Prediction of Type 2 Diabetes Based on Machine Learning Algorithm
Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year...
Uložené v:
| Vydané v: | International journal of environmental research and public health Ročník 18; číslo 6; s. 3317 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
23.03.2021
MDPI |
| Predmet: | |
| ISSN: | 1660-4601, 1661-7827, 1660-4601 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset. |
|---|---|
| AbstractList | Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset. Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset. |
| Author | Deberneh, Henock M. Kim, Intaek |
| AuthorAffiliation | Department of Information and Communications Engineering, Myongji University, 116 Myongji-ro, Yongin, Gyeonggi 17058, Korea; henockmamo54@gmail.com |
| AuthorAffiliation_xml | – name: Department of Information and Communications Engineering, Myongji University, 116 Myongji-ro, Yongin, Gyeonggi 17058, Korea; henockmamo54@gmail.com |
| Author_xml | – sequence: 1 givenname: Henock M. surname: Deberneh fullname: Deberneh, Henock M. – sequence: 2 givenname: Intaek surname: Kim fullname: Kim, Intaek |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33806973$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kctLAzEQxoMo1qpXj7LgxUs1r2aTi1DrEyp60HPIZmfblG1Sk63Q_96ID7TgaQbm933MzNdH2z54QOiI4DPGFD53c4jLGZFYMEbKLbRHhMADLjDZ_tX3UD-lOcZMcqF2UY-xLFAl20Ojpwi1s50LvghN8bxeQkGLK2cq6CAVlyZBXeTZg7Ez56GYgIne-Wkxaqchum62OEA7jWkTHH7VffRyc_08vhtMHm_vx6PJwHLJu4EESS2VlcSccFlWWFFeKoolLQ0Y1ShhjRIgeENlyaFmlaiB1hQqTKrKANtHF5--y1W1gNqC76Jp9TK6hYlrHYzTfyfezfQ0vGmJMVeSZIPTL4MYXleQOr1wyULbGg9hlTQdYjks-VCqjJ5soPOwij6fp6mgkghSSpqp498b_azy_d0MnH0CNoaUIjQ_CMH6Iz79N74s4BsC6zrzEU6-yLX_yd4BPOGehA |
| CitedBy_id | crossref_primary_10_3390_diagnostics12123067 crossref_primary_10_3390_healthcare12242560 crossref_primary_10_1007_s10489_024_05912_1 crossref_primary_10_1016_j_pcd_2024_06_010 crossref_primary_10_3390_ijerph19105800 crossref_primary_10_1186_s13098_023_01112_y crossref_primary_10_1016_j_procs_2023_03_043 crossref_primary_10_1049_htl2_12039 crossref_primary_10_1002_hsr2_1772 crossref_primary_10_1186_s43067_023_00108_y crossref_primary_10_1210_clinem_dgac487 crossref_primary_10_1007_s10586_024_04863_z crossref_primary_10_3390_make7010006 crossref_primary_10_1016_j_artmed_2022_102461 crossref_primary_10_5114_amsad_183420 crossref_primary_10_3390_informatics11040070 crossref_primary_10_1109_ACCESS_2024_3359760 crossref_primary_10_1016_j_csbj_2023_11_038 crossref_primary_10_3390_math11102266 crossref_primary_10_3389_fgene_2022_992070 crossref_primary_10_1063_5_0207658 crossref_primary_10_1109_ACCESS_2024_3432118 crossref_primary_10_1111_jdi_14262 crossref_primary_10_1016_j_ecoenv_2024_117570 crossref_primary_10_1038_s41598_024_69581_3 crossref_primary_10_1186_s12902_022_01222_0 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_3390_biomimetics8060503 crossref_primary_10_1038_s41598_024_74357_w crossref_primary_10_1109_ACCESS_2024_3402350 crossref_primary_10_1016_j_jrras_2025_101444 crossref_primary_10_1155_2022_3212738 crossref_primary_10_4103_jcrt_jcrt_2352_22 crossref_primary_10_3389_fendo_2025_1576431 crossref_primary_10_1186_s12888_025_06666_x crossref_primary_10_1371_journal_pone_0318226 crossref_primary_10_3390_jpm12060905 crossref_primary_10_1016_j_cegh_2023_101438 crossref_primary_10_1109_OJIM_2025_3551837 crossref_primary_10_3390_computers14070277 crossref_primary_10_1136_bmjopen_2023_072991 crossref_primary_10_3389_fmicb_2022_914124 crossref_primary_10_1186_s12874_024_02324_0 crossref_primary_10_3390_info15030162 crossref_primary_10_1016_j_procs_2023_01_192 crossref_primary_10_3390_jpm13030406 crossref_primary_10_1109_ACCESS_2024_3488743 crossref_primary_10_1080_08839514_2022_2145644 crossref_primary_10_1016_j_cmpb_2022_107180 crossref_primary_10_1007_s40200_022_01125_w crossref_primary_10_3390_healthcare10081362 crossref_primary_10_3390_jpm12111899 crossref_primary_10_1016_j_cpm_2023_08_003 crossref_primary_10_1016_j_artmed_2025_103132 crossref_primary_10_54392_irjmt25415 crossref_primary_10_1016_j_eswa_2025_126899 crossref_primary_10_1016_j_csbj_2025_06_038 crossref_primary_10_1177_03000605241253786 crossref_primary_10_7759_s44389_025_04842_4 crossref_primary_10_1038_s41467_024_52960_9 crossref_primary_10_1109_ACCESS_2024_3456908 crossref_primary_10_3389_fcvm_2024_1454642 crossref_primary_10_3390_systems12120564 crossref_primary_10_3390_info14070376 crossref_primary_10_1016_j_health_2025_100390 crossref_primary_10_1016_j_pcd_2025_03_001 crossref_primary_10_32628_IJSRST5231057 crossref_primary_10_1109_JSEN_2023_3319360 crossref_primary_10_1080_13685538_2023_2205510 crossref_primary_10_1007_s11831_023_10061_8 crossref_primary_10_1142_S0218001425570125 crossref_primary_10_1371_journal_pone_0309748 crossref_primary_10_3390_diagnostics11091714 crossref_primary_10_1016_j_imu_2024_101567 crossref_primary_10_3389_fendo_2023_1196293 crossref_primary_10_1016_j_bspc_2024_106902 crossref_primary_10_3389_fdgth_2025_1557467 crossref_primary_10_1177_10760296221139263 crossref_primary_10_3389_fendo_2025_1626925 crossref_primary_10_1186_s12893_024_02561_6 crossref_primary_10_3390_ijerph19095657 crossref_primary_10_3390_jpm12071055 crossref_primary_10_32604_cmc_2022_027142 crossref_primary_10_1038_s41746_023_00933_5 crossref_primary_10_3389_fendo_2022_1043919 crossref_primary_10_1016_j_procs_2023_01_104 crossref_primary_10_3389_fendo_2024_1384984 crossref_primary_10_3390_healthcare13162007 crossref_primary_10_3390_jpm14080804 crossref_primary_10_1051_bioconf_20249700125 crossref_primary_10_1155_2022_3882425 crossref_primary_10_1109_ACCESS_2023_3299332 crossref_primary_10_1007_s00500_023_08041_y crossref_primary_10_52589_BJCNIT_PM3CRE7I crossref_primary_10_3390_ai4020024 crossref_primary_10_1038_s41598_024_61786_w crossref_primary_10_1109_ACCESS_2025_3528033 |
| Cites_doi | 10.3389/fgene.2018.00515 10.1016/j.cmpb.2017.09.004 10.1007/978-3-319-10247-4 10.1016/j.csbj.2016.12.005 10.1023/B:STCO.0000035301.49549.88 10.1001/jama.295.11.1288 10.5395/rde.2014.39.1.74 10.22541/au.159594002.27964108 10.17305/bjbms.2010.2736 10.1016/j.procs.2020.03.336 10.7326/0003-4819-140-6-200403160-00011 10.1016/j.diabres.2009.10.007 10.1039/C4MB00316K 10.1016/j.chemolab.2006.01.007 10.7763/IJMLC.2013.V3.307 10.1109/AICCSA.2011.6126608 10.1109/ICICS.2011.6173603 10.3349/ymj.2019.60.2.191 10.2337/db20-1233-P 10.2196/11030 10.1111/j.1365-2796.2006.01689.x 10.1023/A:1010933404324 10.2337/dc11-2347 10.1377/hlthaff.21.2.245 10.1155/2013/613475 10.1007/BF00994018 10.1145/2939672.2939785 10.1007/BF00048682 10.1109/CSPA.2012.6194692 10.1613/jair.953 10.1016/j.cmpb.2013.09.007 10.1089/pop.2018.0129 10.1111/dme.13587 10.18178/ijmlc.2019.9.3.812 10.1109/ICNC.2008.871 10.1155/2014/485353 10.4093/dmj.2018.0017 10.1016/j.eswa.2013.08.043 10.1016/j.diabres.2007.01.024 10.1109/WF-IoT.2018.8355130 10.1109/MIPRO.2015.7160458 10.1016/S2589-7500(19)30123-2 10.1016/S0033-0620(03)80004-X |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/ijerph18063317 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1660-4601 |
| ExternalDocumentID | PMC8004981 33806973 10_3390_ijerph18063317 |
| Genre | Journal Article |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFFHD AFKRA AFRAH AFZYC AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB 2XV 3V. ABJCF ALIPV ATCPS AZQEC BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ IAO IEP M2P M7S M~E NPM PATMY PYCSY 7XB 8FK DWQXO ESTFP K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c484t-8e82c28b8041487b09247920827aea9f96ca96e64f2874ed3b6de2d2eb01bbae3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1660-4601 1661-7827 |
| IngestDate | Tue Nov 04 01:53:38 EST 2025 Mon Sep 08 13:31:06 EDT 2025 Tue Oct 07 06:37:22 EDT 2025 Wed Feb 19 02:07:15 EST 2025 Sat Nov 29 07:08:05 EST 2025 Tue Nov 18 22:43:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | prediction machine learning type 2 diabetes |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c484t-8e82c28b8041487b09247920827aea9f96ca96e64f2874ed3b6de2d2eb01bbae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2628161782?pq-origsite=%requestingapplication% |
| PMID | 33806973 |
| PQID | 2628161782 |
| PQPubID | 54923 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8004981 proquest_miscellaneous_2508574589 proquest_journals_2628161782 pubmed_primary_33806973 crossref_primary_10_3390_ijerph18063317 crossref_citationtrail_10_3390_ijerph18063317 |
| PublicationCentury | 2000 |
| PublicationDate | 20210323 |
| PublicationDateYYYYMMDD | 2021-03-23 |
| PublicationDate_xml | – month: 3 year: 2021 text: 20210323 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | International journal of environmental research and public health |
| PublicationTitleAlternate | Int J Environ Res Public Health |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Inoue (ref_43) 2007; 77 Abedin (ref_10) 2017; 152 Rahman (ref_38) 2013; 3 Eliasson (ref_50) 2003; 45 Ding (ref_48) 2006; 295 Choi (ref_21) 2019; 60 ref_54 ref_19 ref_18 ref_17 Rivo (ref_8) 2019; 22 ref_16 Breiman (ref_14) 2001; 45 Tigga (ref_53) 2020; 167 Semiz (ref_45) 2010; 10 ref_25 ref_24 ref_23 Granitto (ref_34) 2006; 83 ref_22 ref_28 ref_27 Cortes (ref_15) 1995; 20 ref_26 Ding (ref_29) 2014; 10 Jang (ref_52) 2019; 9 (ref_13) 1992; 44 Norberg (ref_44) 2006; 260 Deberneh (ref_6) 2020; 69 Chawla (ref_40) 2002; 16 Yin (ref_35) 2014; 113 ref_36 ref_32 ref_30 You (ref_33) 2014; 41 Sturm (ref_47) 2002; 21 ref_39 Provost (ref_37) 2007; 8 Kim (ref_31) 2014; 39 Woldaregay (ref_9) 2019; 21 Buch (ref_7) 2018; 35 Choi (ref_5) 2014; 2014 Smola (ref_51) 2004; 14 Howard (ref_49) 2004; 140 Zou (ref_3) 2018; 9 Won (ref_4) 2018; 42 Kavakiotis (ref_11) 2017; 15 ref_42 ref_41 ref_1 Ravaut (ref_12) 2019; 85 Liu (ref_20) 2019; 1 Shaw (ref_2) 2010; 87 Hutchinson (ref_46) 2013; 2013 |
| References_xml | – volume: 9 start-page: 515 year: 2018 ident: ref_3 article-title: Predicting diabetes mellitus with machine learning techniques publication-title: Front. Genet. doi: 10.3389/fgene.2018.00515 – volume: 152 start-page: 23 year: 2017 ident: ref_10 article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.004 – ident: ref_32 – ident: ref_26 – volume: 8 start-page: 1623 year: 2007 ident: ref_37 article-title: Handling missing values when applying classification models publication-title: J. Mach. Learn. Res. – ident: ref_36 doi: 10.1007/978-3-319-10247-4 – volume: 15 start-page: 104 year: 2017 ident: ref_11 article-title: Machine learning and data mining methods in diabetes research publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.12.005 – ident: ref_42 – ident: ref_1 – volume: 14 start-page: 199 year: 2004 ident: ref_51 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 295 start-page: 1288 year: 2006 ident: ref_48 article-title: Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis publication-title: JAMA doi: 10.1001/jama.295.11.1288 – volume: 39 start-page: 74 year: 2014 ident: ref_31 article-title: Analysis of variance (ANOVA) comparing means of more than two groups publication-title: Restor. Dent. Endod. doi: 10.5395/rde.2014.39.1.74 – ident: ref_24 doi: 10.22541/au.159594002.27964108 – volume: 10 start-page: 54 year: 2010 ident: ref_45 article-title: Relevance of uric acid in progression of type 2 diabetes mellitus publication-title: Bosn. J. Basic Med. Sci. doi: 10.17305/bjbms.2010.2736 – ident: ref_27 – volume: 167 start-page: 706 year: 2020 ident: ref_53 article-title: Prediction of type 2 diabetes using machine learning classification methods publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.336 – volume: 140 start-page: 211 year: 2004 ident: ref_49 article-title: Effect of alcohol consumption on diabetes mellitus: A systematic review publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-140-6-200403160-00011 – volume: 87 start-page: 4 year: 2010 ident: ref_2 article-title: Global estimates of the prevalence of diabetes for 2010 and 2030 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2009.10.007 – volume: 10 start-page: 2229 year: 2014 ident: ref_29 article-title: Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis publication-title: Mol. BioSyst. doi: 10.1039/C4MB00316K – volume: 83 start-page: 83 year: 2006 ident: ref_34 article-title: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2006.01.007 – volume: 3 start-page: 224 year: 2013 ident: ref_38 article-title: Addressing the class imbalance problem in medical datasets publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/IJMLC.2013.V3.307 – ident: ref_17 doi: 10.1109/AICCSA.2011.6126608 – ident: ref_41 doi: 10.1109/ICICS.2011.6173603 – volume: 60 start-page: 191 year: 2019 ident: ref_21 article-title: Machine learning for the prediction of new-onset diabetes mellitus during 5-year follow-up in non-diabetic patients with cardiovascular risks publication-title: Yonsei Med. J. doi: 10.3349/ymj.2019.60.2.191 – volume: 69 start-page: 1233 year: 2020 ident: ref_6 article-title: 1233-P: Prediction of type 2 diabetes occurrence using machine learning model publication-title: Am. Diabetes Assoc. doi: 10.2337/db20-1233-P – volume: 21 start-page: e11030 year: 2019 ident: ref_9 article-title: Data-driven blood glucose pattern classification and anomalies detection: Machine-learning applications in type 1 diabetes publication-title: J. Med. Internet Res. doi: 10.2196/11030 – volume: 85 start-page: 1 year: 2019 ident: ref_12 article-title: Diabetes mellitus forecasting using population health data in Ontario, Canada publication-title: Proc. Mach. Learn. Res. – volume: 260 start-page: 263 year: 2006 ident: ref_44 article-title: A combination of HbA1c, fasting glucose and BMI is effective in screening for individuals at risk of future type 2 diabetes: OGTT is not needed publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2006.01689.x – volume: 45 start-page: 5 year: 2001 ident: ref_14 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_54 doi: 10.2337/dc11-2347 – volume: 21 start-page: 245 year: 2002 ident: ref_47 article-title: The effects of obesity, smoking, and drinking on medical problems and costs publication-title: Health Aff. doi: 10.1377/hlthaff.21.2.245 – volume: 2013 start-page: 1 year: 2013 ident: ref_46 article-title: Effects of age and sex on estimated diabetes prevalence using different diagnostic criteria: The Tromsø OGTT Study publication-title: Int. J. Endocrinol. doi: 10.1155/2013/613475 – volume: 20 start-page: 273 year: 1995 ident: ref_15 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_16 doi: 10.1145/2939672.2939785 – volume: 44 start-page: 197 year: 1992 ident: ref_13 article-title: Multinomial logistic regression algorithm publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF00048682 – ident: ref_18 – ident: ref_30 doi: 10.1109/CSPA.2012.6194692 – volume: 16 start-page: 321 year: 2002 ident: ref_40 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 113 start-page: 101 year: 2014 ident: ref_35 article-title: Operator functional state classification using least-square support vector machine based recursive feature elimination technique publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.09.007 – volume: 22 start-page: 229 year: 2019 ident: ref_8 article-title: Transforming diabetes care through artificial intelligence: The future is here publication-title: Popul. Health Manag. doi: 10.1089/pop.2018.0129 – ident: ref_25 – volume: 35 start-page: 495 year: 2018 ident: ref_7 article-title: Artificial intelligence in diabetes care publication-title: Diabet. Med. doi: 10.1111/dme.13587 – volume: 9 start-page: 368 year: 2019 ident: ref_52 article-title: Application of classifier integration model with confusion table to audio data classification publication-title: Int. J. Mach. Learn. Comput. doi: 10.18178/ijmlc.2019.9.3.812 – ident: ref_39 doi: 10.1109/ICNC.2008.871 – volume: 2014 start-page: 1 year: 2014 ident: ref_5 article-title: Screening for prediabetes using machine learning models publication-title: Comput. Math. Methods Med. doi: 10.1155/2014/485353 – volume: 42 start-page: 415 year: 2018 ident: ref_4 article-title: Diabetes fact sheet in Korea, 2016: An appraisal of current status publication-title: Diabetes Metab. J. doi: 10.4093/dmj.2018.0017 – volume: 41 start-page: 1463 year: 2014 ident: ref_33 article-title: Feature selection for high-dimensional multi-category data using PLS-based local recursive feature elimination publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.043 – ident: ref_19 – volume: 77 start-page: 451 year: 2007 ident: ref_43 article-title: The combination of fasting plasma glucose and glycosylated hemoglobin predicts type 2 diabetes in Japanese workers publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2007.01.024 – ident: ref_23 doi: 10.1109/WF-IoT.2018.8355130 – ident: ref_22 – ident: ref_28 doi: 10.1109/MIPRO.2015.7160458 – volume: 1 start-page: e271 year: 2019 ident: ref_20 article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(19)30123-2 – volume: 45 start-page: 405 year: 2003 ident: ref_50 article-title: Cigarette smoking and diabetes publication-title: Prog. Cardiovasc. Dis. doi: 10.1016/S0033-0620(03)80004-X |
| SSID | ssj0038469 |
| Score | 2.580899 |
| Snippet | Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3317 |
| SubjectTerms | Algorithms Artificial intelligence Asthma Datasets Diabetes Diabetes Mellitus, Type 2 - epidemiology Discriminant analysis Disease Electronic health records Feature selection Humans Insulin Logistic Models Machine Learning Medical records Metabolism Neural networks Pediatrics Prediabetic State Quality of life Statistical analysis Support vector machines Variance analysis |
| Title | Prediction of Type 2 Diabetes Based on Machine Learning Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33806973 https://www.proquest.com/docview/2628161782 https://www.proquest.com/docview/2508574589 https://pubmed.ncbi.nlm.nih.gov/PMC8004981 |
| Volume | 18 |
| WOSCitedRecordID | wos000639226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038469 issn: 1660-4601 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038469 issn: 1660-4601 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038469 issn: 1660-4601 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038469 issn: 1660-4601 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLc24GHStA_2wW0MZRISTxFtUhr3aToQaHvgVCEmHU9V0qZwiPXg7tjfP7vNddwm9rKX9CGuksZObMfuzwC7ZLRpT5pDWhtbmWhHew4rI1OXOMsZVejqttiEGY1wPM7ycOE2D2mVyzOxPairacl35PsqVci2OKovt3eSq0ZxdDWU0HgK61w2m-XcjHuHS5NuZfM3Jh0k6UXTgTZqcvP3J9eeviNG0tC6LVb2QCn9ZWn-mTD5QAOdvPzfub-CF8H2FMNOWF7DE99swvPu4k50_yO9gWE-49gN80tMa8F-qlAiJM7MxSFpvUpQ32mbhelFAGi9FMObSxpzcfXjLXw_OT4_-ipDnQVZJpgsJHpUpULHUETkv7iIfDKTKTIOjPU2q7O0tFnq06RmcHxfaZdWXlXKuyh2znr9DtaaaeO3QKROW4McbbNRUiYlYsxwOqp2UeW1ywYglwtdlAGEnGth3BTkjDBjilXGDGCvp7_t4Dcepdxern0RtuG8-L3wA_jcd9MG4qiIbfz0nmgOGOQ_OUCa3PuOzf1Q5L9HaWb0AMyKAPQEDM692tNMrlqQbmTfC-MP_57WR3imOEkm0lLpbVhbzO79J9gofy4m89lOK81ti9TiUbwD64fHo_yMnvm30_ziF6hLAnE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BqESlirbQRyi0rtSKk5Vd2-x6D1WVliIiSJQDSPS02LteSJVu0iS06p_iNzKzj5QU0RuHnj3atT3jeXjG3wC8Q6dNOrQc3BjfcCUtnjmdhjywyhqqqNI2K5pNhL2ePj2N-ktwVb-FobLKWicWijodJXRH3hKB0OSLa_Fx_INT1yjKrtYtNEqxOHS_f2HINv3Q2UP-vhdi_8vx5wNedRXgidJqxrXTIhHaEvAOeuvWwwgkjASawtA4E2VRkJgocIHKCArepdIGqROpcNbzrTVO4neXYUWRsDdgpd_p9r_Wul-iNSeH20erx3GqYQkTKWXktQbfHO6cr9EnkEV7tBtm8JZv-3eJ5g2bt__4f9utJ7BWedesXR6Hp7Dk8nV4VF5NsvLF1Qa0-xPKTpFEslHGKBJnglWlQVP2Ce16ynCsW9SZOlZB0J6z9vAc1zi7-P4MTu5lFc-hkY9y9xJYYKUJNeUTjacSlWjtE2CQyKyXOmmjJvCasXFSwaxTt49hjOEWCUK8KAhN2JnTj0uAkTspt2pex5WimcZ_GN2Et_NhVBGU9zG5G10izS61MVC7Gif3ohSr-a-kxK9HoWxCuCBwcwKCH18cyQcXBQy5puhS-5v_ntYbWD047h7FR53e4St4KKgkyJNcyC1ozCaXbhseJD9ng-nkdXWWGJzdt0BeA_E-W9c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ_gYYyJEVDQE9SaaHxqbrctu90HQg7wwgW57IMk-LS0u104g3t4d0j41_zrnNmPg5PoGw8-d7Lbdqbz0Zn-BuA9Om3SoeXgxviGK2nxzOks5IFV1lBFlbZ52WwiHAz08XEUL8Cv5i0MlVU2OrFU1NkopTvyjgiEJl9ci05el0XEe73tix-cOkhRprVpp1GJyIG7vsLwbbLV30NefxCi9-nL7j6vOwzwVGk15dppkQptCYQHPXfrYTQSRgLNYmicifIoSE0UuEDlBAvvMmmDzIlMOOv51hon8bsPYBFdciVasBj3D-OvjR2QaNnJ-fbRAnKcdlhBRkoZeZ3hN4e76Gv0D2TZKu2WSbzj5_5ZrnnL_vWW_uedW4antdfNutUxWYEFVzyDJ9WVJateYj2HbjymrBVJKhvljCJ0JlhdMjRhO2jvM4Zjh2X9qWM1NO0p656f4hqnZ99X4eheVrEGrWJUuJfAAitNqCnPaDyVqlRrn4CERG69zEkbtYE3TE7SGn6duoCcJxiGkVAk80LRho8z-osKeOSvlBsN35NaAU2SG6a34d1sGFUH5YNM4UaXSLNJ7Q3UpsbJvahEbPYrKfHrUSjbEM4J34yAYMnnR4rhWQlPrinq1P6rf0_rLTxCKUw-9wcH6_BYUKWQJ7mQG9Caji_da3iY_pwOJ-M39bFicHLf8vgb5NFklw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Type+2+Diabetes+Based+on+Machine+Learning+Algorithm&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Deberneh%2C+Henock+M&rft.au=Kim%2C+Intaek&rft.date=2021-03-23&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=18&rft.issue=6&rft_id=info:doi/10.3390%2Fijerph18063317&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |