Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning

In this paper, a new formulation for the optimal tracking control problem (OTCP) of continuous-time nonlinear systems is presented. This formulation extends the integral reinforcement learning (IRL) technique, a method for solving optimal regulation problems, to learn the solution to the OTCP. Unlik...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 50; číslo 7; s. 1780 - 1792
Hlavní autoři: Modares, Hamidreza, Lewis, Frank L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.07.2014
Elsevier
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a new formulation for the optimal tracking control problem (OTCP) of continuous-time nonlinear systems is presented. This formulation extends the integral reinforcement learning (IRL) technique, a method for solving optimal regulation problems, to learn the solution to the OTCP. Unlike existing solutions to the OTCP, the proposed method does not need to have or to identify knowledge of the system drift dynamics, and it also takes into account the input constraints a priori. An augmented system composed of the error system dynamics and the command generator dynamics is used to introduce a new nonquadratic discounted performance function for the OTCP. This encodes the input constrains into the optimization problem. A tracking Hamilton–Jacobi–Bellman (HJB) equation associated with this nonquadratic performance function is derived which gives the optimal control solution. An online IRL algorithm is presented to learn the solution to the tracking HJB equation without knowing the system drift dynamics. Convergence to a near-optimal control solution and stability of the whole system are shown under a persistence of excitation condition. Simulation examples are provided to show the effectiveness of the proposed method.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2014.05.011