Prediction of Type 2 Diabetes Based on Machine Learning Algorithm

Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of environmental research and public health Ročník 18; číslo 6; s. 3317
Hlavní autoři: Deberneh, Henock M., Kim, Intaek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 23.03.2021
MDPI
Témata:
ISSN:1660-4601, 1661-7827, 1660-4601
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.
AbstractList Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.
Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.
Author Deberneh, Henock M.
Kim, Intaek
AuthorAffiliation Department of Information and Communications Engineering, Myongji University, 116 Myongji-ro, Yongin, Gyeonggi 17058, Korea; henockmamo54@gmail.com
AuthorAffiliation_xml – name: Department of Information and Communications Engineering, Myongji University, 116 Myongji-ro, Yongin, Gyeonggi 17058, Korea; henockmamo54@gmail.com
Author_xml – sequence: 1
  givenname: Henock M.
  surname: Deberneh
  fullname: Deberneh, Henock M.
– sequence: 2
  givenname: Intaek
  surname: Kim
  fullname: Kim, Intaek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33806973$$D View this record in MEDLINE/PubMed
BookMark eNp1kctLAzEQxoMo1qpXj7LgxUs1r2aTi1DrEyp60HPIZmfblG1Sk63Q_96ID7TgaQbm933MzNdH2z54QOiI4DPGFD53c4jLGZFYMEbKLbRHhMADLjDZ_tX3UD-lOcZMcqF2UY-xLFAl20Ojpwi1s50LvghN8bxeQkGLK2cq6CAVlyZBXeTZg7Ez56GYgIne-Wkxaqchum62OEA7jWkTHH7VffRyc_08vhtMHm_vx6PJwHLJu4EESS2VlcSccFlWWFFeKoolLQ0Y1ShhjRIgeENlyaFmlaiB1hQqTKrKANtHF5--y1W1gNqC76Jp9TK6hYlrHYzTfyfezfQ0vGmJMVeSZIPTL4MYXleQOr1wyULbGg9hlTQdYjks-VCqjJ5soPOwij6fp6mgkghSSpqp498b_azy_d0MnH0CNoaUIjQ_CMH6Iz79N74s4BsC6zrzEU6-yLX_yd4BPOGehA
CitedBy_id crossref_primary_10_3390_diagnostics12123067
crossref_primary_10_3390_healthcare12242560
crossref_primary_10_1007_s10489_024_05912_1
crossref_primary_10_1016_j_pcd_2024_06_010
crossref_primary_10_3390_ijerph19105800
crossref_primary_10_1186_s13098_023_01112_y
crossref_primary_10_1016_j_procs_2023_03_043
crossref_primary_10_1049_htl2_12039
crossref_primary_10_1002_hsr2_1772
crossref_primary_10_1186_s43067_023_00108_y
crossref_primary_10_1210_clinem_dgac487
crossref_primary_10_1007_s10586_024_04863_z
crossref_primary_10_3390_make7010006
crossref_primary_10_1016_j_artmed_2022_102461
crossref_primary_10_5114_amsad_183420
crossref_primary_10_3390_informatics11040070
crossref_primary_10_1109_ACCESS_2024_3359760
crossref_primary_10_1016_j_csbj_2023_11_038
crossref_primary_10_3390_math11102266
crossref_primary_10_3389_fgene_2022_992070
crossref_primary_10_1063_5_0207658
crossref_primary_10_1109_ACCESS_2024_3432118
crossref_primary_10_1111_jdi_14262
crossref_primary_10_1016_j_ecoenv_2024_117570
crossref_primary_10_1038_s41598_024_69581_3
crossref_primary_10_1186_s12902_022_01222_0
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_3390_biomimetics8060503
crossref_primary_10_1038_s41598_024_74357_w
crossref_primary_10_1109_ACCESS_2024_3402350
crossref_primary_10_1016_j_jrras_2025_101444
crossref_primary_10_1155_2022_3212738
crossref_primary_10_4103_jcrt_jcrt_2352_22
crossref_primary_10_3389_fendo_2025_1576431
crossref_primary_10_1186_s12888_025_06666_x
crossref_primary_10_1371_journal_pone_0318226
crossref_primary_10_3390_jpm12060905
crossref_primary_10_1016_j_cegh_2023_101438
crossref_primary_10_1109_OJIM_2025_3551837
crossref_primary_10_3390_computers14070277
crossref_primary_10_1136_bmjopen_2023_072991
crossref_primary_10_3389_fmicb_2022_914124
crossref_primary_10_1186_s12874_024_02324_0
crossref_primary_10_3390_info15030162
crossref_primary_10_1016_j_procs_2023_01_192
crossref_primary_10_3390_jpm13030406
crossref_primary_10_1109_ACCESS_2024_3488743
crossref_primary_10_1080_08839514_2022_2145644
crossref_primary_10_1016_j_cmpb_2022_107180
crossref_primary_10_1007_s40200_022_01125_w
crossref_primary_10_3390_healthcare10081362
crossref_primary_10_3390_jpm12111899
crossref_primary_10_1016_j_cpm_2023_08_003
crossref_primary_10_1016_j_artmed_2025_103132
crossref_primary_10_54392_irjmt25415
crossref_primary_10_1016_j_eswa_2025_126899
crossref_primary_10_1016_j_csbj_2025_06_038
crossref_primary_10_1177_03000605241253786
crossref_primary_10_7759_s44389_025_04842_4
crossref_primary_10_1038_s41467_024_52960_9
crossref_primary_10_1109_ACCESS_2024_3456908
crossref_primary_10_3389_fcvm_2024_1454642
crossref_primary_10_3390_systems12120564
crossref_primary_10_3390_info14070376
crossref_primary_10_1016_j_health_2025_100390
crossref_primary_10_1016_j_pcd_2025_03_001
crossref_primary_10_32628_IJSRST5231057
crossref_primary_10_1109_JSEN_2023_3319360
crossref_primary_10_1080_13685538_2023_2205510
crossref_primary_10_1007_s11831_023_10061_8
crossref_primary_10_1142_S0218001425570125
crossref_primary_10_1371_journal_pone_0309748
crossref_primary_10_3390_diagnostics11091714
crossref_primary_10_1016_j_imu_2024_101567
crossref_primary_10_3389_fendo_2023_1196293
crossref_primary_10_1016_j_bspc_2024_106902
crossref_primary_10_3389_fdgth_2025_1557467
crossref_primary_10_1177_10760296221139263
crossref_primary_10_3389_fendo_2025_1626925
crossref_primary_10_1186_s12893_024_02561_6
crossref_primary_10_3390_ijerph19095657
crossref_primary_10_3390_jpm12071055
crossref_primary_10_32604_cmc_2022_027142
crossref_primary_10_1038_s41746_023_00933_5
crossref_primary_10_3389_fendo_2022_1043919
crossref_primary_10_1016_j_procs_2023_01_104
crossref_primary_10_3389_fendo_2024_1384984
crossref_primary_10_3390_healthcare13162007
crossref_primary_10_3390_jpm14080804
crossref_primary_10_1051_bioconf_20249700125
crossref_primary_10_1155_2022_3882425
crossref_primary_10_1109_ACCESS_2023_3299332
crossref_primary_10_1007_s00500_023_08041_y
crossref_primary_10_52589_BJCNIT_PM3CRE7I
crossref_primary_10_3390_ai4020024
crossref_primary_10_1038_s41598_024_61786_w
crossref_primary_10_1109_ACCESS_2025_3528033
Cites_doi 10.3389/fgene.2018.00515
10.1016/j.cmpb.2017.09.004
10.1007/978-3-319-10247-4
10.1016/j.csbj.2016.12.005
10.1023/B:STCO.0000035301.49549.88
10.1001/jama.295.11.1288
10.5395/rde.2014.39.1.74
10.22541/au.159594002.27964108
10.17305/bjbms.2010.2736
10.1016/j.procs.2020.03.336
10.7326/0003-4819-140-6-200403160-00011
10.1016/j.diabres.2009.10.007
10.1039/C4MB00316K
10.1016/j.chemolab.2006.01.007
10.7763/IJMLC.2013.V3.307
10.1109/AICCSA.2011.6126608
10.1109/ICICS.2011.6173603
10.3349/ymj.2019.60.2.191
10.2337/db20-1233-P
10.2196/11030
10.1111/j.1365-2796.2006.01689.x
10.1023/A:1010933404324
10.2337/dc11-2347
10.1377/hlthaff.21.2.245
10.1155/2013/613475
10.1007/BF00994018
10.1145/2939672.2939785
10.1007/BF00048682
10.1109/CSPA.2012.6194692
10.1613/jair.953
10.1016/j.cmpb.2013.09.007
10.1089/pop.2018.0129
10.1111/dme.13587
10.18178/ijmlc.2019.9.3.812
10.1109/ICNC.2008.871
10.1155/2014/485353
10.4093/dmj.2018.0017
10.1016/j.eswa.2013.08.043
10.1016/j.diabres.2007.01.024
10.1109/WF-IoT.2018.8355130
10.1109/MIPRO.2015.7160458
10.1016/S2589-7500(19)30123-2
10.1016/S0033-0620(03)80004-X
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ijerph18063317
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database (Proquest)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID PMC8004981
33806973
10_3390_ijerph18063317
Genre Journal Article
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFFHD
AFKRA
AFRAH
AFZYC
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
2XV
3V.
ABJCF
ALIPV
ATCPS
AZQEC
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
IAO
IEP
M2P
M7S
M~E
NPM
PATMY
PYCSY
7XB
8FK
DWQXO
ESTFP
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c484t-8e82c28b8041487b09247920827aea9f96ca96e64f2874ed3b6de2d2eb01bbae3
IEDL.DBID 7X7
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1660-4601
1661-7827
IngestDate Tue Nov 04 01:53:38 EST 2025
Mon Sep 08 13:31:06 EDT 2025
Tue Oct 07 06:37:22 EDT 2025
Wed Feb 19 02:07:15 EST 2025
Sat Nov 29 07:08:05 EST 2025
Tue Nov 18 22:43:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords prediction
machine learning
type 2 diabetes
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-8e82c28b8041487b09247920827aea9f96ca96e64f2874ed3b6de2d2eb01bbae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2628161782?pq-origsite=%requestingapplication%
PMID 33806973
PQID 2628161782
PQPubID 54923
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8004981
proquest_miscellaneous_2508574589
proquest_journals_2628161782
pubmed_primary_33806973
crossref_primary_10_3390_ijerph18063317
crossref_citationtrail_10_3390_ijerph18063317
PublicationCentury 2000
PublicationDate 20210323
PublicationDateYYYYMMDD 2021-03-23
PublicationDate_xml – month: 3
  year: 2021
  text: 20210323
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Inoue (ref_43) 2007; 77
Abedin (ref_10) 2017; 152
Rahman (ref_38) 2013; 3
Eliasson (ref_50) 2003; 45
Ding (ref_48) 2006; 295
Choi (ref_21) 2019; 60
ref_54
ref_19
ref_18
ref_17
Rivo (ref_8) 2019; 22
ref_16
Breiman (ref_14) 2001; 45
Tigga (ref_53) 2020; 167
Semiz (ref_45) 2010; 10
ref_25
ref_24
ref_23
Granitto (ref_34) 2006; 83
ref_22
ref_28
ref_27
Cortes (ref_15) 1995; 20
ref_26
Ding (ref_29) 2014; 10
Jang (ref_52) 2019; 9
(ref_13) 1992; 44
Norberg (ref_44) 2006; 260
Deberneh (ref_6) 2020; 69
Chawla (ref_40) 2002; 16
Yin (ref_35) 2014; 113
ref_36
ref_32
ref_30
You (ref_33) 2014; 41
Sturm (ref_47) 2002; 21
ref_39
Provost (ref_37) 2007; 8
Kim (ref_31) 2014; 39
Woldaregay (ref_9) 2019; 21
Buch (ref_7) 2018; 35
Choi (ref_5) 2014; 2014
Smola (ref_51) 2004; 14
Howard (ref_49) 2004; 140
Zou (ref_3) 2018; 9
Won (ref_4) 2018; 42
Kavakiotis (ref_11) 2017; 15
ref_42
ref_41
ref_1
Ravaut (ref_12) 2019; 85
Liu (ref_20) 2019; 1
Shaw (ref_2) 2010; 87
Hutchinson (ref_46) 2013; 2013
References_xml – volume: 9
  start-page: 515
  year: 2018
  ident: ref_3
  article-title: Predicting diabetes mellitus with machine learning techniques
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00515
– volume: 152
  start-page: 23
  year: 2017
  ident: ref_10
  article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.004
– ident: ref_32
– ident: ref_26
– volume: 8
  start-page: 1623
  year: 2007
  ident: ref_37
  article-title: Handling missing values when applying classification models
  publication-title: J. Mach. Learn. Res.
– ident: ref_36
  doi: 10.1007/978-3-319-10247-4
– volume: 15
  start-page: 104
  year: 2017
  ident: ref_11
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2016.12.005
– ident: ref_42
– ident: ref_1
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_51
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 295
  start-page: 1288
  year: 2006
  ident: ref_48
  article-title: Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis
  publication-title: JAMA
  doi: 10.1001/jama.295.11.1288
– volume: 39
  start-page: 74
  year: 2014
  ident: ref_31
  article-title: Analysis of variance (ANOVA) comparing means of more than two groups
  publication-title: Restor. Dent. Endod.
  doi: 10.5395/rde.2014.39.1.74
– ident: ref_24
  doi: 10.22541/au.159594002.27964108
– volume: 10
  start-page: 54
  year: 2010
  ident: ref_45
  article-title: Relevance of uric acid in progression of type 2 diabetes mellitus
  publication-title: Bosn. J. Basic Med. Sci.
  doi: 10.17305/bjbms.2010.2736
– ident: ref_27
– volume: 167
  start-page: 706
  year: 2020
  ident: ref_53
  article-title: Prediction of type 2 diabetes using machine learning classification methods
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.336
– volume: 140
  start-page: 211
  year: 2004
  ident: ref_49
  article-title: Effect of alcohol consumption on diabetes mellitus: A systematic review
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-140-6-200403160-00011
– volume: 87
  start-page: 4
  year: 2010
  ident: ref_2
  article-title: Global estimates of the prevalence of diabetes for 2010 and 2030
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2009.10.007
– volume: 10
  start-page: 2229
  year: 2014
  ident: ref_29
  article-title: Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis
  publication-title: Mol. BioSyst.
  doi: 10.1039/C4MB00316K
– volume: 83
  start-page: 83
  year: 2006
  ident: ref_34
  article-title: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2006.01.007
– volume: 3
  start-page: 224
  year: 2013
  ident: ref_38
  article-title: Addressing the class imbalance problem in medical datasets
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2013.V3.307
– ident: ref_17
  doi: 10.1109/AICCSA.2011.6126608
– ident: ref_41
  doi: 10.1109/ICICS.2011.6173603
– volume: 60
  start-page: 191
  year: 2019
  ident: ref_21
  article-title: Machine learning for the prediction of new-onset diabetes mellitus during 5-year follow-up in non-diabetic patients with cardiovascular risks
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2019.60.2.191
– volume: 69
  start-page: 1233
  year: 2020
  ident: ref_6
  article-title: 1233-P: Prediction of type 2 diabetes occurrence using machine learning model
  publication-title: Am. Diabetes Assoc.
  doi: 10.2337/db20-1233-P
– volume: 21
  start-page: e11030
  year: 2019
  ident: ref_9
  article-title: Data-driven blood glucose pattern classification and anomalies detection: Machine-learning applications in type 1 diabetes
  publication-title: J. Med. Internet Res.
  doi: 10.2196/11030
– volume: 85
  start-page: 1
  year: 2019
  ident: ref_12
  article-title: Diabetes mellitus forecasting using population health data in Ontario, Canada
  publication-title: Proc. Mach. Learn. Res.
– volume: 260
  start-page: 263
  year: 2006
  ident: ref_44
  article-title: A combination of HbA1c, fasting glucose and BMI is effective in screening for individuals at risk of future type 2 diabetes: OGTT is not needed
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2006.01689.x
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_14
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_54
  doi: 10.2337/dc11-2347
– volume: 21
  start-page: 245
  year: 2002
  ident: ref_47
  article-title: The effects of obesity, smoking, and drinking on medical problems and costs
  publication-title: Health Aff.
  doi: 10.1377/hlthaff.21.2.245
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref_46
  article-title: Effects of age and sex on estimated diabetes prevalence using different diagnostic criteria: The Tromsø OGTT Study
  publication-title: Int. J. Endocrinol.
  doi: 10.1155/2013/613475
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_15
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_16
  doi: 10.1145/2939672.2939785
– volume: 44
  start-page: 197
  year: 1992
  ident: ref_13
  article-title: Multinomial logistic regression algorithm
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF00048682
– ident: ref_18
– ident: ref_30
  doi: 10.1109/CSPA.2012.6194692
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_40
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 113
  start-page: 101
  year: 2014
  ident: ref_35
  article-title: Operator functional state classification using least-square support vector machine based recursive feature elimination technique
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.09.007
– volume: 22
  start-page: 229
  year: 2019
  ident: ref_8
  article-title: Transforming diabetes care through artificial intelligence: The future is here
  publication-title: Popul. Health Manag.
  doi: 10.1089/pop.2018.0129
– ident: ref_25
– volume: 35
  start-page: 495
  year: 2018
  ident: ref_7
  article-title: Artificial intelligence in diabetes care
  publication-title: Diabet. Med.
  doi: 10.1111/dme.13587
– volume: 9
  start-page: 368
  year: 2019
  ident: ref_52
  article-title: Application of classifier integration model with confusion table to audio data classification
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.18178/ijmlc.2019.9.3.812
– ident: ref_39
  doi: 10.1109/ICNC.2008.871
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_5
  article-title: Screening for prediabetes using machine learning models
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2014/485353
– volume: 42
  start-page: 415
  year: 2018
  ident: ref_4
  article-title: Diabetes fact sheet in Korea, 2016: An appraisal of current status
  publication-title: Diabetes Metab. J.
  doi: 10.4093/dmj.2018.0017
– volume: 41
  start-page: 1463
  year: 2014
  ident: ref_33
  article-title: Feature selection for high-dimensional multi-category data using PLS-based local recursive feature elimination
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.043
– ident: ref_19
– volume: 77
  start-page: 451
  year: 2007
  ident: ref_43
  article-title: The combination of fasting plasma glucose and glycosylated hemoglobin predicts type 2 diabetes in Japanese workers
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2007.01.024
– ident: ref_23
  doi: 10.1109/WF-IoT.2018.8355130
– ident: ref_22
– ident: ref_28
  doi: 10.1109/MIPRO.2015.7160458
– volume: 1
  start-page: e271
  year: 2019
  ident: ref_20
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(19)30123-2
– volume: 45
  start-page: 405
  year: 2003
  ident: ref_50
  article-title: Cigarette smoking and diabetes
  publication-title: Prog. Cardiovasc. Dis.
  doi: 10.1016/S0033-0620(03)80004-X
SSID ssj0038469
Score 2.5808377
Snippet Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3317
SubjectTerms Algorithms
Artificial intelligence
Asthma
Datasets
Diabetes
Diabetes Mellitus, Type 2 - epidemiology
Discriminant analysis
Disease
Electronic health records
Feature selection
Humans
Insulin
Logistic Models
Machine Learning
Medical records
Metabolism
Neural networks
Pediatrics
Prediabetic State
Quality of life
Statistical analysis
Support vector machines
Variance analysis
Title Prediction of Type 2 Diabetes Based on Machine Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/33806973
https://www.proquest.com/docview/2628161782
https://www.proquest.com/docview/2508574589
https://pubmed.ncbi.nlm.nih.gov/PMC8004981
Volume 18
WOSCitedRecordID wos000639226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038469
  issn: 1660-4601
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038469
  issn: 1660-4601
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038469
  issn: 1660-4601
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038469
  issn: 1660-4601
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEJlWchUCojIXGymthJbJ_QtmoFEl2tEKDlFPmVdlHJlt1tfz8zSTZ0QXDh4hw8iR8z9szYk28AXtd16q33JVcEVpnXrua2SAMP2ovaGKdlC6bz5YMaj_V0aib9gduyD6tc74ntRh3mns7ID0QpNNniWry9_MEpaxTdrvYpNG7DNqXNJjlX08HhkqhbyfzNUAdxfFF1oI0S3fyD2beI48g0amjZJiu7oZT-sDR_D5i8oYFO7v9v3x_ATm97slEnLA_hVmwewb3u4I51_yM9htFkQXc3xC82rxn5qUywPnBmyQ5R6wWGdadtFGZkPUDrGRtdnGGbq_PvT-DzyfGno3e8z7PAfa7zFddRCy-0Iygi9F9cij6ZMgKNA2WjNbUpvTVlLPOawPFjkK4MUQQRXZo5Z6Pcha1m3sRnwELmlM-cqGVq86gLG2KhI342DSaTyibA1xNd-R6EnHJhXFTojBBjqk3GJPBmoL_s4Df-Srm3nvuqX4bL6tfEJ_BqqMYFRLcitonzK6QpCOQ_L7RJ4GnH5qEpFNS0NEomoDYEYCAgcO7NmmZ23oJ0a_K9dPb83916AXcFBcmkkgu5B1urxVV8CXf89Wq2XOy30tyWGkt9lO3D9uHxePIRn5P3p5OvPwEkAQO_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qKRJIiH0ZKGAkECerM_bM2D4gFJaqUZMoh4LKafA2bVCZlCQF8af4jfjNEhoQ3HrgbGvG9vv8Fvv5ewBPyzK22tqcCiSrTEtTUp3FjjppWamUkbwm03k_FOOxPDhQkw340b2FwbTKTifWitrNLJ6Rb7OcSfTFJXt58oVi1Si8Xe1KaDSw2PPfv4WQbfFi8CbI9xljO2_3X-_StqoAtalMl1R6ySyTBol3grdu4hCBCMWCKRTaa1Wq3GqV-zwtkQreO25y55lj3sSJMdrz8N0LsJki2HuwORmMJh863c-DNUeHOwlWj4ahioYmknMVb08_-bByiQw-Aa_Lo50xg3_4tr-naJ6xeTvX_rfVug5XW--a9JvtcAM2fHUTrjRHk6R5cXUL-pM53k4hIsmsJBiJE0ba1KAFeRXsuiOhbVTnmXrSUtAekv7xYZjj8ujzbXh3LrO4A71qVvl7QFxihE0MK3msUy8z7Xwmffhs7FTChY6AdoItbEuzjtU-josQbiEQinUgRPB81f-kIRj5a8-tTtZFq2gWxS9BR_Bk1RxUBN776MrPTkOfDMsYpJlUEdxtYLX6VdiKca4Ej0CsAW7VAenH11uq6VFNQy4xupTJ_X8P6zFc2t0fDYvhYLz3AC4zTAmKOWV8C3rL-al_CBft1-V0MX_U7iUCH88bkD8Bk4ldJQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCEkxPuxUMBIIE5Wdu3Nrn1AKFAiorbRHgCV09bPNqhsSpKC-Gv8Osb7CA0Ibj1w9mjX9nz2zNjjbwCeeh8bZUxG80BWmXrtqRrEllphmJdSC16T6XzYzScTsb8viw340b2FCWmV3Z5Yb9R2ZsIZeZ9lTARfXLC-b9Miiu3Ry5MvNFSQCjetXTmNBiI77vs3DN8WL8bbqOtnjI3evHv9lrYVBqhJRbqkwglmmNCBhAc9dx1jNJJLhmYxV05JLzOjZOay1AdaeGe5zqxjljkdJ1orx_G7F2ATXfKU9WCzGO8VHzs7wNGyB-c7QQtIsdt5QxnJuYz7008OZzER6B_wulTaGZP4h5_7e7rmGfs3uvY_z9x1uNp63WTYLJMbsOGqm3ClObIkzUusWzAs5uHWKiCVzDwJETphpE0ZWpBXaO8twba9Ov_UkZaa9pAMjw9xjMujz7fh_bmM4g70qlnl7gGxic5NopnnsUqdGCjrBsLhZ2MrE56rCGin5NK09OuhCshxiWFYAEW5DooInq_kTxrikb9KbnV6L9sNaFH-UnoET1bNuHWE-yBVudkpygxCeYN0IGQEdxuIrX6FSzTOZM4jyNfAtxIItOTrLdX0qKYnFyHqFMn9f3frMVxCFJa748nOA7jMQqZQzCnjW9Bbzk_dQ7hovi6ni_mjdlkRODhvPP4EmU5l5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Type+2+Diabetes+Based+on+Machine+Learning+Algorithm&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Deberneh%2C+Henock+M&rft.au=Kim%2C+Intaek&rft.date=2021-03-23&rft.eissn=1660-4601&rft.volume=18&rft.issue=6&rft_id=info:doi/10.3390%2Fijerph18063317&rft_id=info%3Apmid%2F33806973&rft.externalDocID=33806973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon