A MINLP optimization of the configuration and the design of a district heating network: Academic study cases
The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled simultaneously: the optimization of the configuration and its design. The optimization objective is to minimize the global cost of the DHN over 30 years. I...
Saved in:
| Published in: | Energy (Oxford) Vol. 117; pp. 450 - 464 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
15.12.2016
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0360-5442, 1873-6785 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled simultaneously: the optimization of the configuration and its design. The optimization objective is to minimize the global cost of the DHN over 30 years. It includes both operating costs (heating and pumping cost, including thermal losses and pressure drop) and investment costs (line, trench, heating plant, heat exchanger). The formulation leads to a mixed integer non-linear programming (MINLP) problem in steady state. The model is solved with DICOPT within GAMS (around 5s for this study cases).
One of the outputs of these academic study cases is the layout of the DHN, supplied in parallel or in cascade: a consumer with hot temperature requirement can supply another consumer with lower temperature requirement. Even a looped network in cascade is optimal (−4.6% total cost reduction) when the cost of the trench is lower than 500 €/m. Furthermore, different structures are optimal (between −4 and −8% of total cost reduction) depending on whether the heat production(s) are decentralized, centralized, isolated collective, renewable or not. Finally the balance between heat loss and pressure drop is detailed.
•A combinatory non-linear optimization in steady state is performed.•Optimization of the topology and the sizing at the same stage.•Potential to reduce the total cost when allowing the cascade of consumers.•Isolated consumer: centralized, decentralized or isolated heat supply.•Academic study case to illustrate the ability of this optimization formulation. |
|---|---|
| AbstractList | The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled simultaneously: the optimization of the configuration and its design. The optimization objective is to minimize the global cost of the DHN over 30 years. It includes both operating costs (heating and pumping cost, including thermal losses and pressure drop) and investment costs (line, trench, heating plant, heat exchanger). The formulation leads to a mixed integer non-linear programming (MINLP) problem in steady state. The model is solved with DICOPT within GAMS (around 5s for this study cases). One of the outputs of these academic study cases is the layout of the DHN, supplied in parallel or in cascade: a consumer with hot temperature requirement can supply another consumer with lower temperature requirement. Even a looped network in cascade is optimal (-4.6% total cost reduction) when the cost of the trench is lower than 500 €/m. Furthermore, different structures are optimal (between -4 and -8% of total cost reduction) depending on whether the heat production(s) are decentralized, centralized, isolated collective, renewable or not. Finally the balance between heat loss and pressure drop is detailed. The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled simultaneously: the optimization of the configuration and its design. The optimization objective is to minimize the global cost of the DHN over 30 years. It includes both operating costs (heating and pumping cost, including thermal losses and pressure drop) and investment costs (line, trench, heating plant, heat exchanger). The formulation leads to a mixed integer non-linear programming (MINLP) problem in steady state. The model is solved with DICOPT within GAMS (around 5s for this study cases). One of the outputs of these academic study cases is the layout of the DHN, supplied in parallel or in cascade: a consumer with hot temperature requirement can supply another consumer with lower temperature requirement. Even a looped network in cascade is optimal (-4.6% total cost reduction) when the cost of the trench is lower than 500m. Furthermore, different structures are optimal (between -4 and -8% of total cost reduction) depending on whether the heat production(s) are decentralized, centralized, isolated collective, renewable or not. Finally the balance between heat loss and pressure drop is detailed. \textcopyright 2016 Elsevier Ltd The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled simultaneously: the optimization of the configuration and its design. The optimization objective is to minimize the global cost of the DHN over 30 years. It includes both operating costs (heating and pumping cost, including thermal losses and pressure drop) and investment costs (line, trench, heating plant, heat exchanger). The formulation leads to a mixed integer non-linear programming (MINLP) problem in steady state. The model is solved with DICOPT within GAMS (around 5s for this study cases).One of the outputs of these academic study cases is the layout of the DHN, supplied in parallel or in cascade: a consumer with hot temperature requirement can supply another consumer with lower temperature requirement. Even a looped network in cascade is optimal (−4.6% total cost reduction) when the cost of the trench is lower than 500 €/m. Furthermore, different structures are optimal (between −4 and −8% of total cost reduction) depending on whether the heat production(s) are decentralized, centralized, isolated collective, renewable or not. Finally the balance between heat loss and pressure drop is detailed. The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled simultaneously: the optimization of the configuration and its design. The optimization objective is to minimize the global cost of the DHN over 30 years. It includes both operating costs (heating and pumping cost, including thermal losses and pressure drop) and investment costs (line, trench, heating plant, heat exchanger). The formulation leads to a mixed integer non-linear programming (MINLP) problem in steady state. The model is solved with DICOPT within GAMS (around 5s for this study cases). One of the outputs of these academic study cases is the layout of the DHN, supplied in parallel or in cascade: a consumer with hot temperature requirement can supply another consumer with lower temperature requirement. Even a looped network in cascade is optimal (−4.6% total cost reduction) when the cost of the trench is lower than 500 €/m. Furthermore, different structures are optimal (between −4 and −8% of total cost reduction) depending on whether the heat production(s) are decentralized, centralized, isolated collective, renewable or not. Finally the balance between heat loss and pressure drop is detailed. •A combinatory non-linear optimization in steady state is performed.•Optimization of the topology and the sizing at the same stage.•Potential to reduce the total cost when allowing the cascade of consumers.•Isolated consumer: centralized, decentralized or isolated heat supply.•Academic study case to illustrate the ability of this optimization formulation. |
| Author | Serra, Sylvain Reneaume, Jean-Michel Mertz, Théophile Henon, Aurélien |
| Author_xml | – sequence: 1 givenname: Théophile orcidid: 0000-0001-6018-6132 surname: Mertz fullname: Mertz, Théophile email: tmertz@nobatek.com, theophile.mertz@univ-pau.fr organization: LATEP-ENSGTI, Université Pau & Pays Adour, Pau, France – sequence: 2 givenname: Sylvain orcidid: 0000-0001-8271-7897 surname: Serra fullname: Serra, Sylvain email: sylvain.serra@univ-pau.fr organization: LATEP-ENSGTI, Université Pau & Pays Adour, Pau, France – sequence: 3 givenname: Aurélien surname: Henon fullname: Henon, Aurélien email: a.henon@nobatek.com organization: NOBATEK-INEF4, 33400, Talence, France – sequence: 4 givenname: Jean-Michel surname: Reneaume fullname: Reneaume, Jean-Michel email: jean-michel.reneaume@univ-pau.fr organization: LATEP-ENSGTI, Université Pau & Pays Adour, Pau, France |
| BackLink | https://hal.science/hal-02129508$$DView record in HAL |
| BookMark | eNqFkUFvEzEQhS1UJNKWf8DBEhc4bLC9a3u3B6SoKrRSChzgbDn2bOKwsYPtLUp_fZ0sXHqA08hP3xuN3ztHZz54QOgNJXNKqPiwnYOHuD7MWXnNiSyqeIFmtJV1JWTLz9CM1IJUvGnYK3Se0pYQwtuum6Fhge_vviy_4bDPbucedXbB49DjvAFsgu_deoyTqL09qRaSW58Yja1LOTqT8QYK5NfYQ_4d4s8rvDDaws4ZnPJoD9joBOkSvez1kOD1n3mBfny6-X59Wy2_fr67Xiwr07RNrkwPvBP9qpEr0oqWSsntihlhaylo26-EgIbXmttOst5qSaUwlBhoLTXCAK0v0Ptp70YPah_dTseDCtqp28VSHTXCKOs4aR-O7LuJ3cfwa4SU1c4lA8OgPYQxKVaiqjmriSzo22foNozRl58o2tWMNYKxrlBXE2ViSClCr4zLpwRz1G5QlKhjaWqrptLUsTRFZFFFMTfPzH_P_4_t42SDkuqDg6iSceANWBfBZGWD-_eCJw-CtIM |
| CitedBy_id | crossref_primary_10_1177_1420326X211007893 crossref_primary_10_3390_app7050488 crossref_primary_10_1007_s10973_024_13471_3 crossref_primary_10_1016_j_energy_2024_132710 crossref_primary_10_1016_j_applthermaleng_2017_04_076 crossref_primary_10_1016_j_egypro_2017_05_071 crossref_primary_10_1016_j_enconman_2020_112505 crossref_primary_10_3390_en12061175 crossref_primary_10_3389_fbuil_2016_00022 crossref_primary_10_1016_j_energy_2019_05_132 crossref_primary_10_1016_j_apenergy_2017_06_038 crossref_primary_10_3390_en13246641 crossref_primary_10_1016_j_energy_2020_117681 crossref_primary_10_1002_er_4600 crossref_primary_10_1016_j_apenergy_2020_116025 crossref_primary_10_1016_j_enconman_2025_120323 crossref_primary_10_3390_en14175575 crossref_primary_10_1016_j_energy_2017_05_115 crossref_primary_10_1016_j_scs_2020_102463 crossref_primary_10_1016_j_apenergy_2024_123380 crossref_primary_10_1016_j_energy_2022_126161 crossref_primary_10_1016_j_apenergy_2024_124796 crossref_primary_10_1016_j_rser_2025_116041 crossref_primary_10_1007_s11081_023_09804_0 crossref_primary_10_3390_en14238003 crossref_primary_10_1016_j_scs_2023_104949 crossref_primary_10_1016_j_energy_2021_120953 crossref_primary_10_1016_j_energy_2024_131260 crossref_primary_10_3390_en10081095 crossref_primary_10_1016_j_energy_2020_118469 crossref_primary_10_1515_auto_2020_0063 crossref_primary_10_1016_j_apenergy_2018_09_151 crossref_primary_10_1016_j_egyr_2024_12_040 crossref_primary_10_1016_j_energy_2024_131843 crossref_primary_10_1016_j_buildenv_2019_106372 crossref_primary_10_52254_1857_0070_2024_3_63_15 crossref_primary_10_1016_j_energy_2019_03_104 crossref_primary_10_1016_j_energy_2018_05_110 crossref_primary_10_1016_j_energy_2023_127977 crossref_primary_10_1016_j_energy_2017_08_009 crossref_primary_10_1016_j_applthermaleng_2024_124533 crossref_primary_10_3389_fenrg_2021_668124 crossref_primary_10_1016_j_apenergy_2021_118494 crossref_primary_10_1016_j_energy_2020_118593 crossref_primary_10_1002_sys_21492 crossref_primary_10_1016_j_energy_2017_12_071 crossref_primary_10_1016_j_scs_2021_103593 crossref_primary_10_3390_en16031335 crossref_primary_10_1007_s12273_022_0921_0 crossref_primary_10_1016_j_enconman_2024_118322 crossref_primary_10_1515_cppm_2020_0008 crossref_primary_10_3389_fenrg_2022_971912 crossref_primary_10_1016_j_enconman_2020_112776 crossref_primary_10_1016_j_rser_2020_110577 crossref_primary_10_3390_en15197160 crossref_primary_10_1016_j_energy_2017_03_018 |
| Cites_doi | 10.1021/ie0504506 10.1016/0009-2509(87)80128-8 10.1016/0098-1354(90)80001-R 10.1016/j.energy.2010.11.014 10.1016/j.compchemeng.2003.11.006 10.1016/j.compchemeng.2003.11.003 10.1016/j.energy.2012.02.046 10.1287/ijoc.6.2.207 10.1016/j.energy.2014.02.089 10.1016/j.applthermaleng.2005.05.034 10.1016/j.energy.2016.02.058 10.1016/j.applthermaleng.2011.10.062 10.1016/j.energy.2009.09.028 10.1016/0098-1354(91)87008-W 10.1016/0196-8904(95)98895-T |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Dec 15, 2016 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 1XC VOOES |
| DOI | 10.1016/j.energy.2016.07.106 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| EndPage | 464 |
| ExternalDocumentID | oai:HAL:hal-02129508v1 10_1016_j_energy_2016_07_106 S0360544216310301 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c484t-cfe596fb47b08681775db2c6d37618fb66e453a5d972fda7176c10ce8d1c6ce13 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390642500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Tue Oct 14 20:59:18 EDT 2025 Sat Sep 27 19:44:45 EDT 2025 Wed Aug 13 06:10:57 EDT 2025 Tue Nov 18 22:41:10 EST 2025 Sat Nov 29 02:05:14 EST 2025 Fri Feb 23 02:32:42 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | “Isolated collective” heat production Centralized or decentralized heat productions Consumers in potential cascade connection Mixed integer non-linear programming (MINLP) Total cost analysis District Heating Network (DHN) |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c484t-cfe596fb47b08681775db2c6d37618fb66e453a5d972fda7176c10ce8d1c6ce13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6018-6132 0000-0001-8271-7897 0000-0001-8077-2518 |
| OpenAccessLink | https://hal.science/hal-02129508 |
| PQID | 1932246229 |
| PQPubID | 2045484 |
| PageCount | 15 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02129508v1 proquest_miscellaneous_2000352307 proquest_journals_1932246229 crossref_citationtrail_10_1016_j_energy_2016_07_106 crossref_primary_10_1016_j_energy_2016_07_106 elsevier_sciencedirect_doi_10_1016_j_energy_2016_07_106 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-15 |
| PublicationDateYYYYMMDD | 2016-12-15 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Soderman, Pettersson (bib17) 2006; 26 Gnuchtel, Gross (bib21) 2010 (bib33) 2011 Fletcher, Leyffer (bib6) 1996 Yee, Grossmann, Kravanja (bib8) 1990; 14 Boix, Pibouleau, Montastruc, Azzaro-Pantel, Domenech (bib9) 2012; 36 Frederiksen, Werner (bib22) 2013 Rauthermex (bib28) May 22, 2013 Gabillet (bib31) 2014 Sandou, Dessante, Petit, Borsenberger (bib10) 2012 Biegler, Grossmann (bib2) 2004; 28 Hohmann, Waibel, Evins, Carmeliet (bib19) 2015 Lemmon EW, Mc LindenMO., FriendDG. Thermophysical Properties of Fluid Systems. In: WebBook de Chimie NIST, Base de Données Standard de référence NIST numéro 69: P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD. Fazlollahi, Bungener, Becker, Marechal (bib16) 2014 Jeļena, Ieva, Dagnija (bib20) 2014 Grossmann, Biegler (bib3) 2004; 28 Ramos Bermudez (bib32) 2007 Gomez, Reneaume, Roques, Meyer, Meyer (bib11) 2006; 45 Guelpa, Toro, Sciacovelli, Melli, Sciubba, Verda (bib24) 2016; 102 Omu, Hsieh, Orehounig, Carmeliet (bib18) 2015 Sahinidis, Grossmann (bib12) 1991; 15 Chen (bib26) 1987; 42 DRUD (bib7) 1994; 6 Medde (bib34) 2009 Molyneaux, Leyland, Favrat (bib13) 2010; 35 Fazlollahi, Mandel, Becker, Marechal (bib15) 2012; 45 Henon, Dugue, Lagiere, Sebastian (bib23) 2012 Via Seva (bib35) February 22, 2013 Bussieck, Vigerske (bib4) 2014 Cerema (bib30) June 24, 2014 DHC+ technology plateform (bib1) September 02, 2014 Weber, Shah (bib14) 2011; 36 Grossmann, Viswanathan, Vecchietti, Raman, Kalvelagen (bib5) 2002 Benonysson, Bohm, Ravn (bib25) 1995; 36 Dalla Rosa, Li, Svendsen (bib29) 2010 Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (bib36) 2014; 68 Grossmann (10.1016/j.energy.2016.07.106_bib5) 2002 Boix (10.1016/j.energy.2016.07.106_bib9) 2012; 36 Gabillet (10.1016/j.energy.2016.07.106_bib31) 2014 Molyneaux (10.1016/j.energy.2016.07.106_bib13) 2010; 35 Sandou (10.1016/j.energy.2016.07.106_bib10) 2012 Yee (10.1016/j.energy.2016.07.106_bib8) 1990; 14 Henon (10.1016/j.energy.2016.07.106_bib23) 2012 Grossmann (10.1016/j.energy.2016.07.106_bib3) 2004; 28 Fazlollahi (10.1016/j.energy.2016.07.106_bib16) 2014 Chen (10.1016/j.energy.2016.07.106_bib26) 1987; 42 Via Seva (10.1016/j.energy.2016.07.106_bib35) 2013 Gomez (10.1016/j.energy.2016.07.106_bib11) 2006; 45 Sahinidis (10.1016/j.energy.2016.07.106_bib12) 1991; 15 Weber (10.1016/j.energy.2016.07.106_bib14) 2011; 36 Fazlollahi (10.1016/j.energy.2016.07.106_bib15) 2012; 45 Hohmann (10.1016/j.energy.2016.07.106_bib19) 2015 Benonysson (10.1016/j.energy.2016.07.106_bib25) 1995; 36 Lund (10.1016/j.energy.2016.07.106_bib36) 2014; 68 Soderman (10.1016/j.energy.2016.07.106_bib17) 2006; 26 DHC+ technology plateform (10.1016/j.energy.2016.07.106_bib1) 2014 Biegler (10.1016/j.energy.2016.07.106_bib2) 2004; 28 Frederiksen (10.1016/j.energy.2016.07.106_bib22) 2013 Medde (10.1016/j.energy.2016.07.106_bib34) 2009 Ramos Bermudez (10.1016/j.energy.2016.07.106_bib32) 2007 Jeļena (10.1016/j.energy.2016.07.106_bib20) 2014 Gnuchtel (10.1016/j.energy.2016.07.106_bib21) 2010 DRUD (10.1016/j.energy.2016.07.106_bib7) 1994; 6 Dalla Rosa (10.1016/j.energy.2016.07.106_bib29) 2010 Omu (10.1016/j.energy.2016.07.106_bib18) 2015 Rauthermex (10.1016/j.energy.2016.07.106_bib28) 2013 Cerema (10.1016/j.energy.2016.07.106_bib30) 2014 Fletcher (10.1016/j.energy.2016.07.106_bib6) 1996 10.1016/j.energy.2016.07.106_bib27 Bussieck (10.1016/j.energy.2016.07.106_bib4) 2014 (10.1016/j.energy.2016.07.106_bib33) 2011 Guelpa (10.1016/j.energy.2016.07.106_bib24) 2016; 102 |
| References_xml | – volume: 26 start-page: 1400 year: 2006 end-page: 1408 ident: bib17 article-title: Structural and operational optimisation of distributed energy systems publication-title: Appl Therm Eng – year: 2014 ident: bib31 article-title: Energy supply and urban planning projects: analysing tensions around district heating provision in a French eco-district publication-title: Energy Policy – volume: 14 start-page: 1185 year: 1990 end-page: 1200 ident: bib8 article-title: Simultaneous optimization models for heat integration—III. Process and heat exchanger network optimization publication-title: Comput Chem Eng – year: 2014 ident: bib20 article-title: Development of district heating system in case of decreased heating loads publication-title: ECOS2014 the 27th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, june 15-19, 2014 – reference: Lemmon EW, Mc LindenMO., FriendDG. Thermophysical Properties of Fluid Systems. In: WebBook de Chimie NIST, Base de Données Standard de référence NIST numéro 69: P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD. – year: September 02, 2014 ident: bib1 article-title: District heating and cooling - a vision towards 2020-2030-2050 – volume: 45 start-page: 1373 year: 2006 end-page: 1388 ident: bib11 article-title: A mixed integer nonlinear programming formulation for optimal design of a catalytic distillation column based on a generic nonequilibrium model publication-title: Ind Eng Chem Res – year: 2013 ident: bib22 article-title: District heating & cooling.first edition – year: 2011 ident: bib33 publication-title: Collectif groupe le moniteur. Batiprix 2011-Volume 2 équipements techniques. 28th ed.28e édition – year: 2012 ident: bib23 article-title: Modélisation du comportement thermique dynamique des bâtiments: un outil adapté à l’échelle patrimoniale et à la problématique de rénovation publication-title: Congrès Français de Thermique Thermique en conditions extrêmes, 29 mai - 1er juin 2012, Bordeaux, France – volume: 6 start-page: 207 year: 1994 end-page: 216 ident: bib7 article-title: CONOPT—A large-scale GRG code publication-title: ORSA J Comput – year: 2002 ident: bib5 article-title: DICOPT: GAMS solver manual – volume: 102 start-page: 586 year: 2016 end-page: 595 ident: bib24 article-title: Optimal operation of large district heating networks through fast fluid-dynamic simulation publication-title: Energy – year: May 22, 2013 ident: bib28 article-title: Information_technique – volume: 15 start-page: 85 year: 1991 end-page: 103 ident: bib12 article-title: MINLP model for cyclic multiproduct scheduling on continuous parallel lines publication-title: Comput Chem Eng – volume: 68 start-page: 1 year: 2014 end-page: 11 ident: bib36 article-title: 4th generation district heating (4GDH) publication-title: Energy – volume: 28 start-page: 1169 year: 2004 end-page: 1192 ident: bib2 article-title: Retrospective on optimization publication-title: Comput Chem Eng – year: 2014 ident: bib4 article-title: MINLP solver software – year: 1996 ident: bib6 article-title: Solving mixed integer nonlinear programs by outer approximation – year: 2015 ident: bib18 article-title: Energy Hub modeling for the design of solar thermal energy systems with short-term and long-term storage publication-title: CISBAT 2015 – year: 2010 ident: bib21 article-title: Free optimization tools for district heating systems publication-title: DHC12, the 12th international Symposium on district heating and cooling, September 5th to September 7th, 2010 – year: 2009 ident: bib34 article-title: Calcul du Coût Global: objectifs, méthodologie et principes d’application selon la Norme ISO/DIS 15686-5 – start-page: 247 year: 2012 end-page: 285 ident: bib10 article-title: Technico-economic optimization of energy networks publication-title: Integrated design by optimization of electrical energy systems – volume: 28 start-page: 1193 year: 2004 end-page: 1218 ident: bib3 article-title: Part II. Future perspective on optimization publication-title: Comput Chem Eng – volume: 45 start-page: 12 year: 2012 end-page: 22 ident: bib15 article-title: Methods for multi-objective investment and operating optimization of complex energy systems publication-title: Energy – year: 2014 ident: bib16 article-title: Multi-Objectives, Multi-Period Optimization of district energy systems: I-Selection of typical operating periods – year: 2007 ident: bib32 article-title: Optimisation des systèmes de distribution de fluides et des réseaus de chauffage urbains à l'aide d'un algorithme génétique – volume: 36 start-page: 442 year: 2012 end-page: 455 ident: bib9 article-title: Minimizing water and energy consumptions in water and heat exchange networks publication-title: Appl Therm Eng – volume: 36 start-page: 297 year: 1995 end-page: 314 ident: bib25 article-title: Operational optimization in a district heating system publication-title: Energy Convers Manag – year: 2010 ident: bib29 article-title: Steady state heat losses in pre-insulated pipes for low-energy district heating publication-title: DHC12, the 12th international Symposium on district heating and cooling, September 5th to September 7th, 2010, Tallinn, Estonia – volume: 36 start-page: 1292 year: 2011 end-page: 1308 ident: bib14 article-title: Optimisation based design of a district energy system for an eco-town in the United Kingdom publication-title: Energy – year: 2015 ident: bib19 article-title: Multi-objective optimization of the design and operation of an energy hub for the EMPA campus publication-title: CISBAT 2015 – volume: 42 start-page: 2488 year: 1987 end-page: 2489 ident: bib26 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem Eng Sci – volume: 35 start-page: 751 year: 2010 end-page: 758 ident: bib13 article-title: Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps publication-title: Energy – year: February 22, 2013 ident: bib35 article-title: Présentation des réseaux de chaleur – year: June 24, 2014 ident: bib30 article-title: Economie et finance des réseaux de chaleur: le nerf de la guerre – volume: 45 start-page: 1373 issue: 4 year: 2006 ident: 10.1016/j.energy.2016.07.106_bib11 article-title: A mixed integer nonlinear programming formulation for optimal design of a catalytic distillation column based on a generic nonequilibrium model publication-title: Ind Eng Chem Res doi: 10.1021/ie0504506 – start-page: 247 year: 2012 ident: 10.1016/j.energy.2016.07.106_bib10 article-title: Technico-economic optimization of energy networks – year: 2009 ident: 10.1016/j.energy.2016.07.106_bib34 – year: 2010 ident: 10.1016/j.energy.2016.07.106_bib21 article-title: Free optimization tools for district heating systems – volume: 42 start-page: 2488 issue: 10 year: 1987 ident: 10.1016/j.energy.2016.07.106_bib26 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem Eng Sci doi: 10.1016/0009-2509(87)80128-8 – year: 2014 ident: 10.1016/j.energy.2016.07.106_bib16 – year: 2015 ident: 10.1016/j.energy.2016.07.106_bib19 article-title: Multi-objective optimization of the design and operation of an energy hub for the EMPA campus – year: 2014 ident: 10.1016/j.energy.2016.07.106_bib30 – volume: 14 start-page: 1185 issue: 11 year: 1990 ident: 10.1016/j.energy.2016.07.106_bib8 article-title: Simultaneous optimization models for heat integration—III. Process and heat exchanger network optimization publication-title: Comput Chem Eng doi: 10.1016/0098-1354(90)80001-R – volume: 36 start-page: 1292 issue: 2 year: 2011 ident: 10.1016/j.energy.2016.07.106_bib14 article-title: Optimisation based design of a district energy system for an eco-town in the United Kingdom publication-title: Energy doi: 10.1016/j.energy.2010.11.014 – year: 2014 ident: 10.1016/j.energy.2016.07.106_bib1 – volume: 28 start-page: 1193 issue: 8 year: 2004 ident: 10.1016/j.energy.2016.07.106_bib3 article-title: Part II. Future perspective on optimization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2003.11.006 – year: 2002 ident: 10.1016/j.energy.2016.07.106_bib5 – year: 2014 ident: 10.1016/j.energy.2016.07.106_bib20 article-title: Development of district heating system in case of decreased heating loads – year: 2013 ident: 10.1016/j.energy.2016.07.106_bib28 – volume: 28 start-page: 1169 issue: 8 year: 2004 ident: 10.1016/j.energy.2016.07.106_bib2 article-title: Retrospective on optimization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2003.11.003 – volume: 45 start-page: 12 issue: 1 year: 2012 ident: 10.1016/j.energy.2016.07.106_bib15 article-title: Methods for multi-objective investment and operating optimization of complex energy systems publication-title: Energy doi: 10.1016/j.energy.2012.02.046 – year: 2015 ident: 10.1016/j.energy.2016.07.106_bib18 article-title: Energy Hub modeling for the design of solar thermal energy systems with short-term and long-term storage – volume: 6 start-page: 207 issue: 2 year: 1994 ident: 10.1016/j.energy.2016.07.106_bib7 article-title: CONOPT—A large-scale GRG code publication-title: ORSA J Comput doi: 10.1287/ijoc.6.2.207 – volume: 68 start-page: 1 year: 2014 ident: 10.1016/j.energy.2016.07.106_bib36 article-title: 4th generation district heating (4GDH) publication-title: Energy doi: 10.1016/j.energy.2014.02.089 – year: 2013 ident: 10.1016/j.energy.2016.07.106_bib22 – year: 2010 ident: 10.1016/j.energy.2016.07.106_bib29 article-title: Steady state heat losses in pre-insulated pipes for low-energy district heating – volume: 26 start-page: 1400 issue: 13 year: 2006 ident: 10.1016/j.energy.2016.07.106_bib17 article-title: Structural and operational optimisation of distributed energy systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.05.034 – year: 2013 ident: 10.1016/j.energy.2016.07.106_bib35 – volume: 102 start-page: 586 year: 2016 ident: 10.1016/j.energy.2016.07.106_bib24 article-title: Optimal operation of large district heating networks through fast fluid-dynamic simulation publication-title: Energy doi: 10.1016/j.energy.2016.02.058 – year: 2012 ident: 10.1016/j.energy.2016.07.106_bib23 article-title: Modélisation du comportement thermique dynamique des bâtiments: un outil adapté à l’échelle patrimoniale et à la problématique de rénovation – year: 2014 ident: 10.1016/j.energy.2016.07.106_bib31 article-title: Energy supply and urban planning projects: analysing tensions around district heating provision in a French eco-district publication-title: Energy Policy – volume: 36 start-page: 442 year: 2012 ident: 10.1016/j.energy.2016.07.106_bib9 article-title: Minimizing water and energy consumptions in water and heat exchange networks publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.10.062 – volume: 35 start-page: 751 issue: 2 year: 2010 ident: 10.1016/j.energy.2016.07.106_bib13 article-title: Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps publication-title: Energy doi: 10.1016/j.energy.2009.09.028 – volume: 15 start-page: 85 issue: 2 year: 1991 ident: 10.1016/j.energy.2016.07.106_bib12 article-title: MINLP model for cyclic multiproduct scheduling on continuous parallel lines publication-title: Comput Chem Eng doi: 10.1016/0098-1354(91)87008-W – year: 1996 ident: 10.1016/j.energy.2016.07.106_bib6 – year: 2007 ident: 10.1016/j.energy.2016.07.106_bib32 – year: 2014 ident: 10.1016/j.energy.2016.07.106_bib4 – volume: 36 start-page: 297 issue: 5 year: 1995 ident: 10.1016/j.energy.2016.07.106_bib25 article-title: Operational optimization in a district heating system publication-title: Energy Convers Manag doi: 10.1016/0196-8904(95)98895-T – ident: 10.1016/j.energy.2016.07.106_bib27 – year: 2011 ident: 10.1016/j.energy.2016.07.106_bib33 |
| SSID | ssj0005899 |
| Score | 2.4617765 |
| Snippet | The aim of this work is to propose a tool for the design assistance of District Heating Network (DHN). Two goals of DHN optimization are handled... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 450 |
| SubjectTerms | Centralized or decentralized heat productions Chemical and Process Engineering Consumers in potential cascade connection cost effectiveness Cost reduction Design Design optimization District heating District Heating Network (DHN) Engineering Sciences Heat exchangers Heat loss heat production Heating Integer programming Low temperature Mixed integer Mixed integer non-linear programming (MINLP) Nonlinear programming Operating costs Optimization Pressure Pressure drop Pumping Steady state Studies temperature Temperature effects Temperature requirements Total cost analysis “Isolated collective” heat production |
| Title | A MINLP optimization of the configuration and the design of a district heating network: Academic study cases |
| URI | https://dx.doi.org/10.1016/j.energy.2016.07.106 https://www.proquest.com/docview/1932246229 https://www.proquest.com/docview/2000352307 https://hal.science/hal-02129508 |
| Volume | 117 |
| WOSCitedRecordID | wos000390642500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fj9JAEN4gZ6IvRk8voqdZjW-khLbbbusbObjAySERTO5ts91uPS7Yu1Ag-Nf5rzn7owU8zZ0PvjRku6XQ-ZjZHb75BqEPMYE1bRZlDk_DtkMy4jtctlNHJoK4qRSSSl0oPKSjUXRxEY9rtZ9lLcx6TvM82mzim_9qahgDY6vS2X8wd_WmMACvwehwBLPD8V6G7zTPB6PhuPkZnMF3W2VZMgFUfd_s28pavSRPdjWLw1RKdpWQ7kwsVX2SZkSPDE9cJxBLLv1EK1GfQAAs9jL7po5QCZhuDGe-yjKcy4VuHNuctqqcjlzoHkfNyY_5ms8qkPZlbvtcV1O_gEPmK9PP_Uzy3DEE1t2Mhav7_JiaTZNGszF_x9P5gJOAGJmtljSeOKK-A5E02HPVps7TOltiJGtt3CZGDf1WSDDZiauW1M9Akfm0XKvb_oMCd78zYePuKRsORp_2z-7QFvudIRwv-dxR8viqi-4att8HHg3iqI4OOoPexdmWZRTpFqbVNyyrNzXF8PZH-tvq6MGloun-tlrQS6DpU_TE7l1wx2DuGarJ_BA9Kkvbi0N01NuWTcJEGzeK52jewRqUeBeU-DrDAD-8B0oMoNSjBpRqDsclKLEFJbag_IhLSGINSawh-QJ9Pe1NT_qO7fPhCBKRpSMyGcRhlhCawAY7cikN0sQTYQrBz42yJAwlCXwepDH1spRTl4bCbQsZpa4IhXT9I1QHZMqXCHteLMAmMghlTDhNY_A-StEwcYXLg0Q2kF8-XyasCL7qxTJnJdvxihmrMGUV1qYwGjaQU111Y0Rg7phPS9Mxu5A1C1QGoLzjyvdg6eomSvsd4MbU2BZsDXRcAoFZx1MwtRHzSAgPoIHeVachVqg_AHkur1eFajmr5I8hrL-6z31eo8fbn-8xqi8XK_kGPRTr5axYvLVI_wUTy907 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MINLP+Optimization+of+the+Configuration+and+the+Design+of+a+District+Heating+Network%3A+Academic+Study+Cases&rft.jtitle=Energy+%28Oxford%29&rft.au=Mertz%2C+T.&rft.au=Serra%2C+Sylvain&rft.au=Henon%2C+A.&rft.au=Reneaume%2C+Jean-Michel&rft.date=2016-12-15&rft.pub=Elsevier&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=117&rft.spage=450&rft.epage=464&rft_id=info:doi/10.1016%2Fj.energy.2016.07.106&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02129508v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |