Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit

Abstract Summary Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics Ročník 38; číslo 6; s. 1770 - 1772
Hlavní autori: Neumann, Jacob, Lin, Yen Ting, Mallela, Abhishek, Miller, Ely F, Colvin, Joshua, Duprat, Abell T, Chen, Ye, Hlavacek, William S, Posner, Richard G
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 04.03.2022
Predmet:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Summary Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. Availability and implementation PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Summary Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. Availability and implementation PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). Supplementary information Supplementary data are available at Bioinformatics online.
Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty.SUMMARYBayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty.PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s).AVAILABILITY AND IMPLEMENTATIONPyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s).Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). Supplementary data are available at Bioinformatics online.
Author Lin, Yen Ting
Duprat, Abell T
Posner, Richard G
Miller, Ely F
Hlavacek, William S
Colvin, Joshua
Neumann, Jacob
Mallela, Abhishek
Chen, Ye
Author_xml – sequence: 1
  givenname: Jacob
  surname: Neumann
  fullname: Neumann, Jacob
  organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
– sequence: 2
  givenname: Yen Ting
  orcidid: 0000-0001-6893-8423
  surname: Lin
  fullname: Lin, Yen Ting
  organization: Information Sciences Group, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 3
  givenname: Abhishek
  orcidid: 0000-0003-3588-5358
  surname: Mallela
  fullname: Mallela, Abhishek
  organization: Department of Mathematics, University of California, Davis, CA 95616, USA
– sequence: 4
  givenname: Ely F
  surname: Miller
  fullname: Miller, Ely F
  organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
– sequence: 5
  givenname: Joshua
  surname: Colvin
  fullname: Colvin, Joshua
  organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
– sequence: 6
  givenname: Abell T
  surname: Duprat
  fullname: Duprat, Abell T
  organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
– sequence: 7
  givenname: Ye
  surname: Chen
  fullname: Chen, Ye
  organization: Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA
– sequence: 8
  givenname: William S
  orcidid: 0000-0003-4383-8711
  surname: Hlavacek
  fullname: Hlavacek, William S
  email: wish@lanl.gov
  organization: Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 9
  givenname: Richard G
  surname: Posner
  fullname: Posner, Richard G
  email: richard.posner@nau.edu
  organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34986226$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1964184$$D View this record in Osti.gov
BookMark eNqNkUtv1DAUhS1URB_wFyqLFZvQ60ecREJCMKK0UgssQGJnOc7NjCGxg-2p1H-P6QwVZQMrW_J3zj3X55gc-OCRkFMGLxl04qx3wfkxxNlkZ9NZn40FkI_IEZMKKg51d1DuQjWVbEEckuOUvgHUTEr5hBwK2bWKc3VEvl7Oy4Qz-lyMgqdhpIYu0dhiayZ6beL3cEPtxjhPr4PPSFcmToEmU3TOr6mZ1iG6vJlpIT7dvnXhA-Zzl5-Sx6OZEj7bnyfky_m7z6uL6urj-8vVm6vKylbmqhnQ1D0O0HSsbhVgq2w72FFxtArVUI-tQsmZsNYI5B2HHhSDkYnRcMatOCGvd77Ltp9xsGWTaCa9RDebeKuDcfrhi3cbvQ43mgEoaKApDs93DiFlp5N1Ge3GBu_RZs06JVkrC_RiPyaGH1tMWc8uWZwm4zFsk-aKNbwRTIiCnv6Z6D7K708vgNoBNoaUIo73CAP9q139sF29b7cIX_0lLGHveiubuenfcrZfdLv878ifH-PGeA
CitedBy_id crossref_primary_10_1186_s13015_024_00258_2
crossref_primary_10_1016_j_epidem_2023_100718
crossref_primary_10_1007_s11538_024_01258_4
crossref_primary_10_1016_j_sasc_2024_200090
Cites_doi 10.1007/s11222-008-9110-y
10.1038/msb.2012.69
10.1093/bioinformatics/btv363
10.3201/eid2703.203364
10.1109/PDP2018.2018.00114
10.1038/msb.2013.1
10.1023/A:1020281327116
10.1093/bioinformatics/btv655
10.1016/j.isci.2019.08.045
10.1007/978-1-59745-525-1_5
10.15252/msb.20199110
10.1016/j.biosystems.2018.07.006
10.1093/bioinformatics/btw469
10.1126/science.271.5255.1582
10.1038/373123a0
10.1093/bioinformatics/btx626
10.1038/s41598-017-15568-2
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1093/bioinformatics/btac004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1772
ExternalDocumentID PMC10060707
1964184
34986226
10_1093_bioinformatics_btac004
10.1093/bioinformatics/btac004
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: LDRD program at Los Alamos National Laboratory
– fundername: NIGMS NIH HHS
  grantid: R01 GM111510
– fundername: ;
– fundername: ;
  grantid: R01GM111510
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
6.Y
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABPTD
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACMRT
ACPQN
ACUFI
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KOP
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROX
ROZ
RXO
TCN
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
AABJS
AABMN
AAESY
AAIYJ
AAPBV
ABPTK
ADEIU
ADIPN
ADORX
ADQLU
AELNO
AIKOY
ARQIP
AUCZF
AZQFJ
BYORX
CASEJ
DPORF
DPPUQ
OTOTI
PQEST
5PM
ID FETCH-LOGICAL-c484t-7dea5bed07915860e86c8dcf62ec6e6d5f86e4213cca3e2920b0610f13fa212c3
IEDL.DBID TOX
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764890000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:39:02 EDT 2025
Thu May 18 22:35:11 EDT 2023
Thu Jul 10 16:59:19 EDT 2025
Thu Apr 03 06:53:57 EDT 2025
Sat Nov 29 03:49:23 EST 2025
Tue Nov 18 22:26:41 EST 2025
Wed Aug 28 03:17:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-7dea5bed07915860e86c8dcf62ec6e6d5f86e4213cca3e2920b0610f13fa212c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ORCID 0000-0001-6893-8423
0000-0003-3588-5358
0000-0003-4383-8711
0000000168938423
0000000343838711
0000000335885358
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/38/6/1770/49692951/btac004.pdf
PMID 34986226
PQID 2617273133
PQPubID 23479
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10060707
osti_scitechconnect_1964184
proquest_miscellaneous_2617273133
pubmed_primary_34986226
crossref_primary_10_1093_bioinformatics_btac004
crossref_citationtrail_10_1093_bioinformatics_btac004
oup_primary_10_1093_bioinformatics_btac004
PublicationCentury 2000
PublicationDate 2022-03-04
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United Kingdom
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ho (2023033101030311500_) 1995; 373
Keating (2023033101030311500_) 2020; 16
Gupta (2023033101030311500_) 2018
Perelson (2023033101030311500_) 1996; 271
Choi (2023033101030311500_) 2018; 171
Mitra (2023033101030311500_) 2019; 19
Gelman (2023033101030311500_) 2014
Eydgahi (2023033101030311500_) 2013; 9
Somogyi (2023033101030311500_) 2015; 31
Andrieu (2023033101030311500_) 2008; 18
Faeder (2023033101030311500_) 2009; 500
Thomas (2023033101030311500_) 2016; 32
Harmon (2023033101030311500_) 2017; 7
Shockley (2023033101030311500_) 2018; 34
Lopez (2023033101030311500_) 2013; 9
Lin (2023033101030311500_) 2021; 27
Harris (2023033101030311500_) 2016; 32
Andrieu (2023033101030311500_) 2003; 50
References_xml – volume: 18
  start-page: 343
  year: 2008
  ident: 2023033101030311500_
  article-title: A tutorial on adaptive MCMC
  publication-title: Stat. Comput
  doi: 10.1007/s11222-008-9110-y
– volume: 9
  start-page: 644
  year: 2013
  ident: 2023033101030311500_
  article-title: Properties of cell death models calibrated and compared using Bayesian approaches
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb.2012.69
– volume: 31
  start-page: 3315
  year: 2015
  ident: 2023033101030311500_
  article-title: LibRoadRunner: a high performance SBML simulation and analysis library
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv363
– volume: 27
  start-page: 767
  year: 2021
  ident: 2023033101030311500_
  article-title: Daily forecasting of regional epidemics of Coronavirus Disease with Bayesian uncertainty quantification, United States
  publication-title: Emerg. Inf. Dis
  doi: 10.3201/eid2703.203364
– start-page: 690
  year: 2018
  ident: 2023033101030311500_
  article-title: Evaluation of parallel tempering to accelerate Bayesian parameter estimation in systems biology
  publication-title: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)
  doi: 10.1109/PDP2018.2018.00114
– volume-title: Bayesian Data Analysis
  year: 2014
  ident: 2023033101030311500_
– volume: 9
  start-page: 646
  year: 2013
  ident: 2023033101030311500_
  article-title: Programming biological models in Python using PySB
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb.2013.1
– volume: 50
  start-page: 5
  year: 2003
  ident: 2023033101030311500_
  article-title: An introduction to MCMC for machine learning
  publication-title: Mach. Learn
  doi: 10.1023/A:1020281327116
– volume: 32
  start-page: 798
  year: 2016
  ident: 2023033101030311500_
  article-title: BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv655
– volume: 19
  start-page: 1012
  year: 2019
  ident: 2023033101030311500_
  article-title: PyBioNetFit and the biological property specification language
  publication-title: iScience
  doi: 10.1016/j.isci.2019.08.045
– volume: 500
  start-page: 113
  year: 2009
  ident: 2023033101030311500_
  article-title: Rule-based modeling of biochemical systems with BioNetGen
  publication-title: Methods Mol. Biol
  doi: 10.1007/978-1-59745-525-1_5
– volume: 16
  start-page: e9110
  year: 2020
  ident: 2023033101030311500_
  article-title: SBML Level 3: an extensible format for the exchange and reuse of biological models
  publication-title: Mol. Syst. Biol
  doi: 10.15252/msb.20199110
– volume: 171
  start-page: 74
  year: 2018
  ident: 2023033101030311500_
  article-title: Tellurium: an extensible python-based modeling environment for systems and synthetic biology
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2018.07.006
– volume: 32
  start-page: 3366
  year: 2016
  ident: 2023033101030311500_
  article-title: BioNetGen 2.2: advances in rule-based modeling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw469
– volume: 271
  start-page: 1582
  year: 1996
  ident: 2023033101030311500_
  article-title: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time
  publication-title: Science
  doi: 10.1126/science.271.5255.1582
– volume: 373
  start-page: 123
  year: 1995
  ident: 2023033101030311500_
  article-title: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection
  publication-title: Nature
  doi: 10.1038/373123a0
– volume: 34
  start-page: 695
  year: 2018
  ident: 2023033101030311500_
  article-title: PyDREAM: high-dimensional parameter inference for biological models in python
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx626
– volume: 7
  start-page: 15586
  year: 2017
  ident: 2023033101030311500_
  article-title: Timescale separation of positive and negative signaling creates history-dependent responses to IgE receptor stimulation
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-15568-2
SSID ssj0051444
ssj0005056
Score 2.4507155
Snippet Abstract Summary Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian...
Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1770
SubjectTerms Algorithms
Applications Notes
Bayes Theorem
COVID-19
Humans
Markov Chains
Monte Carlo Method
Software
Title Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit
URI https://www.ncbi.nlm.nih.gov/pubmed/34986226
https://www.proquest.com/docview/2617273133
https://www.osti.gov/biblio/1964184
https://pubmed.ncbi.nlm.nih.gov/PMC10060707
Volume 38
WOSCitedRecordID wos000764890000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3da9swEMCPLnSwl23dR-t1KxrsaWAiW7IsP47SsIct7UMLfjOSLDWG1C6JW-h_P13kZE1gdNujkXTYpxM6WXe_A_jCqFRWZCrmqRIxr5Mk1pKp2DqZSe14QfWKM_sjn05lWRYXe5Csc2F2r_ALNtZNN0BEEVw81r0ygQCaZBJrFlyel7-DOiiiYcKDdwV4qGmLaG9J2TpB-I8yt_amUefX2E7a2yPvczeI8tGuNHn1H9_zGl4OLij5FmzmAPZs-waeh6KUD2-hXAGDb4acpJZ0jigyJFP5YZjc090TM1NNS34i24qcqsW8I0uFwentNVHz627R9LMb4ntcPHjBU9tPmv4dXE3OLk-_x0P9hdhwyfs4r63KtK1pXnhVC2qlMLI2TqTWCCvqzElheZowbwXMYtkr7b0D6hLmlN8RDXsPo7Zr7REQzrQRKZW5yRw3-DdPmdpSXSju6jwpIsjWmq_MACfHGhnzKlySs2pba9WgtQjGm3G3Ac_x5IhjnNjKOxhIyTUYTmT6Crlk_rAbwVc_338t6vPaLCq_KPGmRbW2u1tWafAL_fk_gsNgJhuZjBf-FJmKCOSWAW06IPB7u6VtZivwd4L0nJzmH_7lLY_hRYopGxg3xz_CqF_c2U-wb-77Zrk4gWd5KU9Wi-gXU4ojdw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+practical+Markov+chain+Monte+Carlo+sampling+algorithm+in+PyBioNetFit&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Neumann%2C+Jacob&rft.au=Lin%2C+Yen+Ting&rft.au=Mallela%2C+Abhishek&rft.au=Miller%2C+Ely+F&rft.date=2022-03-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=38&rft.issue=6&rft.spage=1770&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon