DQC: A Python program package for differentiable quantum chemistry

Automatic differentiation represents a paradigm shift in scientific programming, where evaluating both functions and their derivatives is required for most applications. By removing the need to explicitly derive expressions for gradients, development times can be shortened and calculations can be si...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of chemical physics Ročník 156; číslo 8; s. 084801
Hlavní autoři: Kasim, Muhammad F, Lehtola, Susi, Vinko, Sam M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 28.02.2022
ISSN:1089-7690, 1089-7690
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Automatic differentiation represents a paradigm shift in scientific programming, where evaluating both functions and their derivatives is required for most applications. By removing the need to explicitly derive expressions for gradients, development times can be shortened and calculations can be simplified. For these reasons, automatic differentiation has fueled the rapid growth of a variety of sophisticated machine learning techniques over the past decade, but is now also increasingly showing its value to support ab initio simulations of quantum systems and enhance computational quantum chemistry. Here, we present an open-source differentiable quantum chemistry simulation code and explore applications facilitated by automatic differentiation: (1) calculating molecular perturbation properties, (2) reoptimizing a basis set for hydrocarbons, (3) checking the stability of self-consistent field wave functions, and (4) predicting molecular properties via alchemical perturbations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7690
1089-7690
DOI:10.1063/5.0076202