Neural coding of continuous speech in auditory cortex during monaural and dichotic listening

The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like audito...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of neurophysiology Ročník 107; číslo 1; s. 78
Hlavní autoři: Ding, Nai, Simon, Jonathan Z
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2012
Témata:
ISSN:1522-1598, 1522-1598
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.
AbstractList The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.
The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.
Author Ding, Nai
Simon, Jonathan Z
Author_xml – sequence: 1
  givenname: Nai
  surname: Ding
  fullname: Ding, Nai
  organization: Univ. of Maryland, College Park, MD 20742, USA
– sequence: 2
  givenname: Jonathan Z
  surname: Simon
  fullname: Simon, Jonathan Z
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21975452$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1PwzAMxSM0xD7gyBXlxqkjyZq1OaKJAdIEF7ghVW7isExtMppWYv89AYbEyU_v_WzZnpKRDx4JueRszrkUNzs_Z0yoYi4Y5ydkkjyRcanK0T89JtMYd4yxQjJxRsaCq0LmUkzI2xMOHTRUB-P8Ow02Kd87P4Qh0rhH1FvqPIXBuD50h5R2PX5SM3TfeBs8_LSDN9Q4vQ2907RxsUef8nNyaqGJeHGsM_K6vntZPWSb5_vH1e0m03mZ9xmg5ZzrfKkWwDXiwtTWSGNzkBp0UaZFcVlwUzANObfJWwBYBbYGrWRtxYxc_87dd-FjwNhXrYsamwY8pjsqxUWhlqWUibw6kkPdoqn2nWuhO1R_DxFfJVRnMA
CitedBy_id crossref_primary_10_1109_TBME_2021_3075337
crossref_primary_10_1111_ejn_14425
crossref_primary_10_1038_s41598_017_17063_0
crossref_primary_10_1016_j_heares_2023_108893
crossref_primary_10_1038_s41597_022_01708_5
crossref_primary_10_1016_j_heares_2023_108770
crossref_primary_10_1038_s41598_018_24535_4
crossref_primary_10_1016_j_neubiorev_2025_106082
crossref_primary_10_1162_jocn_a_01842
crossref_primary_10_1007_s11571_021_09711_z
crossref_primary_10_1162_IMAG_a_126
crossref_primary_10_3390_brainsci9030070
crossref_primary_10_1080_23273798_2016_1262051
crossref_primary_10_3389_fncom_2022_919215
crossref_primary_10_1016_j_cortex_2014_12_014
crossref_primary_10_7554_eLife_51784
crossref_primary_10_1016_j_bandl_2020_104891
crossref_primary_10_3389_fphys_2021_700655
crossref_primary_10_1007_s10162_015_0540_x
crossref_primary_10_1111_ejn_15644
crossref_primary_10_1113_jphysiol_2014_274886
crossref_primary_10_1371_journal_pbio_3002178
crossref_primary_10_3389_fnhum_2023_1211676
crossref_primary_10_1109_JBHI_2024_3462991
crossref_primary_10_3390_brainsci11030394
crossref_primary_10_1371_journal_pone_0172454
crossref_primary_10_1088_1741_2552_ab3c92
crossref_primary_10_3389_fnagi_2024_1484494
crossref_primary_10_1016_j_heares_2023_108785
crossref_primary_10_1109_TETCI_2024_3419711
crossref_primary_10_1016_j_neuron_2012_12_037
crossref_primary_10_1093_cercor_bhw228
crossref_primary_10_1109_TBME_2016_2587382
crossref_primary_10_1109_TNSRE_2025_3587637
crossref_primary_10_1088_1741_2552_ad867c
crossref_primary_10_1038_s41598_023_37959_4
crossref_primary_10_1152_jn_00002_2020
crossref_primary_10_1038_s41598_021_94876_0
crossref_primary_10_1016_j_cophys_2020_09_001
crossref_primary_10_1523_ENEURO_0132_24_2025
crossref_primary_10_1088_1741_2560_13_5_056014
crossref_primary_10_1152_jn_00023_2017
crossref_primary_10_1093_cercor_bhx235
crossref_primary_10_1088_1741_2552_ab4340
crossref_primary_10_1088_1741_2552_aba6f8
crossref_primary_10_1007_s10162_018_0654_z
crossref_primary_10_1088_1741_2552_abfeba
crossref_primary_10_7554_eLife_35164
crossref_primary_10_1111_ejn_16638
crossref_primary_10_1152_jn_00527_2016
crossref_primary_10_3389_fnins_2021_705621
crossref_primary_10_1016_j_neuroimage_2019_06_054
crossref_primary_10_1016_j_ijpsycho_2014_05_005
crossref_primary_10_1121_1_5123391
crossref_primary_10_3390_brainsci12101320
crossref_primary_10_1016_j_cub_2015_08_030
crossref_primary_10_1088_1741_2560_12_4_046007
crossref_primary_10_1177_2633105520988854
crossref_primary_10_1038_srep37973
crossref_primary_10_1016_j_neuroimage_2016_11_016
crossref_primary_10_1523_JNEUROSCI_1732_18_2019
crossref_primary_10_1016_j_bspc_2017_08_008
crossref_primary_10_1097_WNP_0000000000000250
crossref_primary_10_1016_j_bandl_2018_05_004
crossref_primary_10_1523_JNEUROSCI_0812_21_2021
crossref_primary_10_1162_IMAG_a_19
crossref_primary_10_3389_fnins_2021_635126
crossref_primary_10_1007_s11571_025_10289_z
crossref_primary_10_1016_j_neuroimage_2017_05_037
crossref_primary_10_1016_j_neuroimage_2022_119724
crossref_primary_10_1523_JNEUROSCI_0938_17_2017
crossref_primary_10_1145_2738040
crossref_primary_10_1016_j_heares_2021_108175
crossref_primary_10_1016_j_neuroimage_2018_10_057
crossref_primary_10_3390_mti7040037
crossref_primary_10_1016_j_heares_2025_109303
crossref_primary_10_3389_fnins_2018_00531
crossref_primary_10_1016_j_heares_2025_109306
crossref_primary_10_1088_1741_2552_ab07fe
crossref_primary_10_1016_j_neuroimage_2013_10_054
crossref_primary_10_1109_TNSRE_2017_2712419
crossref_primary_10_1093_cercor_bhad347
crossref_primary_10_3389_fnhum_2016_00604
crossref_primary_10_1093_cercor_bhad475
crossref_primary_10_1523_JNEUROSCI_1455_20_2021
crossref_primary_10_1038_s41598_023_47597_5
crossref_primary_10_1088_1741_2552_abf771
crossref_primary_10_1111_ejn_14912
crossref_primary_10_1093_cercor_bhac260
crossref_primary_10_1088_1741_2560_11_4_046015
crossref_primary_10_1111_j_1460_9568_2012_08240_x
crossref_primary_10_1162_jocn_a_01811
crossref_primary_10_7554_eLife_103235
crossref_primary_10_1016_j_tics_2012_05_004
crossref_primary_10_1523_JNEUROSCI_0302_20_2020
crossref_primary_10_1002_aur_70097
crossref_primary_10_1016_j_bandl_2018_12_005
crossref_primary_10_1044_2021_JSLHR_20_00608
crossref_primary_10_1038_s41598_019_39166_6
crossref_primary_10_1080_23273798_2018_1518534
crossref_primary_10_1111_j_1460_9568_2012_08060_x
crossref_primary_10_1093_cercor_bht355
crossref_primary_10_3389_fnhum_2016_00274
crossref_primary_10_1371_journal_pbio_2001903
crossref_primary_10_1523_JNEUROSCI_1877_12_2012
crossref_primary_10_1162_nol_a_00013
crossref_primary_10_1088_1741_2552_aa7ab4
crossref_primary_10_1088_1741_2552_aae6b9
crossref_primary_10_1016_j_neuroimage_2019_116211
crossref_primary_10_1016_j_apacoust_2022_108822
crossref_primary_10_1097_AUD_0000000000000875
crossref_primary_10_1523_JNEUROSCI_0268_15_2015
crossref_primary_10_1523_JNEUROSCI_2891_20_2021
crossref_primary_10_1038_s41598_023_50438_0
crossref_primary_10_1111_desc_12947
crossref_primary_10_1177_23312165251342441
crossref_primary_10_1152_jn_00356_2022
crossref_primary_10_1002_hbm_24310
crossref_primary_10_1111_ejn_15229
crossref_primary_10_1016_j_cub_2022_07_047
crossref_primary_10_1088_1741_2552_ad3b6b
crossref_primary_10_1088_1741_2552_adaeec
crossref_primary_10_1016_j_neuroimage_2022_119613
crossref_primary_10_1016_j_neuron_2019_07_001
crossref_primary_10_1038_s41598_019_47795_0
crossref_primary_10_1016_j_jneumeth_2024_110347
crossref_primary_10_1016_j_apacoust_2020_107826
crossref_primary_10_1523_JNEUROSCI_2066_23_2025
crossref_primary_10_1109_TBME_2021_3080123
crossref_primary_10_1016_j_neuroimage_2021_118106
crossref_primary_10_1097_AUD_0000000000001050
crossref_primary_10_1016_j_heares_2023_108767
crossref_primary_10_1162_jocn_a_02324
crossref_primary_10_1016_j_neuroimage_2021_118222
crossref_primary_10_3389_fnhum_2023_1283206
crossref_primary_10_3389_fncom_2015_00005
crossref_primary_10_1016_j_neuroimage_2024_120875
crossref_primary_10_1162_imag_a_00155
crossref_primary_10_1016_j_clinph_2023_06_002
crossref_primary_10_3389_fnins_2021_760611
crossref_primary_10_1088_1741_2552_ab92b2
crossref_primary_10_1371_journal_pbio_1001752
crossref_primary_10_1016_j_cophys_2020_07_014
crossref_primary_10_1109_TCE_2025_3533002
crossref_primary_10_1016_j_neuropsychologia_2022_108290
crossref_primary_10_1016_j_cortex_2025_02_015
crossref_primary_10_1016_j_neuroimage_2020_116528
crossref_primary_10_1038_s41598_022_27332_2
crossref_primary_10_1038_nrn3565
crossref_primary_10_1038_s41598_025_12135_y
crossref_primary_10_1088_1741_2552_ac16b4
crossref_primary_10_1038_s41598_019_44782_3
crossref_primary_10_1111_desc_13060
crossref_primary_10_1016_j_neuroimage_2017_04_026
crossref_primary_10_1016_j_neuroimage_2021_118313
crossref_primary_10_1523_JNEUROSCI_4973_14_2015
crossref_primary_10_3389_fnins_2022_855753
crossref_primary_10_7554_eLife_14521
crossref_primary_10_1016_j_bandl_2022_105128
crossref_primary_10_1109_THMS_2021_3125283
crossref_primary_10_3389_fnins_2021_685774
crossref_primary_10_1523_JNEUROSCI_0588_18_2019
crossref_primary_10_1016_j_isci_2024_110247
crossref_primary_10_3389_fnins_2019_00153
crossref_primary_10_1038_s41598_024_58886_y
crossref_primary_10_1523_JNEUROSCI_1143_24_2025
crossref_primary_10_3389_fnins_2020_00846
crossref_primary_10_1080_23273798_2020_1803375
crossref_primary_10_1523_JNEUROSCI_1007_17_2017
crossref_primary_10_1016_j_neuroimage_2020_117614
crossref_primary_10_1016_j_heares_2023_108945
crossref_primary_10_1016_j_neuroimage_2019_04_037
crossref_primary_10_1016_j_tics_2019_08_004
crossref_primary_10_1016_j_neubiorev_2025_106111
crossref_primary_10_1044_2017_JSLHR_H_17_0080
crossref_primary_10_1093_cercor_bhab136
crossref_primary_10_1371_journal_pbio_3001713
crossref_primary_10_1093_cercor_bhy282
crossref_primary_10_7554_eLife_103235_3
crossref_primary_10_1016_j_neuroimage_2018_11_049
crossref_primary_10_1162_jocn_a_01303
crossref_primary_10_1016_j_heares_2013_08_007
crossref_primary_10_3389_fnhum_2019_00386
crossref_primary_10_1016_j_cub_2024_06_072
crossref_primary_10_3389_fnins_2021_635937
crossref_primary_10_1109_TBME_2016_2628884
crossref_primary_10_1016_j_heares_2013_08_003
crossref_primary_10_1016_j_neuroimage_2018_10_037
crossref_primary_10_1177_23312165241282872
crossref_primary_10_3389_fpsyg_2022_1076339
crossref_primary_10_1016_j_neuroimage_2012_09_017
crossref_primary_10_7717_peerj_16139
crossref_primary_10_1523_JNEUROSCI_0932_20_2020
crossref_primary_10_1016_j_cub_2019_07_075
crossref_primary_10_1038_nn_4186
crossref_primary_10_1016_j_cub_2015_10_045
crossref_primary_10_1016_j_heares_2014_07_009
crossref_primary_10_1016_j_neuroimage_2018_07_052
crossref_primary_10_1152_jn_01026_2012
crossref_primary_10_1088_1741_2552_ac33e9
crossref_primary_10_1162_nol_a_00100
crossref_primary_10_1523_JNEUROSCI_2606_17_2017
crossref_primary_10_1523_JNEUROSCI_3675_12_2013
crossref_primary_10_3389_fnins_2022_876421
crossref_primary_10_1073_pnas_1721226115
crossref_primary_10_1121_10_0007225
crossref_primary_10_3389_fnhum_2014_00311
crossref_primary_10_1016_j_yebeh_2016_03_018
crossref_primary_10_1038_s41598_019_47643_1
crossref_primary_10_1097_AUD_0000000000000923
crossref_primary_10_1016_j_heares_2020_107998
crossref_primary_10_1016_j_ymeth_2022_04_009
crossref_primary_10_3389_fnhum_2014_00798
crossref_primary_10_1016_j_neuroimage_2015_09_048
crossref_primary_10_1016_j_neuroimage_2018_11_026
crossref_primary_10_1038_s41467_023_40445_0
crossref_primary_10_3389_fnins_2016_00183
crossref_primary_10_3389_fnsys_2018_00056
crossref_primary_10_1038_s41467_018_04819_z
crossref_primary_10_1016_j_heares_2018_12_004
crossref_primary_10_1038_s42003_024_06913_z
crossref_primary_10_1044_2022_JSLHR_22_00111
crossref_primary_10_1080_23273798_2020_1740749
crossref_primary_10_1016_j_cortex_2015_03_006
crossref_primary_10_3389_fnins_2021_646543
crossref_primary_10_1016_j_bspc_2021_102966
crossref_primary_10_1038_s41467_021_24771_9
crossref_primary_10_1016_j_inffus_2025_102946
crossref_primary_10_1523_JNEUROSCI_5297_12_2013
crossref_primary_10_1016_j_heares_2013_06_010
crossref_primary_10_1109_THMS_2022_3176212
crossref_primary_10_1002_hbm_26793
crossref_primary_10_3389_fnhum_2024_1483024
crossref_primary_10_3389_fpsyg_2015_00751
crossref_primary_10_1088_1741_2552_aae0a6
crossref_primary_10_1523_JNEUROSCI_1936_19_2020
crossref_primary_10_3389_fnhum_2015_00651
crossref_primary_10_1002_hbm_26676
crossref_primary_10_1016_j_brainres_2016_05_029
crossref_primary_10_1016_j_tics_2014_05_001
crossref_primary_10_1016_j_neuroimage_2020_116717
crossref_primary_10_1080_20445911_2021_1986514
crossref_primary_10_3389_fpsyg_2022_944670
crossref_primary_10_1093_cercor_bhy052
crossref_primary_10_1371_journal_pbio_3002498
crossref_primary_10_1523_JNEUROSCI_1396_16_2016
crossref_primary_10_3389_fnins_2022_963629
crossref_primary_10_3389_fnins_2021_636060
crossref_primary_10_3389_fnins_2021_738408
crossref_primary_10_1121_1_5065492
crossref_primary_10_1007_s11596_013_1191_y
crossref_primary_10_1088_1741_2552_aa66dd
crossref_primary_10_1016_j_neuroimage_2019_02_047
crossref_primary_10_1016_j_heares_2022_108607
crossref_primary_10_1093_cercor_bhac424
crossref_primary_10_1038_s41598_023_49990_6
crossref_primary_10_1016_j_neuroimage_2018_02_065
crossref_primary_10_1371_journal_pone_0246769
crossref_primary_10_1016_j_neuroimage_2018_01_038
crossref_primary_10_1016_j_ijpsycho_2014_06_010
crossref_primary_10_1111_ejn_15616
crossref_primary_10_1016_j_neuroimage_2023_119984
crossref_primary_10_1016_j_neuroimage_2018_01_033
crossref_primary_10_1016_j_heares_2025_109367
crossref_primary_10_1111_ejn_14401
crossref_primary_10_1371_journal_pone_0212754
crossref_primary_10_1111_ejn_13790
crossref_primary_10_1111_ejn_16265
crossref_primary_10_1152_jn_00652_2015
crossref_primary_10_1016_j_cortex_2017_07_007
crossref_primary_10_1162_jocn_a_01068
crossref_primary_10_1109_TASLP_2014_2384271
crossref_primary_10_1121_1_5079311
crossref_primary_10_1111_psyp_12815
crossref_primary_10_1162_jocn_a_02044
crossref_primary_10_1007_s10827_012_0424_6
crossref_primary_10_1016_j_neuroimage_2022_119217
crossref_primary_10_1093_cercor_bhy193
crossref_primary_10_7554_eLife_24763
crossref_primary_10_1016_j_neuroimage_2018_01_042
crossref_primary_10_7554_eLife_58077
crossref_primary_10_3389_fnhum_2020_597694
crossref_primary_10_1088_1741_2552_ac975c
crossref_primary_10_1523_JNEUROSCI_0589_24_2024
crossref_primary_10_1371_journal_pone_0307158
crossref_primary_10_1016_j_neuroimage_2021_118745
crossref_primary_10_1038_s41598_020_63587_3
crossref_primary_10_1073_pnas_1205381109
crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244
crossref_primary_10_3389_fnins_2018_00262
crossref_primary_10_7554_eLife_75515
crossref_primary_10_1016_j_dcn_2021_101034
crossref_primary_10_1523_JNEUROSCI_1730_15_2016
crossref_primary_10_1093_cercor_bhac203
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/jn.00297.2011
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
ExternalDocumentID 21975452
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC-008342
– fundername: NIDCD NIH HHS
  grantid: R01 DC-005660
– fundername: NIDCD NIH HHS
  grantid: R01 DC005660
– fundername: NIDCD NIH HHS
  grantid: R01 DC008342
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
NPM
OHT
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
7X8
ID FETCH-LOGICAL-c484t-aef111c4693a1cee3dbfd5df4a5cac78452e671d70ca41fcac3aaf9afbac95bf2
IEDL.DBID 7X8
ISICitedReferencesCount 346
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298642800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1522-1598
IngestDate Thu Oct 02 04:11:33 EDT 2025
Mon Jul 21 06:07:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-aef111c4693a1cee3dbfd5df4a5cac78452e671d70ca41fcac3aaf9afbac95bf2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3570829
PMID 21975452
PQID 912796855
PQPubID 23479
ParticipantIDs proquest_miscellaneous_912796855
pubmed_primary_21975452
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2012
References 18595182 - Ear Hear. 2008 Apr;29(2):139-57
20890293 - Nat Neurosci. 2010 Nov;13(11):1428-32
16407540 - J Neurosci. 2006 Jan 11;26(2):435-9
18471892 - J Neurosci Methods. 2008 Jun 30;171(2):331-9
17994016 - Nat Neurosci. 2007 Dec;10(12):1601-7
17298227 - Neural Comput. 2007 Mar;19(3):583-638
1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73
9575385 - Audiol Neurootol. 1998 Mar-Jun;3(2-3):191-213
4730062 - Science. 1973 Oct 12;182(4108):177-80
20946961 - Neuroimage. 2011 Feb 1;54(3):2364-73
14583754 - Nat Neurosci. 2003 Nov;6(11):1216-23
9603734 - Science. 1998 May 29;280(5368):1439-43
20005163 - Clin Neurophysiol. 2010 Feb;121(2):200-7
18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65
19789185 - Cereb Cortex. 2010 Jun;20(6):1360-71
18093532 - Neuron. 2007 Dec 20;56(6):1127-34
20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74
17582338 - Neuron. 2007 Jun 21;54(6):1001-10
17728439 - J Neurosci. 2007 Aug 29;27(35):9252-61
14568469 - Neuroimage. 2003 Oct;20(2):995-1005
19574393 - Cereb Cortex. 2010 Mar;20(3):583-90
21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7
19692508 - J Neurophysiol. 2009 Nov;102(5):2731-43
1721574 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):464-72
8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6
20071526 - J Neurosci. 2010 Jan 13;30(2):620-8
12660353 - J Neurophysiol. 2003 Jul;90(1):456-76
17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
3954684 - Audiology. 1986;25(1):54-61
17170048 - Cereb Cortex. 2007 Oct;17(10):2303-11
15772375 - Cereb Cortex. 2005 Dec;15(12):2029-39
18547141 - PLoS Biol. 2008 Jun 10;6(6):e138
7569981 - Science. 1995 Oct 13;270(5234):303-4
17624443 - J Neurosci Methods. 2007 Sep 30;165(2):297-305
20045201 - Trends Neurosci. 2010 Mar;33(3):111-20
11495122 - Psychon Bull Rev. 2001 Jun;8(2):331-5
21068187 - Cereb Cortex. 2011 Jun;21(6):1223-30
11826151 - J Neurosci. 2002 Feb 1;22(3):RC205
12509020 - J Acoust Soc Am. 2002 Dec;112(6):2985-95
2262629 - J Acoust Soc Am. 1990 Oct;88(4):1725-36
18185589 - Nature. 2008 Jan 10;451(7175):197-201
2431879 - Electroencephalogr Clin Neurophysiol. 1987 Feb;66(2):145-59
19529760 - PLoS Biol. 2009 Jun;7(6):e1000129
20092565 - Eur J Neurosci. 2010 Jan;31(1):189-93
19759321 - J Neurophysiol. 2009 Dec;102(6):3329-39
11247991 - J Neurophysiol. 2001 Mar;85(3):1220-34
19667199 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6
19275330 - J Acoust Soc Am. 2009 Mar;125(3):1737-43
11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72
10955634 - J Acoust Soc Am. 2000 Aug;108(2):679-91
2707322 - Exp Brain Res. 1989;74(3):463-70
9609936 - IEEE Trans Biomed Eng. 1998 Jun;45(6):716-23
20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93
19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
19295144 - J Neurosci. 2009 Mar 18;29(11):3374-86
17852750 - Network. 2007 Sep;18(3):191-212
References_xml – reference: 11247991 - J Neurophysiol. 2001 Mar;85(3):1220-34
– reference: 2431879 - Electroencephalogr Clin Neurophysiol. 1987 Feb;66(2):145-59
– reference: 20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93
– reference: 19692508 - J Neurophysiol. 2009 Nov;102(5):2731-43
– reference: 19759321 - J Neurophysiol. 2009 Dec;102(6):3329-39
– reference: 20045201 - Trends Neurosci. 2010 Mar;33(3):111-20
– reference: 2262629 - J Acoust Soc Am. 1990 Oct;88(4):1725-36
– reference: 1721574 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):464-72
– reference: 9575385 - Audiol Neurootol. 1998 Mar-Jun;3(2-3):191-213
– reference: 19529760 - PLoS Biol. 2009 Jun;7(6):e1000129
– reference: 19789185 - Cereb Cortex. 2010 Jun;20(6):1360-71
– reference: 20092565 - Eur J Neurosci. 2010 Jan;31(1):189-93
– reference: 20005163 - Clin Neurophysiol. 2010 Feb;121(2):200-7
– reference: 12509020 - J Acoust Soc Am. 2002 Dec;112(6):2985-95
– reference: 21068187 - Cereb Cortex. 2011 Jun;21(6):1223-30
– reference: 10955634 - J Acoust Soc Am. 2000 Aug;108(2):679-91
– reference: 17728439 - J Neurosci. 2007 Aug 29;27(35):9252-61
– reference: 17852750 - Network. 2007 Sep;18(3):191-212
– reference: 18547141 - PLoS Biol. 2008 Jun 10;6(6):e138
– reference: 20071526 - J Neurosci. 2010 Jan 13;30(2):620-8
– reference: 2707322 - Exp Brain Res. 1989;74(3):463-70
– reference: 8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6
– reference: 17582338 - Neuron. 2007 Jun 21;54(6):1001-10
– reference: 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73
– reference: 20946961 - Neuroimage. 2011 Feb 1;54(3):2364-73
– reference: 11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72
– reference: 14583754 - Nat Neurosci. 2003 Nov;6(11):1216-23
– reference: 18595182 - Ear Hear. 2008 Apr;29(2):139-57
– reference: 17994016 - Nat Neurosci. 2007 Dec;10(12):1601-7
– reference: 17298227 - Neural Comput. 2007 Mar;19(3):583-638
– reference: 17624443 - J Neurosci Methods. 2007 Sep 30;165(2):297-305
– reference: 18093532 - Neuron. 2007 Dec 20;56(6):1127-34
– reference: 15772375 - Cereb Cortex. 2005 Dec;15(12):2029-39
– reference: 16407540 - J Neurosci. 2006 Jan 11;26(2):435-9
– reference: 4730062 - Science. 1973 Oct 12;182(4108):177-80
– reference: 9603734 - Science. 1998 May 29;280(5368):1439-43
– reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
– reference: 19574393 - Cereb Cortex. 2010 Mar;20(3):583-90
– reference: 19295144 - J Neurosci. 2009 Mar 18;29(11):3374-86
– reference: 18185589 - Nature. 2008 Jan 10;451(7175):197-201
– reference: 20890293 - Nat Neurosci. 2010 Nov;13(11):1428-32
– reference: 9609936 - IEEE Trans Biomed Eng. 1998 Jun;45(6):716-23
– reference: 7569981 - Science. 1995 Oct 13;270(5234):303-4
– reference: 21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7
– reference: 3954684 - Audiology. 1986;25(1):54-61
– reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
– reference: 12660353 - J Neurophysiol. 2003 Jul;90(1):456-76
– reference: 18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65
– reference: 19667199 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6
– reference: 11495122 - Psychon Bull Rev. 2001 Jun;8(2):331-5
– reference: 17170048 - Cereb Cortex. 2007 Oct;17(10):2303-11
– reference: 11826151 - J Neurosci. 2002 Feb 1;22(3):RC205
– reference: 20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74
– reference: 14568469 - Neuroimage. 2003 Oct;20(2):995-1005
– reference: 19275330 - J Acoust Soc Am. 2009 Mar;125(3):1737-43
– reference: 18471892 - J Neurosci Methods. 2008 Jun 30;171(2):331-9
SSID ssj0007502
Score 2.5478334
Snippet The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 78
SubjectTerms Adult
Auditory Cortex - physiology
Female
Humans
Information Storage and Retrieval - methods
Male
Models, Neurological
Nerve Net - physiology
Pattern Recognition, Physiological - physiology
Speech Perception - physiology
Young Adult
Title Neural coding of continuous speech in auditory cortex during monaural and dichotic listening
URI https://www.ncbi.nlm.nih.gov/pubmed/21975452
https://www.proquest.com/docview/912796855
Volume 107
WOSCitedRecordID wos000298642800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwKo_ykgfEZto4dh4TqhAVA1QdQOqAFDl-iCBwStMi-u85OylMiIElQxIrie_L3ee78x1C5wAZEzCRkl4uE8JyGpOcsZDoIKImDFSUSl_E9S4eDpPxOB01uTlVk1a51IleUatSOh95Nw1onEYJ51eTd-KaRrngatNBYxW1QmAyDtTx-KdYOBhDH-wEikHAaifLEpucdl_spW_b5Gt4_k4uvZEZbP3z9bbRZsMucb-Gww5a0XYXtfsWVtZvC3yBfb6nd6S30ZOrywE3y9KZL1wa7NLWCzsv5xWuJlrLZ1xYLNy2jXK6gKvTmf7E9b5GDA8UfriwCqvC7eQqJH51oHGelj30OLh5uL4lTa8FIlnCZkRoA1pPwmI5FAEYzlDlRnFlmOBSyDhhnOooDlTck4IFBs6FQphUmFzIlOeG7qM1W1p9iHAkVK4olyARypIeF8DZAlC6wAVBIr28g_ByCjPAsgtQCKvh27LvSeygg1oM2aSuuZGBYo1dO_Sjvwcfow2QKq39JCeoZeA_1qdoXX7Mimp65jECx-Ho_gsK6sjB
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+coding+of+continuous+speech+in+auditory+cortex+during+monaural+and+dichotic+listening&rft.jtitle=Journal+of+neurophysiology&rft.au=Ding%2C+Nai&rft.au=Simon%2C+Jonathan+Z&rft.date=2012-01-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=107&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1152%2Fjn.00297.2011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1598&client=summon