazaryan, Medvedeva (bib23) 1968; 10 Codou, Moncel, van Berkel, Guigo, Sbirrazzuoli (bib16) 2016; 18 Burgess, Karvan, Johnson, Kriegel, Koros (bib20) 2014; 55 Salem (bib6) 1992; 33 Daubeny (bib22) 1954; 226 Araujo, Nolasco, Ribeiro-Claro, Rudić, Silvestre, Vaz, Sousa, Inside (bib25) 2018; 51 Knoop, Vogelzang, van Haveren, van Es (bib17) 2013; 51 Stoclet, Gobius du Sart, Yeniad, de Vos, Lefebvre (bib27) 2015; 72 Mao, Bucknall, Kriegel (bib2) 2018; 139 Quandalle (bib32) 2017 A. Codou, N. Guigo, J. Van Berkel, E. De Jong, N. Sbirrazzuoli, Non-isothermal Crystallization Kinetics of Synthesized via the Direct Esterifi Cation Process, (n.d.) 2065–22074. Forestier, Guigo, Combeaud, Billon, Sbirrazzuoli (bib26) 2020 Blundell, MacKerron, Fuller, Mahendrasingam, Martin, Oldman, Rule, Riekel (bib11) 1996; 37 Blundell, Mahendrasingam, Martin, Fuller, MacKerron, Harvie, Oldman, Riekel (bib10) 2000; 41 Mao, Kriegel, Bucknall (bib3) 2016; 102 Dimitriadis, Bikiaris, Papageorgiou, Floudas (bib18) 2016; 217 Kawakami, Burger, Ran, Avila-Orta, Sics, Chu, Chiao, Hsiao, Kikutani (bib5) 2008; 41 Gorlier, Haudin, Billon (bib4) 2001; 42 Mahendrasingam, Martin, Fuller, Blundell, Oldman, Harvie, MacKerron, Riekel, Engström (bib33) 1999; 40 van Berkel (10.1016/j.polymer.2020.122755_bib28) 2018; 51 Picard (10.1016/j.polymer.2020.122755_bib31) 2008 Mao (10.1016/j.polymer.2020.122755_bib3) 2016; 102 Daubeny (10.1016/j.polymer.2020.122755_bib22) 1954; 226 Quandalle (10.1016/j.polymer.2020.122755_bib32) 2017 Papageorgiou (10.1016/j.polymer.2020.122755_bib30) 2014; 16 Forestier (10.1016/j.polymer.2020.122755_bib26) 2020 Stoclet (10.1016/j.polymer.2020.122755_bib1) 2018; 134 Blundell (10.1016/j.polymer.2020.122755_bib10) 2000; 41 Codou (10.1016/j.polymer.2020.122755_bib16) 2016; 18 Burgess (10.1016/j.polymer.2020.122755_bib21) 2014; 55 Le Bourvellec (10.1016/j.polymer.2020.122755_bib7) 1990; 39 Blundell (10.1016/j.polymer.2020.122755_bib11) 1996; 37 Mao (10.1016/j.polymer.2020.122755_bib2) 2018; 139 (10.1016/j.polymer.2020.122755_bib36) 2002 Kazaryan (10.1016/j.polymer.2020.122755_bib23) 1968; 10 Fu (10.1016/j.polymer.2020.122755_bib34) 1994; 195 Menager (10.1016/j.polymer.2020.122755_bib29) 2018; 158 Welsh (10.1016/j.polymer.2020.122755_bib8) 2000; 35 Kawakami (10.1016/j.polymer.2020.122755_bib5) 2008; 41 Knoop (10.1016/j.polymer.2020.122755_bib17) 2013; 51 Burgess (10.1016/j.polymer.2020.122755_bib15) 2014; 47 10.1016/j.polymer.2020.122755_bib19 Liu (10.1016/j.polymer.2020.122755_bib35) 1997; 36 Forestier (10.1016/j.polymer.2020.122755_bib24) 2020 Salem (10.1016/j.polymer.2020.122755_bib6) 1992; 33 Mahendrasingam (10.1016/j.polymer.2020.122755_bib33) 1999; 40 Dimitriadis (10.1016/j.polymer.2020.122755_bib18) 2016; 217 Burgess (10.1016/j.polymer.2020.122755_bib20) 2014; 55 Stoclet (10.1016/j.polymer.2020.122755_bib27) 2015; 72 Ajji (10.1016/j.polymer.2020.122755_bib9) 1996; 37 Gorlier (10.1016/j.polymer.2020.122755_bib4) 2001; 42 Mahendrasingam (10.1016/j.polymer.2020.122755_bib12) 2000 Marco (10.1016/j.polymer.2020.122755_bib14) 2002; 185 Araujo (10.1016/j.polymer.2020.122755_bib25) 2018; 51 Ran (10.1016/j.polymer.2020.122755_bib13) 2002; 35 |
| References_xml | – volume: 72 start-page: 165 year: 2015 end-page: 176 ident: bib27 article-title: Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate) publication-title: Polymer – year: 2020 ident: bib26 article-title: Conformational changes analysis of PEF (polyethylene 2,5-furandicarboxylate), and PET (polyethylene terephthalate) under uniaxial stretching publication-title: Macromolecules – year: 2020 ident: bib24 article-title: Strain-induced crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysis publication-title: Polymer – volume: 102 start-page: 308 year: 2016 end-page: 314 ident: bib3 article-title: The crystal structure of poly(ethylene furanoate) publication-title: Polymer – volume: 47 start-page: 1383 year: 2014 end-page: 1391 ident: bib15 article-title: Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate) publication-title: Macromolecules – volume: 217 start-page: 2056 year: 2016 end-page: 2062 ident: bib18 article-title: Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry publication-title: Macromol. Chem. Phys. – volume: 51 start-page: 8539 year: 2018 end-page: 8549 ident: bib28 article-title: Chain structure and molecular weight dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate) publication-title: Macromolecules – volume: 35 start-page: 5225 year: 2000 end-page: 5240 ident: bib8 article-title: A transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN) publication-title: J. Mater. Sci. – volume: 35 start-page: 10102 year: 2002 end-page: 10107 ident: bib13 article-title: Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film publication-title: Macromolecules – volume: 42 start-page: 9541 year: 2001 end-page: 9549 ident: bib4 article-title: Strain-induced crystallisation in bulk amorphous PET under uni-axial loading publication-title: Polymer – volume: 185 start-page: 15 year: 2002 end-page: 34 ident: bib14 article-title: Induced crystallization and orientation of poly(ethylene terephthalate) during uniaxial and biaxial elongation publication-title: Macromol. Symp. – volume: 40 start-page: 5553 year: 1999 end-page: 5565 ident: bib33 article-title: Effect of draw ratio and temperature on the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates publication-title: Polymer – volume: 41 start-page: 2859 year: 2008 end-page: 2867 ident: bib5 article-title: New insights into lamellar structure development and SAXSA/WAXD sequence appearance during uniaxial stretching of amorphous polyethylene terephthalate above glass transition temperature publication-title: Macromolecules – volume: 36 start-page: 61 year: 1997 end-page: 85 ident: bib35 article-title: Crystal structure and morphology of poly(ethylene terephthalate) single crystals prepared by melt polymerization publication-title: J. Macromol. Sci. Phys. – year: 2002 ident: bib36 publication-title: Handbook of Thermoplastic Polyesters – volume: 55 start-page: 6870 year: 2014 end-page: 6882 ident: bib21 article-title: Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: kinetic sorption publication-title: Polymer – volume: 37 start-page: 3707 year: 1996 end-page: 3714 ident: bib9 article-title: Orientation and structure of drawn poly(ethylene terephthalate) publication-title: Polymer – volume: 41 start-page: 7793 year: 2000 end-page: 7802 ident: bib10 article-title: Orientation prior to crystallisation during drawing of poly(ethylene terephthalate) publication-title: Polymer – volume: 226 start-page: 531 year: 1954 end-page: 542 ident: bib22 article-title: The crystal structure of polyethylene terephthalate publication-title: Proc. R. Soc. London. Ser. A. Math. Phys. Sci. – reference: A. Codou, N. Guigo, J. Van Berkel, E. De Jong, N. Sbirrazzuoli, Non-isothermal Crystallization Kinetics of Synthesized via the Direct Esterifi Cation Process, (n.d.) 2065–22074. – volume: 134 start-page: 227 year: 2018 end-page: 241 ident: bib1 article-title: On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: an in-situ SAXS-WAXS study publication-title: Polymer – volume: 33 start-page: 3182 year: 1992 end-page: 3188 ident: bib6 article-title: Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: influence of strain rate publication-title: Polymer – volume: 16 start-page: 7946 year: 2014 end-page: 7958 ident: bib30 article-title: Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 4748 year: 2014 end-page: 4756 ident: bib20 article-title: Oxygen sorption and transport in amorphous poly(ethylene furanoate) publication-title: Polymer – year: 2000 ident: bib12 article-title: Observation of a Transient Structure Prior to Strain-Induced Crystallization in Poly(ethylene Terephthalate) – volume: 18 start-page: 16647 year: 2016 end-page: 16658 ident: bib16 article-title: Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate) publication-title: Phys. Chem. Chem. Phys. – year: 2008 ident: bib31 article-title: Strain Induced Crystallisation during Stretch Blow Moulding of PET; Correlation with Strain Hardening – volume: 51 start-page: 3515 year: 2018 end-page: 3526 ident: bib25 article-title: Chain conformation and dynamics in crystalline and amorphous domains publication-title: Macromolecules – year: 2017 ident: bib32 article-title: Study and Mechanical Modeling of the Strain-Induced-Crystallization of Polymers : Crosslinked Naturel Rubber and PET – volume: 10 year: 1968 ident: bib23 article-title: X-Ray study of the structure of the polyester of furan-2, 5-dicarboxylic acid publication-title: Vysokomol. Soedin. Seriya B – volume: 37 start-page: 3303 year: 1996 end-page: 3311 ident: bib11 article-title: Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation publication-title: Polymer – volume: 51 start-page: 4191 year: 2013 end-page: 4199 ident: bib17 article-title: High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination publication-title: J. Polym. Sci. Part A Polym. Chem. – volume: 158 start-page: 364 year: 2018 end-page: 371 ident: bib29 article-title: Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysis publication-title: Polymer – volume: 39 start-page: 329 year: 1990 end-page: 339 ident: bib7 article-title: Stretching of PET films under constant load. II. Structural analysis publication-title: J. Appl. Polym. Sci. – volume: 139 start-page: 60 year: 2018 end-page: 67 ident: bib2 article-title: Synchrotron X-ray scattering study on amorphous poly(ethylene furanoate) under uniaxial deformation publication-title: Polymer – volume: 195 start-page: 803 year: 1994 end-page: 822 ident: bib34 article-title: Structure analysis of the noncrystalline material in poly(ethylene terephthalate) fibers publication-title: Macromol. Chem. Phys. – volume: 36 start-page: 61 year: 1997 ident: 10.1016/j.polymer.2020.122755_bib35 article-title: Crystal structure and morphology of poly(ethylene terephthalate) single crystals prepared by melt polymerization publication-title: J. Macromol. Sci. Phys. doi: 10.1080/00222349708220415 – year: 2000 ident: 10.1016/j.polymer.2020.122755_bib12 – volume: 72 start-page: 165 year: 2015 ident: 10.1016/j.polymer.2020.122755_bib27 article-title: Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate) publication-title: Polymer doi: 10.1016/j.polymer.2015.07.014 – volume: 35 start-page: 5225 year: 2000 ident: 10.1016/j.polymer.2020.122755_bib8 article-title: A transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN) publication-title: J. Mater. Sci. doi: 10.1023/A:1004820824004 – volume: 185 start-page: 15 year: 2002 ident: 10.1016/j.polymer.2020.122755_bib14 article-title: Induced crystallization and orientation of poly(ethylene terephthalate) during uniaxial and biaxial elongation publication-title: Macromol. Symp. doi: 10.1002/1521-3900(200208)185:1<15::AID-MASY15>3.0.CO;2-J – volume: 102 start-page: 308 year: 2016 ident: 10.1016/j.polymer.2020.122755_bib3 article-title: The crystal structure of poly(ethylene furanoate) publication-title: Polymer doi: 10.1016/j.polymer.2016.08.052 – volume: 10 year: 1968 ident: 10.1016/j.polymer.2020.122755_bib23 article-title: X-Ray study of the structure of the polyester of furan-2, 5-dicarboxylic acid publication-title: Vysokomol. Soedin. Seriya B – volume: 217 start-page: 2056 year: 2016 ident: 10.1016/j.polymer.2020.122755_bib18 article-title: Molecular dynamics of poly(ethylene-2,5-furanoate) (PEF) as a function of the degree of crystallinity by dielectric spectroscopy and calorimetry publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201600278 – year: 2020 ident: 10.1016/j.polymer.2020.122755_bib24 article-title: Strain-induced crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysis publication-title: Polymer doi: 10.1016/j.polymer.2019.122126 – volume: 40 start-page: 5553 year: 1999 ident: 10.1016/j.polymer.2020.122755_bib33 article-title: Effect of draw ratio and temperature on the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates publication-title: Polymer doi: 10.1016/S0032-3861(98)00770-8 – volume: 139 start-page: 60 year: 2018 ident: 10.1016/j.polymer.2020.122755_bib2 article-title: Synchrotron X-ray scattering study on amorphous poly(ethylene furanoate) under uniaxial deformation publication-title: Polymer doi: 10.1016/j.polymer.2018.01.062 – volume: 37 start-page: 3707 year: 1996 ident: 10.1016/j.polymer.2020.122755_bib9 article-title: Orientation and structure of drawn poly(ethylene terephthalate) publication-title: Polymer doi: 10.1016/0032-3861(96)00175-9 – volume: 41 start-page: 2859 year: 2008 ident: 10.1016/j.polymer.2020.122755_bib5 article-title: New insights into lamellar structure development and SAXSA/WAXD sequence appearance during uniaxial stretching of amorphous polyethylene terephthalate above glass transition temperature publication-title: Macromolecules doi: 10.1021/ma702554t – volume: 35 start-page: 10102 year: 2002 ident: 10.1016/j.polymer.2020.122755_bib13 article-title: Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film publication-title: Macromolecules doi: 10.1021/ma021252i – volume: 39 start-page: 329 year: 1990 ident: 10.1016/j.polymer.2020.122755_bib7 article-title: Stretching of PET films under constant load. II. Structural analysis publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1990.070390210 – volume: 37 start-page: 3303 year: 1996 ident: 10.1016/j.polymer.2020.122755_bib11 article-title: Characterization of strain-induced crystallization of poly(ethylene terephthalate) at fast draw rates using synchrotron radiation publication-title: Polymer doi: 10.1016/0032-3861(96)88476-X – volume: 195 start-page: 803 year: 1994 ident: 10.1016/j.polymer.2020.122755_bib34 article-title: Structure analysis of the noncrystalline material in poly(ethylene terephthalate) fibers publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.1994.021950236 – volume: 42 start-page: 9541 year: 2001 ident: 10.1016/j.polymer.2020.122755_bib4 article-title: Strain-induced crystallisation in bulk amorphous PET under uni-axial loading publication-title: Polymer doi: 10.1016/S0032-3861(01)00497-9 – volume: 55 start-page: 6870 year: 2014 ident: 10.1016/j.polymer.2020.122755_bib21 article-title: Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: kinetic sorption publication-title: Polymer doi: 10.1016/j.polymer.2014.10.065 – volume: 51 start-page: 8539 year: 2018 ident: 10.1016/j.polymer.2020.122755_bib28 article-title: Chain structure and molecular weight dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate) publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01831 – year: 2020 ident: 10.1016/j.polymer.2020.122755_bib26 article-title: Conformational changes analysis of PEF (polyethylene 2,5-furandicarboxylate), and PET (polyethylene terephthalate) under uniaxial stretching publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00691 – volume: 51 start-page: 3515 year: 2018 ident: 10.1016/j.polymer.2020.122755_bib25 article-title: Chain conformation and dynamics in crystalline and amorphous domains publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00192 – volume: 33 start-page: 3182 year: 1992 ident: 10.1016/j.polymer.2020.122755_bib6 article-title: Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: influence of strain rate publication-title: Polymer doi: 10.1016/0032-3861(92)90232-L – volume: 47 start-page: 1383 year: 2014 ident: 10.1016/j.polymer.2020.122755_bib15 article-title: Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate) publication-title: Macromolecules doi: 10.1021/ma5000199 – year: 2002 ident: 10.1016/j.polymer.2020.122755_bib36 – ident: 10.1016/j.polymer.2020.122755_bib19 – volume: 55 start-page: 4748 year: 2014 ident: 10.1016/j.polymer.2020.122755_bib20 article-title: Oxygen sorption and transport in amorphous poly(ethylene furanoate) publication-title: Polymer doi: 10.1016/j.polymer.2014.07.041 – volume: 158 start-page: 364 year: 2018 ident: 10.1016/j.polymer.2020.122755_bib29 article-title: Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysis publication-title: Polymer doi: 10.1016/j.polymer.2018.10.054 – volume: 51 start-page: 4191 year: 2013 ident: 10.1016/j.polymer.2020.122755_bib17 article-title: High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination publication-title: J. Polym. Sci. Part A Polym. Chem. doi: 10.1002/pola.26833 – volume: 134 start-page: 227 year: 2018 ident: 10.1016/j.polymer.2020.122755_bib1 article-title: On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: an in-situ SAXS-WAXS study publication-title: Polymer doi: 10.1016/j.polymer.2017.11.071 – volume: 18 start-page: 16647 year: 2016 ident: 10.1016/j.polymer.2020.122755_bib16 article-title: Glass transition dynamics and cooperativity length of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate) publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01227B – volume: 16 start-page: 7946 year: 2014 ident: 10.1016/j.polymer.2020.122755_bib30 article-title: Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00518J – volume: 41 start-page: 7793 year: 2000 ident: 10.1016/j.polymer.2020.122755_bib10 article-title: Orientation prior to crystallisation during drawing of poly(ethylene terephthalate) publication-title: Polymer doi: 10.1016/S0032-3861(00)00128-2 – volume: 226 start-page: 531 year: 1954 ident: 10.1016/j.polymer.2020.122755_bib22 article-title: The crystal structure of polyethylene terephthalate publication-title: Proc. R. Soc. London. Ser. A. Math. Phys. Sci. – year: 2017 ident: 10.1016/j.polymer.2020.122755_bib32 – year: 2008 ident: 10.1016/j.polymer.2020.122755_bib31 |
| SSID | ssj0002524 |
| Score | 2.5338862 |
| Snippet | Specific conditions of strain, stretching, strain rate and temperature are known to be necessary for the strain induced crystallization phenomenon (SIC) to... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122755 |
| SubjectTerms | Architecture Biobased polymer Chemical Physics Chemical Sciences Cristallography Crystal defects Crystal structure Crystallinity Crystallization Crystallization kinetics Engineering Sciences Ethylene Kinetics Loading and unloading mechanical behaviour Material chemistry Materials Mechanical properties Mechanics Mechanics of materials Melt temperature Microstructure Modulus of elasticity Phases Physics poly(ethylene 2,5-furandicarboxylate) poly(ethylene terephthalate) Polyester resins Polyesters Polyethylene terephthalate Polymers Strain hardening Strain induced crystallization Strain rate Stretching Tensile tests Thermomechanical treatment Unloading Viscoelasticity |
| Title | Understanding of strain-induced crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate), PET |
| URI | https://dx.doi.org/10.1016/j.polymer.2020.122755 https://www.proquest.com/docview/2447576675 https://hal.science/hal-02958220 |
| Volume | 203 |
| WOSCitedRecordID | wos000569405600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002524 issn: 0032-3861 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DYkPCUEZojCQhRACsZTEaWObt6pqGagqe0hR36IkdmmnrCltU237j_gTeeMcJ2lSDQYPvERt_JHI98v5bN_9DqFXKn6ECdB-gR2EBqw3JgansEqhMrT9gIJWFill_oAOh2w85qe12s88FmYT0fmcXVzwxX8VNdwDYavQ2X8Qd9Ep3IDfIHS4gtjh-leCH1XCVcAWXKVpIAxYfCfqsD9cXkJpFGUBmHnYlA51U9xOsHqOU5YGlcHhMmVSSP3muuWUhWkZWKcSBA0Tl3w3SWDWixUPBuGpadrr556hu1WhQ7mYrqd-VK7ulu3kU2hyrlguCPuYzCLtgV_sWShmkCxO53wWzQpswhsG0k_EljVBHUsULkbJ7FusZxR1XpAHC6jtpWC2XPpXV0msg8XTz8Ov7IiQ1B9Ph93rbboiVOdrWfPbxLCZJn5vSq3sGbUNQnS2sHw2IKZd0ufWtbOM3vA4ay70WDTVSzQtQqhmHK6yeg-_eP3RYOC5vbH7evHdUAnPlGNAlv1lDx1AOw4K-aDzqTf-XJgRpE00hXj24tvws_fXPvl3htXeVHn47hgaqfXkPkD3s2UP7mi4PkQ1Oa-je53SKVYd3e7myQfr6G6JJ_MR-lHBNI4nuIppvINpXMY0LjCNAUZ4i-kPeIto1acqeZODFBd4fnuMAcvHGB6-U6WC47Sae4hG_Z7bPTGyHCNG2GKttSGIL1UCKpMJzmzZEj7h7YlvOr5FpcUEEy3QtWIiBeMmk6Y5sbjPpbCd0KROGNqP0f48nssnCLcF5dIJOCAoaEkasjb8tUwqOLVDImUDtXIBeWFGwK8GK_JyT8szL5Orp-Tqabk2ULNottAMNDc1YLn0vcyM1uaxB_i9qelLGLPiMYp6_qQz8NQ9E8YFFhPmxmqgoxxMXqb3Vh5RxKHUcWj76Z-Ln6E722_2CO2vl4l8jm6Fm_VstXyRfQS_AEa0B2Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+strain-induced+crystallization+developments+scenarios+for+polyesters%3A+Comparison+of+poly%28ethylene+furanoate%29%2C+PEF%2C+and+poly%28ethylene+terephthalate%29%2C+PET&rft.jtitle=Polymer+%28Guilford%29&rft.au=estier%2C+Emilie&rft.au=Combeaud%2C+Christelle&rft.au=Guigo%2C+Nathanael&rft.au=Sbirrazzuoli%2C+Nicolas&rft.date=2020-08-26&rft.pub=Elsevier+BV&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=203&rft.spage=1&rft_id=info:doi/10.1016%2Fj.polymer.2020.122755&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |