Neural coding of continuous speech in auditory cortex during monaural and dichotic listening
The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like audito...
Uloženo v:
| Vydáno v: | Journal of neurophysiology Ročník 107; číslo 1; s. 78 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.01.2012
|
| Témata: | |
| ISSN: | 1522-1598, 1522-1598 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon. |
|---|---|
| AbstractList | The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon. The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon.The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive magnetoencephalography (MEG) recordings are obtained from human subjects actively listening to spoken narratives, in both simple and cocktail party-like auditory scenes. By modeling how acoustic features of speech are encoded in ongoing MEG activity as a spectrotemporal response function, we demonstrate that the slow temporal modulations of speech in a broad spectral region are represented bilaterally in auditory cortex by a phase-locked temporal code. For speech presented monaurally to either ear, this phase-locked response is always more faithful in the right hemisphere, but with a shorter latency in the hemisphere contralateral to the stimulated ear. When different spoken narratives are presented to each ear simultaneously (dichotic listening), the resulting cortical neural activity precisely encodes the acoustic features of both of the spoken narratives, but slightly weakened and delayed compared with the monaural response. Critically, the early sensory response to the attended speech is considerably stronger than that to the unattended speech, demonstrating top-down attentional gain control. This attentional gain is substantial even during the subjects' very first exposure to the speech mixture and therefore largely independent of knowledge of the speech content. Together, these findings characterize how the spectrotemporal features of speech are encoded in human auditory cortex and establish a single-trial-based paradigm to study the neural basis underlying the cocktail party phenomenon. |
| Author | Ding, Nai Simon, Jonathan Z |
| Author_xml | – sequence: 1 givenname: Nai surname: Ding fullname: Ding, Nai organization: Univ. of Maryland, College Park, MD 20742, USA – sequence: 2 givenname: Jonathan Z surname: Simon fullname: Simon, Jonathan Z |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21975452$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1PwzAMxSM0xD7gyBXlxqkjyZq1OaKJAdIEF7ghVW7isExtMppWYv89AYbEyU_v_WzZnpKRDx4JueRszrkUNzs_Z0yoYi4Y5ydkkjyRcanK0T89JtMYd4yxQjJxRsaCq0LmUkzI2xMOHTRUB-P8Ow02Kd87P4Qh0rhH1FvqPIXBuD50h5R2PX5SM3TfeBs8_LSDN9Q4vQ2907RxsUef8nNyaqGJeHGsM_K6vntZPWSb5_vH1e0m03mZ9xmg5ZzrfKkWwDXiwtTWSGNzkBp0UaZFcVlwUzANObfJWwBYBbYGrWRtxYxc_87dd-FjwNhXrYsamwY8pjsqxUWhlqWUibw6kkPdoqn2nWuhO1R_DxFfJVRnMA |
| CitedBy_id | crossref_primary_10_1109_TBME_2021_3075337 crossref_primary_10_1111_ejn_14425 crossref_primary_10_1038_s41598_017_17063_0 crossref_primary_10_1016_j_heares_2023_108893 crossref_primary_10_1038_s41597_022_01708_5 crossref_primary_10_1016_j_heares_2023_108770 crossref_primary_10_1038_s41598_018_24535_4 crossref_primary_10_1016_j_neubiorev_2025_106082 crossref_primary_10_1162_jocn_a_01842 crossref_primary_10_1007_s11571_021_09711_z crossref_primary_10_1162_IMAG_a_126 crossref_primary_10_3390_brainsci9030070 crossref_primary_10_1080_23273798_2016_1262051 crossref_primary_10_3389_fncom_2022_919215 crossref_primary_10_1016_j_cortex_2014_12_014 crossref_primary_10_7554_eLife_51784 crossref_primary_10_1016_j_bandl_2020_104891 crossref_primary_10_3389_fphys_2021_700655 crossref_primary_10_1007_s10162_015_0540_x crossref_primary_10_1111_ejn_15644 crossref_primary_10_1113_jphysiol_2014_274886 crossref_primary_10_1371_journal_pbio_3002178 crossref_primary_10_3389_fnhum_2023_1211676 crossref_primary_10_1109_JBHI_2024_3462991 crossref_primary_10_3390_brainsci11030394 crossref_primary_10_1371_journal_pone_0172454 crossref_primary_10_1088_1741_2552_ab3c92 crossref_primary_10_3389_fnagi_2024_1484494 crossref_primary_10_1016_j_heares_2023_108785 crossref_primary_10_1109_TETCI_2024_3419711 crossref_primary_10_1016_j_neuron_2012_12_037 crossref_primary_10_1093_cercor_bhw228 crossref_primary_10_1109_TBME_2016_2587382 crossref_primary_10_1109_TNSRE_2025_3587637 crossref_primary_10_1088_1741_2552_ad867c crossref_primary_10_1038_s41598_023_37959_4 crossref_primary_10_1152_jn_00002_2020 crossref_primary_10_1038_s41598_021_94876_0 crossref_primary_10_1016_j_cophys_2020_09_001 crossref_primary_10_1523_ENEURO_0132_24_2025 crossref_primary_10_1088_1741_2560_13_5_056014 crossref_primary_10_1152_jn_00023_2017 crossref_primary_10_1093_cercor_bhx235 crossref_primary_10_1088_1741_2552_ab4340 crossref_primary_10_1088_1741_2552_aba6f8 crossref_primary_10_1007_s10162_018_0654_z crossref_primary_10_1088_1741_2552_abfeba crossref_primary_10_7554_eLife_35164 crossref_primary_10_1111_ejn_16638 crossref_primary_10_1152_jn_00527_2016 crossref_primary_10_3389_fnins_2021_705621 crossref_primary_10_1016_j_neuroimage_2019_06_054 crossref_primary_10_1016_j_ijpsycho_2014_05_005 crossref_primary_10_1121_1_5123391 crossref_primary_10_3390_brainsci12101320 crossref_primary_10_1016_j_cub_2015_08_030 crossref_primary_10_1088_1741_2560_12_4_046007 crossref_primary_10_1177_2633105520988854 crossref_primary_10_1038_srep37973 crossref_primary_10_1016_j_neuroimage_2016_11_016 crossref_primary_10_1523_JNEUROSCI_1732_18_2019 crossref_primary_10_1016_j_bspc_2017_08_008 crossref_primary_10_1097_WNP_0000000000000250 crossref_primary_10_1016_j_bandl_2018_05_004 crossref_primary_10_1523_JNEUROSCI_0812_21_2021 crossref_primary_10_1162_IMAG_a_19 crossref_primary_10_3389_fnins_2021_635126 crossref_primary_10_1007_s11571_025_10289_z crossref_primary_10_1016_j_neuroimage_2017_05_037 crossref_primary_10_1016_j_neuroimage_2022_119724 crossref_primary_10_1523_JNEUROSCI_0938_17_2017 crossref_primary_10_1145_2738040 crossref_primary_10_1016_j_heares_2021_108175 crossref_primary_10_1016_j_neuroimage_2018_10_057 crossref_primary_10_3390_mti7040037 crossref_primary_10_1016_j_heares_2025_109303 crossref_primary_10_3389_fnins_2018_00531 crossref_primary_10_1016_j_heares_2025_109306 crossref_primary_10_1088_1741_2552_ab07fe crossref_primary_10_1016_j_neuroimage_2013_10_054 crossref_primary_10_1109_TNSRE_2017_2712419 crossref_primary_10_1093_cercor_bhad347 crossref_primary_10_3389_fnhum_2016_00604 crossref_primary_10_1093_cercor_bhad475 crossref_primary_10_1523_JNEUROSCI_1455_20_2021 crossref_primary_10_1038_s41598_023_47597_5 crossref_primary_10_1088_1741_2552_abf771 crossref_primary_10_1111_ejn_14912 crossref_primary_10_1093_cercor_bhac260 crossref_primary_10_1088_1741_2560_11_4_046015 crossref_primary_10_1111_j_1460_9568_2012_08240_x crossref_primary_10_1162_jocn_a_01811 crossref_primary_10_7554_eLife_103235 crossref_primary_10_1016_j_tics_2012_05_004 crossref_primary_10_1523_JNEUROSCI_0302_20_2020 crossref_primary_10_1002_aur_70097 crossref_primary_10_1016_j_bandl_2018_12_005 crossref_primary_10_1044_2021_JSLHR_20_00608 crossref_primary_10_1038_s41598_019_39166_6 crossref_primary_10_1080_23273798_2018_1518534 crossref_primary_10_1111_j_1460_9568_2012_08060_x crossref_primary_10_1093_cercor_bht355 crossref_primary_10_3389_fnhum_2016_00274 crossref_primary_10_1371_journal_pbio_2001903 crossref_primary_10_1523_JNEUROSCI_1877_12_2012 crossref_primary_10_1162_nol_a_00013 crossref_primary_10_1088_1741_2552_aa7ab4 crossref_primary_10_1088_1741_2552_aae6b9 crossref_primary_10_1016_j_neuroimage_2019_116211 crossref_primary_10_1016_j_apacoust_2022_108822 crossref_primary_10_1097_AUD_0000000000000875 crossref_primary_10_1523_JNEUROSCI_0268_15_2015 crossref_primary_10_1523_JNEUROSCI_2891_20_2021 crossref_primary_10_1038_s41598_023_50438_0 crossref_primary_10_1111_desc_12947 crossref_primary_10_1177_23312165251342441 crossref_primary_10_1152_jn_00356_2022 crossref_primary_10_1002_hbm_24310 crossref_primary_10_1111_ejn_15229 crossref_primary_10_1016_j_cub_2022_07_047 crossref_primary_10_1088_1741_2552_ad3b6b crossref_primary_10_1088_1741_2552_adaeec crossref_primary_10_1016_j_neuroimage_2022_119613 crossref_primary_10_1016_j_neuron_2019_07_001 crossref_primary_10_1038_s41598_019_47795_0 crossref_primary_10_1016_j_jneumeth_2024_110347 crossref_primary_10_1016_j_apacoust_2020_107826 crossref_primary_10_1523_JNEUROSCI_2066_23_2025 crossref_primary_10_1109_TBME_2021_3080123 crossref_primary_10_1016_j_neuroimage_2021_118106 crossref_primary_10_1097_AUD_0000000000001050 crossref_primary_10_1016_j_heares_2023_108767 crossref_primary_10_1162_jocn_a_02324 crossref_primary_10_1016_j_neuroimage_2021_118222 crossref_primary_10_3389_fnhum_2023_1283206 crossref_primary_10_3389_fncom_2015_00005 crossref_primary_10_1016_j_neuroimage_2024_120875 crossref_primary_10_1162_imag_a_00155 crossref_primary_10_1016_j_clinph_2023_06_002 crossref_primary_10_3389_fnins_2021_760611 crossref_primary_10_1088_1741_2552_ab92b2 crossref_primary_10_1371_journal_pbio_1001752 crossref_primary_10_1016_j_cophys_2020_07_014 crossref_primary_10_1109_TCE_2025_3533002 crossref_primary_10_1016_j_neuropsychologia_2022_108290 crossref_primary_10_1016_j_cortex_2025_02_015 crossref_primary_10_1016_j_neuroimage_2020_116528 crossref_primary_10_1038_s41598_022_27332_2 crossref_primary_10_1038_nrn3565 crossref_primary_10_1038_s41598_025_12135_y crossref_primary_10_1088_1741_2552_ac16b4 crossref_primary_10_1038_s41598_019_44782_3 crossref_primary_10_1111_desc_13060 crossref_primary_10_1016_j_neuroimage_2017_04_026 crossref_primary_10_1016_j_neuroimage_2021_118313 crossref_primary_10_1523_JNEUROSCI_4973_14_2015 crossref_primary_10_3389_fnins_2022_855753 crossref_primary_10_7554_eLife_14521 crossref_primary_10_1016_j_bandl_2022_105128 crossref_primary_10_1109_THMS_2021_3125283 crossref_primary_10_3389_fnins_2021_685774 crossref_primary_10_1523_JNEUROSCI_0588_18_2019 crossref_primary_10_1016_j_isci_2024_110247 crossref_primary_10_3389_fnins_2019_00153 crossref_primary_10_1038_s41598_024_58886_y crossref_primary_10_1523_JNEUROSCI_1143_24_2025 crossref_primary_10_3389_fnins_2020_00846 crossref_primary_10_1080_23273798_2020_1803375 crossref_primary_10_1523_JNEUROSCI_1007_17_2017 crossref_primary_10_1016_j_neuroimage_2020_117614 crossref_primary_10_1016_j_heares_2023_108945 crossref_primary_10_1016_j_neuroimage_2019_04_037 crossref_primary_10_1016_j_tics_2019_08_004 crossref_primary_10_1016_j_neubiorev_2025_106111 crossref_primary_10_1044_2017_JSLHR_H_17_0080 crossref_primary_10_1093_cercor_bhab136 crossref_primary_10_1371_journal_pbio_3001713 crossref_primary_10_1093_cercor_bhy282 crossref_primary_10_7554_eLife_103235_3 crossref_primary_10_1016_j_neuroimage_2018_11_049 crossref_primary_10_1162_jocn_a_01303 crossref_primary_10_1016_j_heares_2013_08_007 crossref_primary_10_3389_fnhum_2019_00386 crossref_primary_10_1016_j_cub_2024_06_072 crossref_primary_10_3389_fnins_2021_635937 crossref_primary_10_1109_TBME_2016_2628884 crossref_primary_10_1016_j_heares_2013_08_003 crossref_primary_10_1016_j_neuroimage_2018_10_037 crossref_primary_10_1177_23312165241282872 crossref_primary_10_3389_fpsyg_2022_1076339 crossref_primary_10_1016_j_neuroimage_2012_09_017 crossref_primary_10_7717_peerj_16139 crossref_primary_10_1523_JNEUROSCI_0932_20_2020 crossref_primary_10_1016_j_cub_2019_07_075 crossref_primary_10_1038_nn_4186 crossref_primary_10_1016_j_cub_2015_10_045 crossref_primary_10_1016_j_heares_2014_07_009 crossref_primary_10_1016_j_neuroimage_2018_07_052 crossref_primary_10_1152_jn_01026_2012 crossref_primary_10_1088_1741_2552_ac33e9 crossref_primary_10_1162_nol_a_00100 crossref_primary_10_1523_JNEUROSCI_2606_17_2017 crossref_primary_10_1523_JNEUROSCI_3675_12_2013 crossref_primary_10_3389_fnins_2022_876421 crossref_primary_10_1073_pnas_1721226115 crossref_primary_10_1121_10_0007225 crossref_primary_10_3389_fnhum_2014_00311 crossref_primary_10_1016_j_yebeh_2016_03_018 crossref_primary_10_1038_s41598_019_47643_1 crossref_primary_10_1097_AUD_0000000000000923 crossref_primary_10_1016_j_heares_2020_107998 crossref_primary_10_1016_j_ymeth_2022_04_009 crossref_primary_10_3389_fnhum_2014_00798 crossref_primary_10_1016_j_neuroimage_2015_09_048 crossref_primary_10_1016_j_neuroimage_2018_11_026 crossref_primary_10_1038_s41467_023_40445_0 crossref_primary_10_3389_fnins_2016_00183 crossref_primary_10_3389_fnsys_2018_00056 crossref_primary_10_1038_s41467_018_04819_z crossref_primary_10_1016_j_heares_2018_12_004 crossref_primary_10_1038_s42003_024_06913_z crossref_primary_10_1044_2022_JSLHR_22_00111 crossref_primary_10_1080_23273798_2020_1740749 crossref_primary_10_1016_j_cortex_2015_03_006 crossref_primary_10_3389_fnins_2021_646543 crossref_primary_10_1016_j_bspc_2021_102966 crossref_primary_10_1038_s41467_021_24771_9 crossref_primary_10_1016_j_inffus_2025_102946 crossref_primary_10_1523_JNEUROSCI_5297_12_2013 crossref_primary_10_1016_j_heares_2013_06_010 crossref_primary_10_1109_THMS_2022_3176212 crossref_primary_10_1002_hbm_26793 crossref_primary_10_3389_fnhum_2024_1483024 crossref_primary_10_3389_fpsyg_2015_00751 crossref_primary_10_1088_1741_2552_aae0a6 crossref_primary_10_1523_JNEUROSCI_1936_19_2020 crossref_primary_10_3389_fnhum_2015_00651 crossref_primary_10_1002_hbm_26676 crossref_primary_10_1016_j_brainres_2016_05_029 crossref_primary_10_1016_j_tics_2014_05_001 crossref_primary_10_1016_j_neuroimage_2020_116717 crossref_primary_10_1080_20445911_2021_1986514 crossref_primary_10_3389_fpsyg_2022_944670 crossref_primary_10_1093_cercor_bhy052 crossref_primary_10_1371_journal_pbio_3002498 crossref_primary_10_1523_JNEUROSCI_1396_16_2016 crossref_primary_10_3389_fnins_2022_963629 crossref_primary_10_3389_fnins_2021_636060 crossref_primary_10_3389_fnins_2021_738408 crossref_primary_10_1121_1_5065492 crossref_primary_10_1007_s11596_013_1191_y crossref_primary_10_1088_1741_2552_aa66dd crossref_primary_10_1016_j_neuroimage_2019_02_047 crossref_primary_10_1016_j_heares_2022_108607 crossref_primary_10_1093_cercor_bhac424 crossref_primary_10_1038_s41598_023_49990_6 crossref_primary_10_1016_j_neuroimage_2018_02_065 crossref_primary_10_1371_journal_pone_0246769 crossref_primary_10_1016_j_neuroimage_2018_01_038 crossref_primary_10_1016_j_ijpsycho_2014_06_010 crossref_primary_10_1111_ejn_15616 crossref_primary_10_1016_j_neuroimage_2023_119984 crossref_primary_10_1016_j_neuroimage_2018_01_033 crossref_primary_10_1016_j_heares_2025_109367 crossref_primary_10_1111_ejn_14401 crossref_primary_10_1371_journal_pone_0212754 crossref_primary_10_1111_ejn_13790 crossref_primary_10_1111_ejn_16265 crossref_primary_10_1152_jn_00652_2015 crossref_primary_10_1016_j_cortex_2017_07_007 crossref_primary_10_1162_jocn_a_01068 crossref_primary_10_1109_TASLP_2014_2384271 crossref_primary_10_1121_1_5079311 crossref_primary_10_1111_psyp_12815 crossref_primary_10_1162_jocn_a_02044 crossref_primary_10_1007_s10827_012_0424_6 crossref_primary_10_1016_j_neuroimage_2022_119217 crossref_primary_10_1093_cercor_bhy193 crossref_primary_10_7554_eLife_24763 crossref_primary_10_1016_j_neuroimage_2018_01_042 crossref_primary_10_7554_eLife_58077 crossref_primary_10_3389_fnhum_2020_597694 crossref_primary_10_1088_1741_2552_ac975c crossref_primary_10_1523_JNEUROSCI_0589_24_2024 crossref_primary_10_1371_journal_pone_0307158 crossref_primary_10_1016_j_neuroimage_2021_118745 crossref_primary_10_1038_s41598_020_63587_3 crossref_primary_10_1073_pnas_1205381109 crossref_primary_10_1044_2018_JSLHR_S_ASTM_18_0244 crossref_primary_10_3389_fnins_2018_00262 crossref_primary_10_7554_eLife_75515 crossref_primary_10_1016_j_dcn_2021_101034 crossref_primary_10_1523_JNEUROSCI_1730_15_2016 crossref_primary_10_1093_cercor_bhac203 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1152/jn.00297.2011 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1522-1598 |
| ExternalDocumentID | 21975452 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC-008342 – fundername: NIDCD NIH HHS grantid: R01 DC-005660 – fundername: NIDCD NIH HHS grantid: R01 DC005660 – fundername: NIDCD NIH HHS grantid: R01 DC008342 |
| GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ NPM OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 7X8 |
| ID | FETCH-LOGICAL-c484t-aef111c4693a1cee3dbfd5df4a5cac78452e671d70ca41fcac3aaf9afbac95bf2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 346 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298642800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1522-1598 |
| IngestDate | Thu Oct 02 04:11:33 EDT 2025 Mon Jul 21 06:07:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c484t-aef111c4693a1cee3dbfd5df4a5cac78452e671d70ca41fcac3aaf9afbac95bf2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3570829 |
| PMID | 21975452 |
| PQID | 912796855 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_912796855 pubmed_primary_21975452 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of neurophysiology |
| PublicationTitleAlternate | J Neurophysiol |
| PublicationYear | 2012 |
| References | 18595182 - Ear Hear. 2008 Apr;29(2):139-57 20890293 - Nat Neurosci. 2010 Nov;13(11):1428-32 16407540 - J Neurosci. 2006 Jan 11;26(2):435-9 18471892 - J Neurosci Methods. 2008 Jun 30;171(2):331-9 17994016 - Nat Neurosci. 2007 Dec;10(12):1601-7 17298227 - Neural Comput. 2007 Mar;19(3):583-638 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 9575385 - Audiol Neurootol. 1998 Mar-Jun;3(2-3):191-213 4730062 - Science. 1973 Oct 12;182(4108):177-80 20946961 - Neuroimage. 2011 Feb 1;54(3):2364-73 14583754 - Nat Neurosci. 2003 Nov;6(11):1216-23 9603734 - Science. 1998 May 29;280(5368):1439-43 20005163 - Clin Neurophysiol. 2010 Feb;121(2):200-7 18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65 19789185 - Cereb Cortex. 2010 Jun;20(6):1360-71 18093532 - Neuron. 2007 Dec 20;56(6):1127-34 20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74 17582338 - Neuron. 2007 Jun 21;54(6):1001-10 17728439 - J Neurosci. 2007 Aug 29;27(35):9252-61 14568469 - Neuroimage. 2003 Oct;20(2):995-1005 19574393 - Cereb Cortex. 2010 Mar;20(3):583-90 21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 19692508 - J Neurophysiol. 2009 Nov;102(5):2731-43 1721574 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):464-72 8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6 20071526 - J Neurosci. 2010 Jan 13;30(2):620-8 12660353 - J Neurophysiol. 2003 Jul;90(1):456-76 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402 3954684 - Audiology. 1986;25(1):54-61 17170048 - Cereb Cortex. 2007 Oct;17(10):2303-11 15772375 - Cereb Cortex. 2005 Dec;15(12):2029-39 18547141 - PLoS Biol. 2008 Jun 10;6(6):e138 7569981 - Science. 1995 Oct 13;270(5234):303-4 17624443 - J Neurosci Methods. 2007 Sep 30;165(2):297-305 20045201 - Trends Neurosci. 2010 Mar;33(3):111-20 11495122 - Psychon Bull Rev. 2001 Jun;8(2):331-5 21068187 - Cereb Cortex. 2011 Jun;21(6):1223-30 11826151 - J Neurosci. 2002 Feb 1;22(3):RC205 12509020 - J Acoust Soc Am. 2002 Dec;112(6):2985-95 2262629 - J Acoust Soc Am. 1990 Oct;88(4):1725-36 18185589 - Nature. 2008 Jan 10;451(7175):197-201 2431879 - Electroencephalogr Clin Neurophysiol. 1987 Feb;66(2):145-59 19529760 - PLoS Biol. 2009 Jun;7(6):e1000129 20092565 - Eur J Neurosci. 2010 Jan;31(1):189-93 19759321 - J Neurophysiol. 2009 Dec;102(6):3329-39 11247991 - J Neurophysiol. 2001 Mar;85(3):1220-34 19667199 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6 19275330 - J Acoust Soc Am. 2009 Mar;125(3):1737-43 11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72 10955634 - J Acoust Soc Am. 2000 Aug;108(2):679-91 2707322 - Exp Brain Res. 1989;74(3):463-70 9609936 - IEEE Trans Biomed Eng. 1998 Jun;45(6):716-23 20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 19295144 - J Neurosci. 2009 Mar 18;29(11):3374-86 17852750 - Network. 2007 Sep;18(3):191-212 |
| References_xml | – reference: 11247991 - J Neurophysiol. 2001 Mar;85(3):1220-34 – reference: 2431879 - Electroencephalogr Clin Neurophysiol. 1987 Feb;66(2):145-59 – reference: 20826671 - J Neurosci. 2010 Sep 8;30(36):12084-93 – reference: 19692508 - J Neurophysiol. 2009 Nov;102(5):2731-43 – reference: 19759321 - J Neurophysiol. 2009 Dec;102(6):3329-39 – reference: 20045201 - Trends Neurosci. 2010 Mar;33(3):111-20 – reference: 2262629 - J Acoust Soc Am. 1990 Oct;88(4):1725-36 – reference: 1721574 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):464-72 – reference: 9575385 - Audiol Neurootol. 1998 Mar-Jun;3(2-3):191-213 – reference: 19529760 - PLoS Biol. 2009 Jun;7(6):e1000129 – reference: 19789185 - Cereb Cortex. 2010 Jun;20(6):1360-71 – reference: 20092565 - Eur J Neurosci. 2010 Jan;31(1):189-93 – reference: 20005163 - Clin Neurophysiol. 2010 Feb;121(2):200-7 – reference: 12509020 - J Acoust Soc Am. 2002 Dec;112(6):2985-95 – reference: 21068187 - Cereb Cortex. 2011 Jun;21(6):1223-30 – reference: 10955634 - J Acoust Soc Am. 2000 Aug;108(2):679-91 – reference: 17728439 - J Neurosci. 2007 Aug 29;27(35):9252-61 – reference: 17852750 - Network. 2007 Sep;18(3):191-212 – reference: 18547141 - PLoS Biol. 2008 Jun 10;6(6):e138 – reference: 20071526 - J Neurosci. 2010 Jan 13;30(2):620-8 – reference: 2707322 - Exp Brain Res. 1989;74(3):463-70 – reference: 8378354 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8722-6 – reference: 17582338 - Neuron. 2007 Jun 21;54(6):1001-10 – reference: 1354376 - Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 – reference: 20946961 - Neuroimage. 2011 Feb 1;54(3):2364-73 – reference: 11698688 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13367-72 – reference: 14583754 - Nat Neurosci. 2003 Nov;6(11):1216-23 – reference: 18595182 - Ear Hear. 2008 Apr;29(2):139-57 – reference: 17994016 - Nat Neurosci. 2007 Dec;10(12):1601-7 – reference: 17298227 - Neural Comput. 2007 Mar;19(3):583-638 – reference: 17624443 - J Neurosci Methods. 2007 Sep 30;165(2):297-305 – reference: 18093532 - Neuron. 2007 Dec 20;56(6):1127-34 – reference: 15772375 - Cereb Cortex. 2005 Dec;15(12):2029-39 – reference: 16407540 - J Neurosci. 2006 Jan 11;26(2):435-9 – reference: 4730062 - Science. 1973 Oct 12;182(4108):177-80 – reference: 9603734 - Science. 1998 May 29;280(5368):1439-43 – reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402 – reference: 19574393 - Cereb Cortex. 2010 Mar;20(3):583-90 – reference: 19295144 - J Neurosci. 2009 Mar 18;29(11):3374-86 – reference: 18185589 - Nature. 2008 Jan 10;451(7175):197-201 – reference: 20890293 - Nat Neurosci. 2010 Nov;13(11):1428-32 – reference: 9609936 - IEEE Trans Biomed Eng. 1998 Jun;45(6):716-23 – reference: 7569981 - Science. 1995 Oct 13;270(5234):303-4 – reference: 21368107 - Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 – reference: 3954684 - Audiology. 1986;25(1):54-61 – reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 – reference: 12660353 - J Neurophysiol. 2003 Jul;90(1):456-76 – reference: 18400895 - J Neurosci. 2008 Apr 9;28(15):3958-65 – reference: 19667199 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6 – reference: 11495122 - Psychon Bull Rev. 2001 Jun;8(2):331-5 – reference: 17170048 - Cereb Cortex. 2007 Oct;17(10):2303-11 – reference: 11826151 - J Neurosci. 2002 Feb 1;22(3):RC205 – reference: 20007480 - J Neurosci. 2009 Dec 9;29(49):15564-74 – reference: 14568469 - Neuroimage. 2003 Oct;20(2):995-1005 – reference: 19275330 - J Acoust Soc Am. 2009 Mar;125(3):1737-43 – reference: 18471892 - J Neurosci Methods. 2008 Jun 30;171(2):331-9 |
| SSID | ssj0007502 |
| Score | 2.5478334 |
| Snippet | The cortical representation of the acoustic features of continuous speech is the foundation of speech perception. In this study, noninvasive... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 78 |
| SubjectTerms | Adult Auditory Cortex - physiology Female Humans Information Storage and Retrieval - methods Male Models, Neurological Nerve Net - physiology Pattern Recognition, Physiological - physiology Speech Perception - physiology Young Adult |
| Title | Neural coding of continuous speech in auditory cortex during monaural and dichotic listening |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21975452 https://www.proquest.com/docview/912796855 |
| Volume | 107 |
| WOSCitedRecordID | wos000298642800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwKo_ykgfEZto4dh4TqhAVA1QdQOqAFDl-iCBwStMi-u85OylMiIElQxIrie_L3ee78x1C5wAZEzCRkl4uE8JyGpOcsZDoIKImDFSUSl_E9S4eDpPxOB01uTlVk1a51IleUatSOh95Nw1onEYJ51eTd-KaRrngatNBYxW1QmAyDtTx-KdYOBhDH-wEikHAaifLEpucdl_spW_b5Gt4_k4uvZEZbP3z9bbRZsMucb-Gww5a0XYXtfsWVtZvC3yBfb6nd6S30ZOrywE3y9KZL1wa7NLWCzsv5xWuJlrLZ1xYLNy2jXK6gKvTmf7E9b5GDA8UfriwCqvC7eQqJH51oHGelj30OLh5uL4lTa8FIlnCZkRoA1pPwmI5FAEYzlDlRnFlmOBSyDhhnOooDlTck4IFBs6FQphUmFzIlOeG7qM1W1p9iHAkVK4olyARypIeF8DZAlC6wAVBIr28g_ByCjPAsgtQCKvh27LvSeygg1oM2aSuuZGBYo1dO_Sjvwcfow2QKq39JCeoZeA_1qdoXX7Mimp65jECx-Ho_gsK6sjB |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+coding+of+continuous+speech+in+auditory+cortex+during+monaural+and+dichotic+listening&rft.jtitle=Journal+of+neurophysiology&rft.au=Ding%2C+Nai&rft.au=Simon%2C+Jonathan+Z&rft.date=2012-01-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=107&rft.issue=1&rft.spage=78&rft_id=info:doi/10.1152%2Fjn.00297.2011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1598&client=summon |