Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers
•Open-source 3-D printers makes distributed manufacturing technically feasible.•Self-replicating rapid prototypers (RepRaps) can manufacture half of their own parts.•Life-cycle economic analysis of RepRap technology for US household provided.•Open-source 3-D printers recover material costs in less t...
Uloženo v:
| Vydáno v: | Mechatronics (Oxford) Ročník 23; číslo 6; s. 713 - 726 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.09.2013
Elsevier |
| Témata: | |
| ISSN: | 0957-4158, 1873-4006 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Open-source 3-D printers makes distributed manufacturing technically feasible.•Self-replicating rapid prototypers (RepRaps) can manufacture half of their own parts.•Life-cycle economic analysis of RepRap technology for US household provided.•Open-source 3-D printers recover material costs in less than 1year, >200% ROI.•Open-source designs growing exponentially predicts distributed manufacturing scaling.
The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible and offers the potential for widespread proliferation of mechatronics education and participation. These self-replicating rapid prototypers (RepRaps) can manufacture approximately half of their own parts from sequential fused deposition of polymer feedstocks. RepRaps have been demonstrated for conventional prototyping and engineering, customizing scientific equipment, and appropriate technology-related manufacturing for sustainable development. However, in order for this technology to proliferate like 2-D electronic printers have, it must be economically viable for a typical household. This study reports on the life-cycle economic analysis (LCEA) of RepRap technology for an average US household. A new low-cost RepRap is described and the costs of materials and time to construct it are quantified. The economic costs of a selection of 20 open-source printable designs (representing less than 0.02% of those available), are typical of products that a household might purchase, are quantified for print time, energy, and filament consumption and compared to low and high Internet market prices for similar products without shipping costs. The results show that even making the extremely conservative assumption that the household would only use the printer to make the selected 20 products a year the avoided purchase cost savings would range from about $300 to $2000/year. Assuming the 25h of necessary printing for the selected products is evenly distributed throughout the year these savings provide a simple payback time for the RepRap in 4months to 2years and provide an ROI between >200% and >40%. As both upgrades and the components that are most likely to wear out in the RepRap can be printed and thus the lifetime of the distributing manufacturing can be substantially increased the unavoidable conclusion from this study is that the RepRap is an economically attractive investment for the average US household already. It appears clear that as RepRaps improve in reliability, continue to decline in cost and both the number and assumed utility of open-source designs continues growing exponentially, open-source 3-D printers will become a mass-market mechatronic device. |
|---|---|
| AbstractList | The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible. These self-replicating rapid prototypers (RepRaps) can manufacture approximately half of their own parts from sequential fused deposition of polymer feedstocks. RepRaps have been proposed and demonstrated to be useful for conventional prototyping and engineering, customizing scientific equipment, and appropriate technology-related manufacturing for sustainable development. However, in order for this technology to proliferate like 2-D electronic printers have, it must be economically viable for a typical household. This study reports on the life-cycle economic analysis (LCEA) of RepRap technology for an average U.S. household. A new low-cost RepRap is described and the costs of materials and time to construct it are quantified. The economic costs of a selection of twenty open-source printable designs (representing less than 0.04% of those available), are typical of products that a household might purchase, are quantified for print time, energy, and filament consumption and compared to low and high Internet market prices for similar products without shipping costs. The results show that even making the extremely conservative assumption that the household would only use the printer to make the selected twenty products a year the avoided purchase cost savings would range from about $300 to $2000/year. Assuming the 25 hours of necessary printing for the selected products is evenly distributed throughout the year these savings provide a simple payback time for the RepRap in 4 months to 2 years and provide an ROI between >200% and >40%. As both upgrades and the components that are most likely to wear out in the RepRap can be printed and thus the lifetime of the distributing manufacturing can be substantially increased the unavoidable conclusion from this study is that the RepRap is an economically attractive investment for the average U.S. household already. It appears clear that as RepRaps improve in reliability, continue to decline in cost and both the number and assumed utility of open-source designs continues growing exponentially, open-source 3-D printers will become a mass-market mechatronic device. The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible and offers the potential for widespread proliferation of mechatronics education and participation. These self-replicating rapid prototypers (RepRaps) can manufacture approximately half of their own parts from sequential fused deposition of polymer feedstocks. RepRaps have been demonstrated for conventional prototyping and engineering, customizing scientific equipment, and appropriate technology-related manufacturing for sustainable development. However, in order for this technology to proliferate like 2-D electronic printers have, it must be economically viable for a typical household. This study reports on the life-cycle economic analysis (LCEA) of RepRap technology for an average US household. A new low-cost RepRap is described and the costs of materials and time to construct it are quantified. The economic costs of a selection of 20 open-source printable designs (representing less than 0.02% of those available), are typical of products that a household might purchase, are quantified for print time, energy, and filament consumption and compared to low and high Internet market prices for similar products without shipping costs. The results show that even making the extremely conservative assumption that the household would only use the printer to make the selected 20 products a year the avoided purchase cost savings would range from about $300 to $2000/year. Assuming the 25 h of necessary printing for the selected products is evenly distributed throughout the year these savings provide a simple payback time for the RepRap in 4 months to 2 years and provide an ROI between >200% and >40%. As both upgrades and the components that are most likely to wear out in the RepRap can be printed and thus the lifetime of the distributing manufacturing can be substantially increased the unavoidable conclusion from this study is that the RepRap is an economically attractive investment for the average US household already. It appears clear that as RepRaps improve in reliability, continue to decline in cost and both the number and assumed utility of open-source designs continues growing exponentially, open-source 3-D printers will become a mass-market mechatronic device. •Open-source 3-D printers makes distributed manufacturing technically feasible.•Self-replicating rapid prototypers (RepRaps) can manufacture half of their own parts.•Life-cycle economic analysis of RepRap technology for US household provided.•Open-source 3-D printers recover material costs in less than 1year, >200% ROI.•Open-source designs growing exponentially predicts distributed manufacturing scaling. The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible and offers the potential for widespread proliferation of mechatronics education and participation. These self-replicating rapid prototypers (RepRaps) can manufacture approximately half of their own parts from sequential fused deposition of polymer feedstocks. RepRaps have been demonstrated for conventional prototyping and engineering, customizing scientific equipment, and appropriate technology-related manufacturing for sustainable development. However, in order for this technology to proliferate like 2-D electronic printers have, it must be economically viable for a typical household. This study reports on the life-cycle economic analysis (LCEA) of RepRap technology for an average US household. A new low-cost RepRap is described and the costs of materials and time to construct it are quantified. The economic costs of a selection of 20 open-source printable designs (representing less than 0.02% of those available), are typical of products that a household might purchase, are quantified for print time, energy, and filament consumption and compared to low and high Internet market prices for similar products without shipping costs. The results show that even making the extremely conservative assumption that the household would only use the printer to make the selected 20 products a year the avoided purchase cost savings would range from about $300 to $2000/year. Assuming the 25h of necessary printing for the selected products is evenly distributed throughout the year these savings provide a simple payback time for the RepRap in 4months to 2years and provide an ROI between >200% and >40%. As both upgrades and the components that are most likely to wear out in the RepRap can be printed and thus the lifetime of the distributing manufacturing can be substantially increased the unavoidable conclusion from this study is that the RepRap is an economically attractive investment for the average US household already. It appears clear that as RepRaps improve in reliability, continue to decline in cost and both the number and assumed utility of open-source designs continues growing exponentially, open-source 3-D printers will become a mass-market mechatronic device. |
| Author | Anzalone, G.C. Irwin, J.L. Oppliger, D. Wittbrodt, B.T. Glover, A.G. Laureto, J. Pearce, J.M. |
| Author_xml | – sequence: 1 givenname: B.T. surname: Wittbrodt fullname: Wittbrodt, B.T. organization: Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 2 givenname: A.G. surname: Glover fullname: Glover, A.G. organization: Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 3 givenname: J. surname: Laureto fullname: Laureto, J. organization: Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 4 givenname: G.C. surname: Anzalone fullname: Anzalone, G.C. organization: Civil and Environmental Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 5 givenname: D. surname: Oppliger fullname: Oppliger, D. organization: Engineering Fundamentals, Michigan Technological University, Houghton, MI, USA – sequence: 6 givenname: J.L. surname: Irwin fullname: Irwin, J.L. organization: Mechanical Engineering Technology, Michigan Technological University, Houghton, MI, USA – sequence: 7 givenname: J.M. surname: Pearce fullname: Pearce, J.M. email: pearce@mtu.edu organization: Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI, USA |
| BackLink | https://hal.science/hal-02119704$$DView record in HAL |
| BookMark | eNqNkMFq3DAQhkVIIJuk72B6ag92NbZk2T01JE1TWOilpUehHY-6WmxpK8kJ-_b1sqGUnnIamPn_b-C7Yuc-eGLsLfAKOLQfdtVEuDU5Bu8wVTWHpuJtxXl9xlbQqaYUnLfnbMV7qUoBsrtkVyntOAcFoFbs59pZKvGAIxWEwYfJYWG8GQ_JpSLYYnApR7eZMw3FZPxsDeY5Ov-reHZ5W4Q9-TKFOSIVTXlf7JdTpphu2IU1Y6I3L_Oa_Xj4_P3usVx_-_L17nZdouhELg23fc_7WnZGSBISTN2Sgg21y0WSUrJTiBI2tlPCthJ7pUSHgxpISdsOzTV7f-JuzaiX55OJBx2M04-3a33c8RqgV1w8wZJ9d8ruY_g9U8p6cglpHI2nMCcNEhrRgeLdEv14imIMKUWyf9nA9dG83ul_zeujec1bvZhfyp_-K6PLJrvgczRufB3i_oSgxd2To6gTOvJIg4uEWQ_BvQbzB4wHq40 |
| CitedBy_id | crossref_primary_10_1177_09544054221113378 crossref_primary_10_3390_inventions6040071 crossref_primary_10_1108_RPJ_04_2023_0122 crossref_primary_10_12688_f1000research_22942_2 crossref_primary_10_12688_f1000research_22942_1 crossref_primary_10_1371_journal_pone_0147399 crossref_primary_10_1007_s00158_015_1274_4 crossref_primary_10_1186_s40669_014_0001_z crossref_primary_10_3390_electronics10040483 crossref_primary_10_1108_RPJ_01_2024_0050 crossref_primary_10_1371_journal_pone_0134989 crossref_primary_10_1108_RPJ_02_2017_0031 crossref_primary_10_1016_j_spc_2023_08_009 crossref_primary_10_1016_j_rcim_2018_07_008 crossref_primary_10_1080_23311916_2016_1261503 crossref_primary_10_1089_3dp_2014_0015 crossref_primary_10_1016_j_jclepro_2021_128944 crossref_primary_10_1016_j_compositesb_2019_107325 crossref_primary_10_1108_RPJ_09_2014_0123 crossref_primary_10_1016_j_addma_2020_101749 crossref_primary_10_1088_1757_899X_949_1_012042 crossref_primary_10_1002_adma_201902086 crossref_primary_10_1039_C6CS00349D crossref_primary_10_1186_s40807_018_0051_6 crossref_primary_10_3390_su8121341 crossref_primary_10_3390_polym15092165 crossref_primary_10_1016_j_addma_2020_101070 crossref_primary_10_1108_JMTM_01_2016_0001 crossref_primary_10_1108_JMTM_01_2016_0002 crossref_primary_10_1088_2053_1613_aac4f9 crossref_primary_10_1017_S1368980017000726 crossref_primary_10_1007_s12046_025_02669_2 crossref_primary_10_1089_end_2014_0280 crossref_primary_10_1109_COMST_2019_2938259 crossref_primary_10_1016_j_addma_2021_102548 crossref_primary_10_1016_j_mechatronics_2017_06_008 crossref_primary_10_3390_ma11081413 crossref_primary_10_1016_j_techfore_2017_06_022 crossref_primary_10_3390_app142411819 crossref_primary_10_1016_j_matpr_2022_11_010 crossref_primary_10_1016_j_mechatronics_2018_07_005 crossref_primary_10_1371_journal_pone_0318987 crossref_primary_10_1007_s00170_023_11985_y crossref_primary_10_1016_j_ohx_2025_e00702 crossref_primary_10_1016_j_addma_2017_03_005 crossref_primary_10_3390_app14199139 crossref_primary_10_1016_j_mechatronics_2016_04_007 crossref_primary_10_1080_0194262X_2017_1392920 crossref_primary_10_3390_instruments4030018 crossref_primary_10_1051_matecconf_20179403004 crossref_primary_10_2217_3dp_2022_0007 crossref_primary_10_1002_adma_202000556 crossref_primary_10_3390_healthcare7030103 crossref_primary_10_1002_ange_201612192 crossref_primary_10_1007_s00170_023_12625_1 crossref_primary_10_1088_1757_899X_920_1_012015 crossref_primary_10_1155_2020_8869362 crossref_primary_10_1371_journal_pone_0169832 crossref_primary_10_1089_3dp_2016_0057 crossref_primary_10_1016_j_resconrec_2019_104531 crossref_primary_10_1016_j_jclepro_2020_121602 crossref_primary_10_1016_j_jmatprotec_2015_06_038 crossref_primary_10_1057_jibs_2015_47 crossref_primary_10_3390_jmmp8020066 crossref_primary_10_1007_s40964_017_0019_x crossref_primary_10_1515_eng_2019_0056 crossref_primary_10_4028_www_scientific_net_AMM_644_650_2386 crossref_primary_10_4028_www_scientific_net_AMM_670_671_936 crossref_primary_10_1051_matecconf_201925702004 crossref_primary_10_1016_j_trac_2020_116004 crossref_primary_10_1089_3dp_2022_0012 crossref_primary_10_1038_s41598_018_33863_4 crossref_primary_10_1016_j_jmsy_2022_02_007 crossref_primary_10_1016_j_addma_2018_04_011 crossref_primary_10_1155_2022_2697036 crossref_primary_10_1016_j_addma_2019_100988 crossref_primary_10_3390_mi9040191 crossref_primary_10_3390_ma17010090 crossref_primary_10_3390_polym13203545 crossref_primary_10_1007_s00170_017_1543_z crossref_primary_10_1007_s00170_015_7970_9 crossref_primary_10_1016_j_geoforum_2015_01_003 crossref_primary_10_1016_j_jclepro_2020_123689 crossref_primary_10_1016_j_resconrec_2017_09_023 crossref_primary_10_3390_infrastructures3010005 crossref_primary_10_3390_met10081061 crossref_primary_10_3390_technologies9020024 crossref_primary_10_1109_TEM_2021_3059231 crossref_primary_10_1016_j_addma_2016_04_006 crossref_primary_10_1108_RPJ_09_2014_0113 crossref_primary_10_1051_mfreview_2016011 crossref_primary_10_3390_inventions3030044 crossref_primary_10_1017_dsj_2023_19 crossref_primary_10_1016_j_jclepro_2014_02_009 crossref_primary_10_1016_j_addma_2017_12_004 crossref_primary_10_1002_adem_202100535 crossref_primary_10_1016_j_esd_2016_08_001 crossref_primary_10_1016_j_foodhyd_2018_08_010 crossref_primary_10_3390_technologies6010030 crossref_primary_10_1007_s40799_018_0287_5 crossref_primary_10_1007_s10965_023_03742_2 crossref_primary_10_3390_resources8010020 crossref_primary_10_1016_j_apsusc_2017_09_226 crossref_primary_10_3390_inventions5030026 crossref_primary_10_1155_2017_7849670 crossref_primary_10_1371_journal_pone_0321963 crossref_primary_10_3390_inventions3030064 crossref_primary_10_1007_s10956_020_09873_1 crossref_primary_10_1145_3007205 crossref_primary_10_1002_ppap_201700141 crossref_primary_10_1016_j_jmsy_2020_10_009 crossref_primary_10_1016_j_resconrec_2020_104810 crossref_primary_10_1016_j_jvlc_2015_01_004 crossref_primary_10_1016_j_techsoc_2015_03_003 crossref_primary_10_1108_JMTM_12_2015_0117 crossref_primary_10_3390_inventions3040078 crossref_primary_10_1080_00207543_2016_1198505 crossref_primary_10_1007_s00170_021_06918_6 crossref_primary_10_1007_s10098_024_02902_2 crossref_primary_10_1016_j_acalib_2023_102768 crossref_primary_10_3390_polym14102105 crossref_primary_10_3390_technologies7040074 crossref_primary_10_1093_scipol_scv034 crossref_primary_10_1002_anie_201612192 crossref_primary_10_3390_technologies10020053 crossref_primary_10_1016_j_susmat_2023_e00730 crossref_primary_10_1016_j_addma_2022_102690 crossref_primary_10_3390_app10196671 crossref_primary_10_3390_safety8030055 crossref_primary_10_1016_j_matdes_2015_10_123 crossref_primary_10_1007_s12008_020_00659_8 crossref_primary_10_3390_ma13194273 crossref_primary_10_1007_s00170_021_07431_6 crossref_primary_10_1016_j_jclepro_2022_134291 crossref_primary_10_3390_designs4040050 crossref_primary_10_1016_j_renene_2024_120651 crossref_primary_10_1089_3dp_2019_0195 crossref_primary_10_3390_geriatrics3040089 crossref_primary_10_1108_RPJ_01_2018_0027 crossref_primary_10_3390_jmmp4020049 crossref_primary_10_3390_technologies5020036 crossref_primary_10_1007_s00170_016_8968_7 crossref_primary_10_3390_jmmp9020065 crossref_primary_10_1089_end_2014_0796 crossref_primary_10_1007_s11081_024_09917_0 crossref_primary_10_1016_j_msea_2016_07_099 crossref_primary_10_1017_S0885715614001092 crossref_primary_10_1016_j_addma_2020_101473 crossref_primary_10_1007_s40964_019_00075_9 crossref_primary_10_1016_j_addma_2021_101850 crossref_primary_10_1016_j_compstruct_2019_01_103 crossref_primary_10_3390_jeta3030021 crossref_primary_10_1007_s40964_024_00773_z crossref_primary_10_3390_polym11050760 crossref_primary_10_1016_j_ibusrev_2018_04_003 crossref_primary_10_1080_17452759_2017_1418900 crossref_primary_10_1016_j_ijpe_2022_108654 crossref_primary_10_3390_ma12101642 crossref_primary_10_1016_j_mser_2025_100931 crossref_primary_10_1108_RPJ_09_2015_0122 crossref_primary_10_1016_j_rcim_2018_05_010 crossref_primary_10_3390_designs9040080 crossref_primary_10_1016_j_addma_2017_05_013 crossref_primary_10_1108_RPJ_04_2018_0085 crossref_primary_10_1115_1_4068668 crossref_primary_10_3390_technologies5010007 crossref_primary_10_1016_j_ijpe_2019_05_005 crossref_primary_10_3390_jmmp1020015 crossref_primary_10_1016_j_engfailanal_2024_108121 crossref_primary_10_4028_www_scientific_net_AMM_533_495 crossref_primary_10_1007_s13132_025_02783_w crossref_primary_10_1016_j_jclepro_2015_05_009 crossref_primary_10_1016_j_solener_2016_06_002 crossref_primary_10_3390_su12030929 crossref_primary_10_1007_s40319_016_0487_4 crossref_primary_10_1108_JEC_08_2016_0029 crossref_primary_10_1016_j_jmsy_2022_10_009 crossref_primary_10_1016_j_wpi_2015_07_003 crossref_primary_10_1016_j_wpi_2022_102150 crossref_primary_10_1111_jiec_12618 crossref_primary_10_3390_su17073082 crossref_primary_10_3390_su13095067 crossref_primary_10_3390_machines4010003 crossref_primary_10_1080_17452759_2018_1521248 crossref_primary_10_1016_j_addma_2018_07_015 crossref_primary_10_1016_j_jclepro_2019_118313 crossref_primary_10_1515_zkri_2014_1826 crossref_primary_10_4028_www_scientific_net_KEM_777_499 crossref_primary_10_3390_technologies5030045 crossref_primary_10_1108_IJPDLM_03_2018_0139 crossref_primary_10_1016_j_ifacol_2015_06_054 crossref_primary_10_1002_macp_201800498 crossref_primary_10_1007_s00170_024_14483_x crossref_primary_10_3390_technologies11020062 crossref_primary_10_1007_s00170_020_06201_0 crossref_primary_10_1134_S0965545X22030117 crossref_primary_10_1109_MCE_2022_3216944 crossref_primary_10_1111_jpim_12754 crossref_primary_10_3917_jie_pr1_0123 crossref_primary_10_1016_j_resconrec_2015_02_004 crossref_primary_10_1016_j_swevo_2024_101670 crossref_primary_10_3390_technologies2020076 crossref_primary_10_1016_j_addma_2022_102995 crossref_primary_10_1089_3dp_2020_0022 crossref_primary_10_1016_j_addma_2022_103050 crossref_primary_10_1007_s40964_017_0027_x crossref_primary_10_1016_j_trsl_2019_05_005 crossref_primary_10_3390_inventions8020061 crossref_primary_10_1016_j_addma_2015_09_006 crossref_primary_10_1016_j_matdes_2014_02_038 crossref_primary_10_1109_ACCESS_2013_2293018 crossref_primary_10_3390_jpm12091498 crossref_primary_10_1108_JMTM_03_2018_0091 crossref_primary_10_1109_MTS_2015_2461197 crossref_primary_10_1007_s00170_023_10992_3 crossref_primary_10_1016_j_addma_2019_03_006 crossref_primary_10_1016_j_procir_2018_08_317 crossref_primary_10_1002_pi_6079 crossref_primary_10_1088_1757_899X_1001_1_012096 crossref_primary_10_1002_pi_6196 crossref_primary_10_1108_RPJ_12_2015_0187 crossref_primary_10_4028_www_scientific_net_AMM_731_260 crossref_primary_10_1016_j_addma_2017_04_002 crossref_primary_10_3390_technologies5040071 crossref_primary_10_1108_JMTM_06_2016_0081 crossref_primary_10_1116_6_0000178 crossref_primary_10_3390_batteries10030110 crossref_primary_10_3390_inventions1040024 crossref_primary_10_1016_j_procir_2016_03_048 crossref_primary_10_1007_s40964_019_00089_3 crossref_primary_10_1016_j_polymertesting_2018_04_029 crossref_primary_10_1002_cctc_201701619 crossref_primary_10_1108_SCM_09_2017_0305 crossref_primary_10_3390_inventions8030079 crossref_primary_10_1016_j_addma_2017_10_007 crossref_primary_10_1016_j_susmat_2025_e01430 crossref_primary_10_1108_JMTM_01_2023_0010 crossref_primary_10_1021_acs_jchemed_5b00168 crossref_primary_10_3390_inventions8060141 |
| Cites_doi | 10.1108/13552541311302978 10.1371/journal.pone.0059840 10.1080/00207540903479786 10.1557/opl.2013.258 10.1126/science.1228183 10.1038/nchem.1313 10.1108/01445150310698634 10.1557/opl.2013.319 10.1108/13552540710776197 10.1371/journal.pone.0049365 10.1017/S026357471000069X 10.1016/j.addr.2004.05.001 10.3139/9783446402690.fm 10.1109/ICOM.2011.5937174 10.3390/s130405338 10.1016/j.phpro.2010.08.082 10.1108/13552541111124798 10.1016/S0957-4158(02)00007-7 10.5539/jsd.v3n4p17 10.1289/ehp.115-a449 10.1016/j.mechatronics.2006.05.002 10.1108/aa.2005.03325daa.002 10.9781/ijimai.2011.145 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.mechatronics.2013.06.002 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1873-4006 |
| EndPage | 726 |
| ExternalDocumentID | oai:HAL:hal-02119704v1 10_1016_j_mechatronics_2013_06_002 S0957415813001153 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c484t-a0f9909258a45e451a26e71be6a0f5e77587cc51bf874f65c97748cd7de75f6d3 |
| ISICitedReferencesCount | 287 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324719800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4158 |
| IngestDate | Tue Oct 14 20:53:25 EDT 2025 Thu Oct 02 09:50:29 EDT 2025 Sat Nov 29 06:02:46 EST 2025 Tue Nov 18 22:20:42 EST 2025 Fri Feb 23 02:28:20 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | 3-D printing Rapid prototyping RepRap Open-source hardware Additive-layer manufacturing Distributed manufacturing distributed manufacturing open-source hardware rapid prototyping additive-layer manufacturing |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c484t-a0f9909258a45e451a26e71be6a0f5e77587cc51bf874f65c97748cd7de75f6d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0001-9802-3056 |
| OpenAccessLink | https://hal.science/hal-02119704 |
| PQID | 1513481708 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02119704v1 proquest_miscellaneous_1513481708 crossref_primary_10_1016_j_mechatronics_2013_06_002 crossref_citationtrail_10_1016_j_mechatronics_2013_06_002 elsevier_sciencedirect_doi_10_1016_j_mechatronics_2013_06_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Mechatronics (Oxford) |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Petrovic, Gonzalez, Ferrando, Gordillo, Puchades, Grinan (b0030) 2011; 49 Malone, Lipson (b0065) 2007; 13 Sells, Bailard, Smith, Bowyer (b0095) 2010; vol. 1 Baechler, DeVuono, Pearce (b0120) 2013; 19 Zhang, Anzalone, Faria, Pearce (b0330) 2013; 8 Arnott (b0100) 2008 Symes, Kitson, Yan, Richmond, Cooper (b0135) 2012; 4 Printrbot, Printrbot Kits Shapeways, Shapeways – make & share your products with 3D printing Autodesk 123D – 123D Catch turn photos into 3D models Anzalone, Glover, Pearce (b0260) 2013; 13 Corney (b0060) 2005; 25 Kentzer J, Koch B, Thiim M, Jones RW, Villumsen E. An open sorurce hardware-based mechatronics project: the replicating rapid 3-D printer. In: Presented at the 4th international conference on mecatronics; 2011. p. 1–8. Milling and drilling head, RepRapWiki Holland D, O’Donnell G, Bennett G. Open design and the reprap project. In: Presented at the 27th international manufacturing conference; 2010. Thingiverse – Digital designs for physical objects, Thingiverse Newell, Pizer (b0245) 2001 MakerScanner – open source 3D scanning Tan A, Nxon T. Rapid prototype manufacturing system. Austria: School of Mechanical Engineering, The University of Adelaide; 2007. Kreiger M, Anzalone GC, Mulder ML, Glover A, Pearce JM. Distributed recycling of post-consumer plastic waste in rural areas. In: MRS online proceedings, library, 1492, mrsf12-1492-g04-06; 2013. Bradshaw, Bowyer, Haufe (b0075) 2010; 7 TrinityLab, Aluminatus TrinityOne 3d printer, TrinityLab McNaney T. Filabot: plastic filament maker 2013 [accessed 09.06.13]. Mann A. Feeding the final frontier: 3-D printers could make astronaut meals, wired science Redlich T, Wulfsberg JP, Bruhns FL. Virtual factory for customized open production. In: Presented at the 15th international product development management conference, Tagungsband; 2008. US energy information administration, Table 5.6. A average retail price of electricity to ultimate customers by end use sector, EIA-electricity data Gumbrecht J. The high-tech return of high school shop class. Schools of Thought Blog, CNN Tsang, Bhatia (b0150) 2004; 56 The economist, a third industrial revolution: special report: manufacturing and innovation. The Economist; 2012. Printing material suppliers, RepRapWiki Pearce, Dekenberger, Zielonka (b0175) 2009; 17 Caulk extruder, Thingiverse Gebhardt A. Rapid prototyping. Hanser-Gardner, 2003, 3rd German ed., Hanser; 2007. 2013 [accessed 25.02.13]. Arduino Gonzalez-Gomez, Valero-Gomez, Prieto-Moreno, Abderrahim (b0115) 2012 3Ders, Price Compare – 3d Printers Cendrowski (b0300) 2012 Crane, Tuckerman, Nielson (b0025) 2011; 17 Raspberry Pi Weinberg M. It will be awesome if they don’t screw it up Lipson, Kurman (b0040) 2013 Bayless, Chen, Dai (b0145) 2010 Type A machines, series 1 3D printers, Type A machines Make. The ultimate guide to 3D printing. O’ Reilly, Sebastopol (CA); 2013. Upcraft, Fletcher (b0035) 2012; 23 Claudio (b0290) 2007; 115 Toyserkani, Khajepour (b0010) 2006; 16 2010 [accessed: 25.02.13]. Kreiger MA, Pearce JM. Environmental impacts of distributed manufacturing from 3-D printing of polymer components and products. MRS online proceedings, 1492, mrsf12-1492-g01-02; 2013. About My3DScanner OpenSCAD, OpenSCAD – the programmers solid 3D CAD Modeller Leigh, Bradley, Purssell, Billson (b0140) 2012; 7 Ponoko, 3D printing, laser cutting – design, make & build your own products with Ponoko Antonio, Save $300 – learn to shave like a man, real men real style Cura 2013 [accessed 28.02.13]. LulzBot, AO-101 3D printer, LulzBot Cano (b0090) 2011; 1 2013 [accessed 06.06.13]. Next generation science standards Braanker GB, Duwel JE, Flohil JJ, Tokaya GE. Developing a plastics recycling add-on for the RepRap 3D printer. Delft University of Technology, Prototyping Lab. Jones, Haufe, Sells (b0055) 2011; 29 Glesner, Kirschbaum, Renner, Voss (b0005) 2002; 12 Grujovic N, Radovic M, Kanjevac V, Borota J, Grujovic G, Divac D. 3D printing technology in education environment. In: Presented at the 34th international conference on, production engineering; 2011. DAVID 3D scanner Lyman H. Lyman filament extruder 2013. [accessed 25.02.13]. BeagleBoard-bone, BealgeBoard Anderson (b0205) 2012 Pearce, Blair, Laciak, Andrews, Nosrat (b0070) 2010; 3 Gebhardt, Schmidt, Hotter, Sokalla, Sokalla (b0020) 2010; 5 Pearce (b0130) 2012; 337 Arduino, ArduinoBoardDue Gershenfeld (b0050) 2005 2013. [accessed: 25.02.13]. ReconstructMe. Reconstruct your world with ReconstructMe Corney (10.1016/j.mechatronics.2013.06.002_b0060) 2005; 25 10.1016/j.mechatronics.2013.06.002_b0080 Tsang (10.1016/j.mechatronics.2013.06.002_b0150) 2004; 56 10.1016/j.mechatronics.2013.06.002_b0280 Petrovic (10.1016/j.mechatronics.2013.06.002_b0030) 2011; 49 Cano (10.1016/j.mechatronics.2013.06.002_b0090) 2011; 1 Bradshaw (10.1016/j.mechatronics.2013.06.002_b0075) 2010; 7 10.1016/j.mechatronics.2013.06.002_b0355 Gonzalez-Gomez (10.1016/j.mechatronics.2013.06.002_b0115) 2012 10.1016/j.mechatronics.2013.06.002_b0235 10.1016/j.mechatronics.2013.06.002_b0315 Zhang (10.1016/j.mechatronics.2013.06.002_b0330) 2013; 8 10.1016/j.mechatronics.2013.06.002_b0270 10.1016/j.mechatronics.2013.06.002_b0195 10.1016/j.mechatronics.2013.06.002_b0350 Gebhardt (10.1016/j.mechatronics.2013.06.002_b0020) 2010; 5 10.1016/j.mechatronics.2013.06.002_b0230 10.1016/j.mechatronics.2013.06.002_b0110 Baechler (10.1016/j.mechatronics.2013.06.002_b0120) 2013; 19 Newell (10.1016/j.mechatronics.2013.06.002_b0245) 2001 10.1016/j.mechatronics.2013.06.002_b0275 10.1016/j.mechatronics.2013.06.002_b0155 Anderson (10.1016/j.mechatronics.2013.06.002_b0205) 2012 10.1016/j.mechatronics.2013.06.002_b0310 10.1016/j.mechatronics.2013.06.002_b0190 Malone (10.1016/j.mechatronics.2013.06.002_b0065) 2007; 13 Pearce (10.1016/j.mechatronics.2013.06.002_b0175) 2009; 17 10.1016/j.mechatronics.2013.06.002_b0345 Arnott (10.1016/j.mechatronics.2013.06.002_b0100) 2008 10.1016/j.mechatronics.2013.06.002_b0225 10.1016/j.mechatronics.2013.06.002_b0105 10.1016/j.mechatronics.2013.06.002_b0305 Crane (10.1016/j.mechatronics.2013.06.002_b0025) 2011; 17 Jones (10.1016/j.mechatronics.2013.06.002_b0055) 2011; 29 10.1016/j.mechatronics.2013.06.002_b0185 10.1016/j.mechatronics.2013.06.002_b0340 10.1016/j.mechatronics.2013.06.002_b0220 Gershenfeld (10.1016/j.mechatronics.2013.06.002_b0050) 2005 10.1016/j.mechatronics.2013.06.002_b0265 Pearce (10.1016/j.mechatronics.2013.06.002_b0130) 2012; 337 10.1016/j.mechatronics.2013.06.002_b0180 Claudio (10.1016/j.mechatronics.2013.06.002_b0290) 2007; 115 10.1016/j.mechatronics.2013.06.002_b0015 10.1016/j.mechatronics.2013.06.002_b0335 10.1016/j.mechatronics.2013.06.002_b0215 Glesner (10.1016/j.mechatronics.2013.06.002_b0005) 2002; 12 Toyserkani (10.1016/j.mechatronics.2013.06.002_b0010) 2006; 16 Pearce (10.1016/j.mechatronics.2013.06.002_b0070) 2010; 3 10.1016/j.mechatronics.2013.06.002_b0250 10.1016/j.mechatronics.2013.06.002_b0295 Sells (10.1016/j.mechatronics.2013.06.002_b0095) 2010; vol. 1 Bayless (10.1016/j.mechatronics.2013.06.002_b0145) 2010 10.1016/j.mechatronics.2013.06.002_b0210 10.1016/j.mechatronics.2013.06.002_b0255 10.1016/j.mechatronics.2013.06.002_b0170 Cendrowski (10.1016/j.mechatronics.2013.06.002_b0300) 2012 Upcraft (10.1016/j.mechatronics.2013.06.002_b0035) 2012; 23 10.1016/j.mechatronics.2013.06.002_b0125 10.1016/j.mechatronics.2013.06.002_b0325 Anzalone (10.1016/j.mechatronics.2013.06.002_b0260) 2013; 13 Symes (10.1016/j.mechatronics.2013.06.002_b0135) 2012; 4 10.1016/j.mechatronics.2013.06.002_b0160 10.1016/j.mechatronics.2013.06.002_b0085 10.1016/j.mechatronics.2013.06.002_b0240 10.1016/j.mechatronics.2013.06.002_b0285 Leigh (10.1016/j.mechatronics.2013.06.002_b0140) 2012; 7 10.1016/j.mechatronics.2013.06.002_b0165 Lipson (10.1016/j.mechatronics.2013.06.002_b0040) 2013 10.1016/j.mechatronics.2013.06.002_b0045 10.1016/j.mechatronics.2013.06.002_b0320 10.1016/j.mechatronics.2013.06.002_b0200 |
| References_xml | – volume: 8 start-page: e59840 year: 2013 ident: b0330 article-title: Open-source 3d-printable optics equipment publication-title: PLoS One – reference: Shapeways, Shapeways – make & share your products with 3D printing, < – reference: >; 2013 [accessed 25.02.13]. – reference: Type A machines, series 1 3D printers, Type A machines, < – reference: BeagleBoard-bone, BealgeBoard, < – reference: Tan A, Nxon T. Rapid prototype manufacturing system. Austria: School of Mechanical Engineering, The University of Adelaide; 2007. – volume: 25 start-page: 257 year: 2005 ident: b0060 article-title: The next and last industrial revolution? publication-title: Assembly Autom – reference: >; 2013. [accessed: 25.02.13]. – volume: 337 start-page: 1303 year: 2012 end-page: 1304 ident: b0130 article-title: Building research equipment with free, open-source hardware publication-title: Science – year: 2012 ident: b0300 article-title: How long does a razor really last? Gillette comes clean publication-title: Fortune – reference: About My3DScanner, < – reference: >; 2010 [accessed: 25.02.13]. – volume: 16 start-page: 631 year: 2006 end-page: 641 ident: b0010 article-title: A mechatronics approach to laser powder deposition process publication-title: Mechatronics – reference: >; 2013 [accessed 06.06.13]. – reference: >; 2013 [accessed 28.02.13]. – volume: 12 start-page: 987 year: 2002 end-page: 998 ident: b0005 article-title: State-of-the-art in rapid prototyping for mechatronic systems publication-title: Mechatronics – reference: Printing material suppliers, RepRapWiki, < – year: 2008 ident: b0100 article-title: The Reprap project – open source meets 3D printing publication-title: Comput Inf Sci Sem Ser – volume: 49 start-page: 1061 year: 2011 end-page: 1079 ident: b0030 article-title: Additive layered manufacturing: sectors of industrial application shown though case studies publication-title: Int J Prod Res – volume: 29 start-page: 177 year: 2011 end-page: 191 ident: b0055 article-title: RepRap – the replicating rapid prototyper publication-title: Robotica – volume: 7 start-page: 1 year: 2012 ident: b0140 article-title: A simple, low-cost conductive composite material for 3D printing of electronic sensors publication-title: PLoS One – year: 2010 ident: b0145 article-title: Wire embedding 3D printer – volume: 17 start-page: 211 year: 2011 end-page: 217 ident: b0025 article-title: Self-assembly in additive manufacturing: opportunities and obstacles publication-title: Rapid Prototyp J – volume: 13 start-page: 245 year: 2007 end-page: 255 ident: b0065 article-title: Fab@Home: the personal desktop fabricator kit publication-title: Rapid Prototyp J – volume: 56 start-page: 1635 year: 2004 end-page: 1647 ident: b0150 article-title: Three-dimensional tissue fabrication publication-title: Adv Drug Del Rev – reference: McNaney T. Filabot: plastic filament maker, < – volume: 115 start-page: 449 year: 2007 end-page: 454 ident: b0290 article-title: Waste coture: environment impact of the clothing industry publication-title: Environ Health Perspect – reference: Ponoko, 3D printing, laser cutting – design, make & build your own products with Ponoko, < – reference: Milling and drilling head, RepRapWiki, < – reference: Redlich T, Wulfsberg JP, Bruhns FL. Virtual factory for customized open production. In: Presented at the 15th international product development management conference, Tagungsband; 2008. – volume: 23 start-page: 318 year: 2012 end-page: 330 ident: b0035 article-title: The rapid prototyping technologies publication-title: Assembly Autom – reference: TrinityLab, Aluminatus TrinityOne 3d printer, TrinityLab, < – year: 2012 ident: b0115 publication-title: A new open source 3D-Printable mobile robotic platform for education – reference: Printrbot, Printrbot Kits, – reference: ReconstructMe. Reconstruct your world with ReconstructMe, < – reference: Cura, < – year: 2001 ident: b0245 article-title: Discounting the benefits of climate change mitigation: how much do uncertain rates increase valuation? publication-title: Economic technical series – reference: Thingiverse – Digital designs for physical objects, Thingiverse, < – reference: Make. The ultimate guide to 3D printing. O’ Reilly, Sebastopol (CA); 2013. – reference: DAVID 3D scanner, < – reference: US energy information administration, Table 5.6. A average retail price of electricity to ultimate customers by end use sector, EIA-electricity data, < – reference: MakerScanner – open source 3D scanning, < – volume: 1 start-page: 30 year: 2011 end-page: 32 ident: b0090 article-title: The Cambrain exposion of popular 3D printing publication-title: Int J Artif Int Interact Multimedia – reference: Caulk extruder, Thingiverse, < – year: 2005 ident: b0050 article-title: Fab: the coming revolution on your desktop – from personal computers to personal fabrication – reference: Holland D, O’Donnell G, Bennett G. Open design and the reprap project. In: Presented at the 27th international manufacturing conference; 2010. – reference: ; 2013 [accessed 25.02.13]. – reference: Lyman H. Lyman filament extruder, < – volume: 13 start-page: 5338 year: 2013 end-page: 5346 ident: b0260 article-title: Open-source colorimeter publication-title: Sensors – reference: Gumbrecht J. The high-tech return of high school shop class. Schools of Thought Blog, CNN, < – reference: 3Ders, Price Compare – 3d Printers, < – reference: Next generation science standards, < – volume: 7 start-page: 1 year: 2010 end-page: 27 ident: b0075 article-title: The intellectual property implications of low-cost 3D printing publication-title: SCRIPTed – reference: LulzBot, AO-101 3D printer, LulzBot, < – year: 2013 ident: b0040 article-title: Fabricated: the new world of 3D printing – volume: 17 start-page: 61 year: 2009 end-page: 80 ident: b0175 article-title: Accelerating applied sustainability by utilizing return on investment for energy conservation measures publication-title: Int J Energy Env Econom – reference: The economist, a third industrial revolution: special report: manufacturing and innovation. The Economist; 2012. – reference: Kreiger M, Anzalone GC, Mulder ML, Glover A, Pearce JM. Distributed recycling of post-consumer plastic waste in rural areas. In: MRS online proceedings, library, 1492, mrsf12-1492-g04-06; 2013. – volume: vol. 1 year: 2010 ident: b0095 article-title: Reprap: the replicating rapid prototype: maximizing curstomizability by breeding the means of production publication-title: Handbook of research in mass customization and personalization: strategies and concepts – reference: Kentzer J, Koch B, Thiim M, Jones RW, Villumsen E. An open sorurce hardware-based mechatronics project: the replicating rapid 3-D printer. In: Presented at the 4th international conference on mecatronics; 2011. p. 1–8. – reference: Braanker GB, Duwel JE, Flohil JJ, Tokaya GE. Developing a plastics recycling add-on for the RepRap 3D printer. Delft University of Technology, Prototyping Lab. – year: 2012 ident: b0205 article-title: Makers: the new industrial revolution – reference: Kreiger MA, Pearce JM. Environmental impacts of distributed manufacturing from 3-D printing of polymer components and products. MRS online proceedings, 1492, mrsf12-1492-g01-02; 2013. – reference: Mann A. Feeding the final frontier: 3-D printers could make astronaut meals, wired science, < – volume: 4 start-page: 349 year: 2012 end-page: 354 ident: b0135 article-title: Integrated 3D-printed reactionware for chemical synthesis and analysis publication-title: Nat Chem – volume: 3 start-page: 17 year: 2010 end-page: 29 ident: b0070 article-title: 3-D printing of open source appropriate technologies for self-directed sustainable development publication-title: J Sustain Dev – reference: Grujovic N, Radovic M, Kanjevac V, Borota J, Grujovic G, Divac D. 3D printing technology in education environment. In: Presented at the 34th international conference on, production engineering; 2011. – reference: Weinberg M. It will be awesome if they don’t screw it up, < – reference: Autodesk 123D – 123D Catch turn photos into 3D models, < – reference: Arduino, < – reference: Antonio, Save $300 – learn to shave like a man, real men real style, < – volume: 5 start-page: 543 year: 2010 end-page: 549 ident: b0020 article-title: Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry publication-title: Phys Procedia – reference: Raspberry Pi, < – reference: OpenSCAD, OpenSCAD – the programmers solid 3D CAD Modeller, < – reference: >; 2013. [accessed 25.02.13]. – reference: >; 2013 [accessed 09.06.13]. – volume: 19 start-page: 118 year: 2013 end-page: 125 ident: b0120 article-title: Distributed recycling of waste polymer into reprap feedstock publication-title: Rapid Protyp J – reference: Gebhardt A. Rapid prototyping. Hanser-Gardner, 2003, 3rd German ed., Hanser; 2007. – reference: Arduino, ArduinoBoardDue, < – year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0115 – year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0300 article-title: How long does a razor really last? Gillette comes clean publication-title: Fortune – ident: 10.1016/j.mechatronics.2013.06.002_b0085 – ident: 10.1016/j.mechatronics.2013.06.002_b0335 – ident: 10.1016/j.mechatronics.2013.06.002_b0255 – ident: 10.1016/j.mechatronics.2013.06.002_b0270 – ident: 10.1016/j.mechatronics.2013.06.002_b0165 – volume: 19 start-page: 118 issue: 2 year: 2013 ident: 10.1016/j.mechatronics.2013.06.002_b0120 article-title: Distributed recycling of waste polymer into reprap feedstock publication-title: Rapid Protyp J doi: 10.1108/13552541311302978 – volume: 8 start-page: e59840 issue: 3 year: 2013 ident: 10.1016/j.mechatronics.2013.06.002_b0330 article-title: Open-source 3d-printable optics equipment publication-title: PLoS One doi: 10.1371/journal.pone.0059840 – volume: 49 start-page: 1061 issue: 4 year: 2011 ident: 10.1016/j.mechatronics.2013.06.002_b0030 article-title: Additive layered manufacturing: sectors of industrial application shown though case studies publication-title: Int J Prod Res doi: 10.1080/00207540903479786 – ident: 10.1016/j.mechatronics.2013.06.002_b0230 doi: 10.1557/opl.2013.258 – ident: 10.1016/j.mechatronics.2013.06.002_b0345 – volume: 337 start-page: 1303 issue: 6100 year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0130 article-title: Building research equipment with free, open-source hardware publication-title: Science doi: 10.1126/science.1228183 – volume: 4 start-page: 349 issue: 5 year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0135 article-title: Integrated 3D-printed reactionware for chemical synthesis and analysis publication-title: Nat Chem doi: 10.1038/nchem.1313 – ident: 10.1016/j.mechatronics.2013.06.002_b0280 – ident: 10.1016/j.mechatronics.2013.06.002_b0265 – ident: 10.1016/j.mechatronics.2013.06.002_b0190 – ident: 10.1016/j.mechatronics.2013.06.002_b0225 – ident: 10.1016/j.mechatronics.2013.06.002_b0200 – ident: 10.1016/j.mechatronics.2013.06.002_b0355 – volume: 23 start-page: 318 year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0035 article-title: The rapid prototyping technologies publication-title: Assembly Autom doi: 10.1108/01445150310698634 – ident: 10.1016/j.mechatronics.2013.06.002_b0185 – ident: 10.1016/j.mechatronics.2013.06.002_b0160 – year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0205 – ident: 10.1016/j.mechatronics.2013.06.002_b0210 doi: 10.1557/opl.2013.319 – ident: 10.1016/j.mechatronics.2013.06.002_b0180 – ident: 10.1016/j.mechatronics.2013.06.002_b0105 – volume: 13 start-page: 245 issue: 4 year: 2007 ident: 10.1016/j.mechatronics.2013.06.002_b0065 article-title: Fab@Home: the personal desktop fabricator kit publication-title: Rapid Prototyp J doi: 10.1108/13552540710776197 – ident: 10.1016/j.mechatronics.2013.06.002_b0235 – ident: 10.1016/j.mechatronics.2013.06.002_b0350 – ident: 10.1016/j.mechatronics.2013.06.002_b0340 – volume: 7 start-page: 1 year: 2012 ident: 10.1016/j.mechatronics.2013.06.002_b0140 article-title: A simple, low-cost conductive composite material for 3D printing of electronic sensors publication-title: PLoS One doi: 10.1371/journal.pone.0049365 – ident: 10.1016/j.mechatronics.2013.06.002_b0195 – volume: 29 start-page: 177 issue: 1 year: 2011 ident: 10.1016/j.mechatronics.2013.06.002_b0055 article-title: RepRap – the replicating rapid prototyper publication-title: Robotica doi: 10.1017/S026357471000069X – volume: 56 start-page: 1635 year: 2004 ident: 10.1016/j.mechatronics.2013.06.002_b0150 article-title: Three-dimensional tissue fabrication publication-title: Adv Drug Del Rev doi: 10.1016/j.addr.2004.05.001 – volume: vol. 1 year: 2010 ident: 10.1016/j.mechatronics.2013.06.002_b0095 article-title: Reprap: the replicating rapid prototype: maximizing curstomizability by breeding the means of production – ident: 10.1016/j.mechatronics.2013.06.002_b0170 – year: 2001 ident: 10.1016/j.mechatronics.2013.06.002_b0245 article-title: Discounting the benefits of climate change mitigation: how much do uncertain rates increase valuation? – year: 2010 ident: 10.1016/j.mechatronics.2013.06.002_b0145 – ident: 10.1016/j.mechatronics.2013.06.002_b0310 – ident: 10.1016/j.mechatronics.2013.06.002_b0015 doi: 10.3139/9783446402690.fm – year: 2013 ident: 10.1016/j.mechatronics.2013.06.002_b0040 – ident: 10.1016/j.mechatronics.2013.06.002_b0110 doi: 10.1109/ICOM.2011.5937174 – volume: 13 start-page: 5338 issue: 4 year: 2013 ident: 10.1016/j.mechatronics.2013.06.002_b0260 article-title: Open-source colorimeter publication-title: Sensors doi: 10.3390/s130405338 – ident: 10.1016/j.mechatronics.2013.06.002_b0220 – volume: 5 start-page: 543 issue: Part B year: 2010 ident: 10.1016/j.mechatronics.2013.06.002_b0020 article-title: Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry publication-title: Phys Procedia doi: 10.1016/j.phpro.2010.08.082 – ident: 10.1016/j.mechatronics.2013.06.002_b0125 – ident: 10.1016/j.mechatronics.2013.06.002_b0295 – volume: 17 start-page: 211 issue: 3 year: 2011 ident: 10.1016/j.mechatronics.2013.06.002_b0025 article-title: Self-assembly in additive manufacturing: opportunities and obstacles publication-title: Rapid Prototyp J doi: 10.1108/13552541111124798 – ident: 10.1016/j.mechatronics.2013.06.002_b0045 – volume: 17 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.mechatronics.2013.06.002_b0175 article-title: Accelerating applied sustainability by utilizing return on investment for energy conservation measures publication-title: Int J Energy Env Econom – ident: 10.1016/j.mechatronics.2013.06.002_b0320 – ident: 10.1016/j.mechatronics.2013.06.002_b0215 – ident: 10.1016/j.mechatronics.2013.06.002_b0240 – ident: 10.1016/j.mechatronics.2013.06.002_b0305 – ident: 10.1016/j.mechatronics.2013.06.002_b0275 – volume: 12 start-page: 987 year: 2002 ident: 10.1016/j.mechatronics.2013.06.002_b0005 article-title: State-of-the-art in rapid prototyping for mechatronic systems publication-title: Mechatronics doi: 10.1016/S0957-4158(02)00007-7 – ident: 10.1016/j.mechatronics.2013.06.002_b0250 – volume: 3 start-page: 17 issue: 4 year: 2010 ident: 10.1016/j.mechatronics.2013.06.002_b0070 article-title: 3-D printing of open source appropriate technologies for self-directed sustainable development publication-title: J Sustain Dev doi: 10.5539/jsd.v3n4p17 – ident: 10.1016/j.mechatronics.2013.06.002_b0315 – volume: 115 start-page: 449 issue: 9 year: 2007 ident: 10.1016/j.mechatronics.2013.06.002_b0290 article-title: Waste coture: environment impact of the clothing industry publication-title: Environ Health Perspect doi: 10.1289/ehp.115-a449 – year: 2005 ident: 10.1016/j.mechatronics.2013.06.002_b0050 – volume: 16 start-page: 631 year: 2006 ident: 10.1016/j.mechatronics.2013.06.002_b0010 article-title: A mechatronics approach to laser powder deposition process publication-title: Mechatronics doi: 10.1016/j.mechatronics.2006.05.002 – ident: 10.1016/j.mechatronics.2013.06.002_b0155 – ident: 10.1016/j.mechatronics.2013.06.002_b0325 – volume: 25 start-page: 257 issue: 4 year: 2005 ident: 10.1016/j.mechatronics.2013.06.002_b0060 article-title: The next and last industrial revolution? publication-title: Assembly Autom doi: 10.1108/aa.2005.03325daa.002 – volume: 7 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.mechatronics.2013.06.002_b0075 article-title: The intellectual property implications of low-cost 3D printing publication-title: SCRIPTed – volume: 1 start-page: 30 issue: 4 year: 2011 ident: 10.1016/j.mechatronics.2013.06.002_b0090 article-title: The Cambrain exposion of popular 3D printing publication-title: Int J Artif Int Interact Multimedia doi: 10.9781/ijimai.2011.145 – ident: 10.1016/j.mechatronics.2013.06.002_b0080 – ident: 10.1016/j.mechatronics.2013.06.002_b0285 – year: 2008 ident: 10.1016/j.mechatronics.2013.06.002_b0100 article-title: The Reprap project – open source meets 3D printing publication-title: Comput Inf Sci Sem Ser |
| SSID | ssj0017117 |
| Score | 2.530394 |
| Snippet | •Open-source 3-D printers makes distributed manufacturing technically feasible.•Self-replicating rapid prototypers (RepRaps) can manufacture half of their own... The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible and... The recent development of open-source 3-D printers makes scaling of distributed additive-based manufacturing of high-value objects technically feasible. These... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 713 |
| SubjectTerms | 3-D printing Additive-layer manufacturing Costs Distributed manufacturing Economics Engineering Sciences Freeware Households Mechanical engineering Mechanics Mechatronics Open-source hardware Printers Rapid prototyping RepRap Source code Three dimensional |
| Title | Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers |
| URI | https://dx.doi.org/10.1016/j.mechatronics.2013.06.002 https://www.proquest.com/docview/1513481708 https://hal.science/hal-02119704 |
| Volume | 23 |
| WOSCitedRecordID | wos000324719800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017117 issn: 0957-4158 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgd4QFy1cpNBvFWJcnPsPPAQxthAZUKiaH2LbMfROnXptKXV4K_wZzknTtIAmlSEeImqU7lxfL6efD4-F0JeF1IJ30jjMNApbFDyxFEAEyyvHSSKKWWKumT-hB8fi9ks-TwY_GhzYdYLXpbi-jq5-K-qBhkoG1Nn_0Ld3Y-CAD6D0uEKaofrVoqfzAvj6G8gHZsm63gse6VHciyVi12ugGqey3KFqQ02V7H2yWI7Lce69Meh826Mjr-qCZNvWewno0-lbZ5TO21t1mHPqXAyryoFprm28G_dqduF-XQho6l72EkxOdtU9gyoE6bld7lYWofrobvv9v0T2Csi6fsnusSZTZSS9T5yB7iDNb3G2l7BQ0CLF_eNs01GbkDYt7TcprA2L21u0-7_eB9Y18SZe95bF4znC-uirV6weQt2sYlfcG44NTzoA74c7pDdgLNEDMlu-uFg9rE7pOJ-3dC5e5a2pm0dPnjTHW_iPzunGIj7Gx-oSc70Hrnb7E5oalF1nwxM-YDc6dWsfEhONviiLb5oiy-6LGgPX_QXfFHEF-3hiwK-aIuvR-Tr-4Pp_pHTdOdwdCSiypFeAUwmCZiQETMR82UQG-4rE8M3zHDYiHKtma8KwaMiZhp3GkLnPDecFXEePibDElC0R6goVARMmOWJioDQ66QAmqxV7AsVmYDJEUnaNct0U7oeO6gssjZG8Szrr3eG653VAZvBiITd2AtbwGWrUW9a1WQNFbUUMwNkbTX-FeizuyHWcD9KJxnKPKypyL1o7Y_Iy1bdGRh1PKmTpVmurjKg4Zggzz3x5B8n8pTc3vwpn5Fhdbkyz8ktva7mV5cvGkT_BOT7zWw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life-cycle+economic+analysis+of+distributed+manufacturing+with+open-source+3-D+printers&rft.jtitle=Mechatronics+%28Oxford%29&rft.au=Wittbrodt%2C+B.T.&rft.au=Glover%2C+A.G.&rft.au=Laureto%2C+J.&rft.au=Anzalone%2C+G.C.&rft.date=2013-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4158&rft.eissn=1873-4006&rft.volume=23&rft.issue=6&rft.spage=713&rft.epage=726&rft_id=info:doi/10.1016%2Fj.mechatronics.2013.06.002&rft.externalDocID=S0957415813001153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4158&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4158&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4158&client=summon |