Implementation of machine-learning classification in remote sensing: an applied review

Machine learning offers the potential for effective and efficient classification of remotely sensed imagery. The strengths of machine learning include the capacity to handle data of high dimensionality and to map classes with very complex characteristics. Nevertheless, implementing a machine-learnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of remote sensing Ročník 39; číslo 9; s. 2784 - 2817
Hlavní autoři: Maxwell, Aaron E., Warner, Timothy A., Fang, Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Taylor & Francis 03.05.2018
Taylor & Francis Ltd
Témata:
ISSN:0143-1161, 1366-5901, 1366-5901
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Machine learning offers the potential for effective and efficient classification of remotely sensed imagery. The strengths of machine learning include the capacity to handle data of high dimensionality and to map classes with very complex characteristics. Nevertheless, implementing a machine-learning classification is not straightforward, and the literature provides conflicting advice regarding many key issues. This article therefore provides an overview of machine learning from an applied perspective. We focus on the relatively mature methods of support vector machines, single decision trees (DTs), Random Forests, boosted DTs, artificial neural networks, and k-nearest neighbours (k-NN). Issues considered include the choice of algorithm, training data requirements, user-defined parameter selection and optimization, feature space impacts and reduction, and computational costs. We illustrate these issues through applying machine-learning classification to two publically available remotely sensed data sets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0143-1161
1366-5901
1366-5901
DOI:10.1080/01431161.2018.1433343