DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces

Abstract Motivation Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 39; no. 1
Main Authors: Réau, Manon, Renaud, Nicolas, Xue, Li C, Bonvin, Alexandre M J J
Format: Journal Article
Language:English
Published: England Oxford University Press 01.01.2023
Oxford Publishing Limited (England)
Subjects:
ISSN:1367-4811, 1367-4803, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Motivation Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein–protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein–protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations. Results We have developed DeepRank-GNN, a framework that converts protein–protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN’s performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank. Availability and implementation DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein–protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein–protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations. Results We have developed DeepRank-GNN, a framework that converts protein–protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN’s performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank. Availability and implementation DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN. Supplementary information Supplementary data are available at Bioinformatics online.
Gaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein-protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein-protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations. We have developed DeepRank-GNN, a framework that converts protein-protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN's performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank. DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN. Supplementary data are available at Bioinformatics online.
Gaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein-protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein-protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations.MOTIVATIONGaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein-protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein-protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations.We have developed DeepRank-GNN, a framework that converts protein-protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN's performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank.RESULTSWe have developed DeepRank-GNN, a framework that converts protein-protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN's performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank.DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN.AVAILABILITY AND IMPLEMENTATIONDeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein–protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein–protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations. Results We have developed DeepRank-GNN, a framework that converts protein–protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN’s performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank. Availability and implementation DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN. Supplementary information Supplementary data are available at Bioinformatics online.
Author Réau, Manon
Renaud, Nicolas
Xue, Li C
Bonvin, Alexandre M J J
Author_xml – sequence: 1
  givenname: Manon
  surname: Réau
  fullname: Réau, Manon
– sequence: 2
  givenname: Nicolas
  surname: Renaud
  fullname: Renaud, Nicolas
– sequence: 3
  givenname: Li C
  surname: Xue
  fullname: Xue, Li C
– sequence: 4
  givenname: Alexandre M J J
  orcidid: 0000-0001-7369-1322
  surname: Bonvin
  fullname: Bonvin, Alexandre M J J
  email: a.m.j.j.bonvin@uu.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36420989$$D View this record in MEDLINE/PubMed
BookMark eNqNUd1OFjEQbQxEfvQVyCbeeLPSn-121xgTg4okBBLDfZ3tzkJht13broY73sE39Eksfh8EuNGkyZx0zjmd6dkhG847JGSP0TeMtmK_s966wYcJkjVxv0tglGyfkW0malVWDWMbD_AW2YnxklIqqayfky1RV5y2TbtNvn1EnL-CuyoPT07eFlCcB5gvCodLgDGX9NOHq2IIMOFflHwxIgRXzJASBhcLm3HwCa37ffNrjfJlbg5gML4gmwOMEV-u6y45-_zp7OBLeXx6eHTw4bg0VVOlsjbAURlmVNV1newFRYUVGNpBz6lkaoC-4VRg3zU4GAGiV4xRbkwFMLRil7xf2c5LN2Fv0KW8gJ6DnSBcaw9WP-44e6HP_Q_dNlTKlmeD12uD4L8vGJOebDQ4juDQL1FzJdp8uFSZ-uoJ9dIvweXttGBCSM5EIzNr7-FE96Pc_X0mvFsRTPAxBhy0sSnH6W8HtKNmVN9GrR9HrddRZ3n9RH73wj-FbCX0y_y_mj-KN8u8
CitedBy_id crossref_primary_10_1002_adma_202407046
crossref_primary_10_1038_s41467_024_53583_w
crossref_primary_10_1089_cmb_2025_0074
crossref_primary_10_1002_prot_70017
crossref_primary_10_1109_TNSE_2025_3547349
crossref_primary_10_1145_3689430
crossref_primary_10_1631_jzus_B2400387
crossref_primary_10_1038_s41598_025_96510_9
crossref_primary_10_1007_s00521_023_09181_w
crossref_primary_10_1016_j_ipm_2024_103778
crossref_primary_10_1016_j_ifset_2025_104052
crossref_primary_10_1093_bib_bbae355
crossref_primary_10_3390_admsci15090334
crossref_primary_10_1016_j_neunet_2025_108064
crossref_primary_10_1155_2023_8342104
crossref_primary_10_1038_s41591_024_03434_4
crossref_primary_10_3389_fphar_2024_1393415
crossref_primary_10_1016_j_drudis_2025_104382
crossref_primary_10_1002_pmic_202200323
crossref_primary_10_1007_s42421_025_00124_6
crossref_primary_10_1016_j_csbj_2024_07_014
crossref_primary_10_1016_j_compbiolchem_2024_108067
crossref_primary_10_1007_s11427_024_2906_3
crossref_primary_10_1109_TMC_2025_3563345
crossref_primary_10_1007_s10664_024_10515_y
crossref_primary_10_1109_TCSS_2023_3344173
crossref_primary_10_1002_prot_26554
crossref_primary_10_1007_s10462_024_10918_9
crossref_primary_10_1007_s40747_023_01126_z
crossref_primary_10_1016_j_sbi_2024_102835
crossref_primary_10_1093_bioadv_vbad011
crossref_primary_10_1016_j_patrec_2025_08_016
crossref_primary_10_1016_j_engappai_2025_110513
crossref_primary_10_1186_s12859_025_06153_w
crossref_primary_10_1007_s00521_024_09689_9
crossref_primary_10_1021_acs_jcim_5c01029
crossref_primary_10_1145_3662178
crossref_primary_10_1016_j_tibtech_2025_04_013
crossref_primary_10_1016_j_csbj_2024_06_021
crossref_primary_10_1073_pnas_2400260121
crossref_primary_10_1016_j_petsci_2025_06_007
crossref_primary_10_1016_j_csbj_2024_12_015
crossref_primary_10_1038_s44222_025_00349_8
crossref_primary_10_1038_s41524_025_01536_2
crossref_primary_10_3390_w15173029
crossref_primary_10_1109_TNSRE_2023_3342050
crossref_primary_10_1186_s12859_024_05991_4
crossref_primary_10_1186_s42400_024_00353_2
crossref_primary_10_34133_research_0773
crossref_primary_10_1016_j_engappai_2023_106077
crossref_primary_10_1021_acs_jcim_5c00969
crossref_primary_10_3390_biom14050574
crossref_primary_10_1007_s10462_024_10949_2
crossref_primary_10_3390_molecules28135169
crossref_primary_10_1093_bioinformatics_btae504
crossref_primary_10_1007_s40745_023_00475_3
crossref_primary_10_1016_j_jclepro_2024_140894
crossref_primary_10_1016_j_patrec_2024_09_009
crossref_primary_10_1007_s41060_024_00597_8
crossref_primary_10_1016_j_eswa_2025_126516
crossref_primary_10_1063_5_0249920
crossref_primary_10_3389_fimmu_2024_1416297
crossref_primary_10_3390_biology14091137
crossref_primary_10_1093_bioadv_vbad191
crossref_primary_10_1109_ACCESS_2024_3382299
crossref_primary_10_1007_s11004_024_10167_0
crossref_primary_10_3390_cryst15050390
crossref_primary_10_1038_s42256_023_00715_4
Cites_doi 10.1145/3065386
10.1021/acs.jcim.9b00927
10.1002/wcms.1410
10.1002/prot.21804
10.1021/acs.jcim.6b00740
10.1016/j.jmb.2015.07.016
10.1002/prot.26222
10.1093/bioinformatics/btaa714
10.1093/nar/gkz991
10.1038/s41592-019-0666-6
10.1101/2021.01.29.425727
10.1002/prot.25888
10.1093/bioinformatics/btz496
10.1186/1471-2105-13-334
10.1002/prot.24678
10.1093/bioinformatics/btab118
10.1371/journal.pone.0249404
10.1093/bioinformatics/btz122
10.3389/fenvs.2015.00080
10.1021/acs.jcim.9b00628
10.1021/acs.jcim.7b00650
10.1002/prot.25007
10.1186/s12900-014-0022-0
10.1021/acs.jcim.0c00411
10.1021/acsomega.9b04162
10.3389/fmolb.2021.647915
10.1038/s41586-021-03819-2
10.1016/j.jmb.2015.09.014
10.1093/bioinformatics/btz870
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btac759
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC9805592
36420989
10_1093_bioinformatics_btac759
10.1093/bioinformatics/btac759
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hypatia Fellowship from Radboudumc
  grantid: Rv819.52706
– fundername: Netherlands eScience Center
  grantid: ASDI.2016.043
– fundername: Computing Time on National Computer Facilities
  grantid: 2018/ENW/00485366
– fundername: SURF Open Lab 'Machine
  grantid: AB/AM/10573
– fundername: European Union Horizon 2020 project BioExcel
  grantid: 823830
– fundername: Netherlands Organization for Scientific Research
– fundername: ;
– fundername: ;
  grantid: 823830
– fundername: ;
  grantid: 2018/ENW/00485366
– fundername: ;
  grantid: ASDI.2016.043
– fundername: ;
  grantid: Rv819.52706
– fundername: ;
  grantid: AB/AM/10573
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c484t-6ca2e7c1c74bbb5d30e7e4ac0bad20517fad8203edb8efc3a3d71102cc4aaf93
IEDL.DBID TOX
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896780100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:37:54 EDT 2025
Fri Jul 11 06:54:06 EDT 2025
Mon Oct 06 18:00:47 EDT 2025
Wed Feb 19 02:25:35 EST 2025
Sat Nov 29 03:49:25 EST 2025
Tue Nov 18 22:23:23 EST 2025
Wed Apr 02 07:03:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-6ca2e7c1c74bbb5d30e7e4ac0bad20517fad8203edb8efc3a3d71102cc4aaf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ORCID 0000-0001-7369-1322
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btac759
PMID 36420989
PQID 3133521385
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9805592
proquest_miscellaneous_2739739257
proquest_journals_3133521385
pubmed_primary_36420989
crossref_citationtrail_10_1093_bioinformatics_btac759
crossref_primary_10_1093_bioinformatics_btac759
oup_primary_10_1093_bioinformatics_btac759
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Igashov (2023010107544976300_btac759-B13) 2021; 37
Renaud (2023010107544976300_btac759-B30) 2020
Mahbub (2023010107544976300_btac759-B24) 2022
Geng (2023010107544976300_btac759-B12) 2020; 36
Lensink (2023010107544976300_btac759-B19) 2007; 69
Gainza (2023010107544976300_btac759-B10) 2020; 17
Jiménez (2023010107544976300_btac759-B14) 2018; 58
Ragoza (2023010107544976300_btac759-B28) 2017; 57
Vreven (2023010107544976300_btac759-B37) 2015; 427
Fout (2023010107544976300_btac759-B8) 2017
Wang (2023010107544976300_btac759-B38) 2020; 36
Krizhevsky (2023010107544976300_btac759-B18) 2017; 60
Pagès (2023010107544976300_btac759-B27) 2019; 35
Renaud (2023010107544976300_btac759-B33) 2021
Cao (2023010107544976300_btac759-B4) 2020; 88
Son (2023010107544976300_btac759-B35) 2021; 16
Geng (2023010107544976300_btac759-B11) 2019; 9
Kingma (2023010107544976300_btac759-B17) 2017
Morrone (2023010107544976300_btac759-B26) 2020; 60
Paszke (2023010107544976300_btac759-B7) 2017
Renaud (2023010107544976300_btac759-B31) 2021
Lensink (2023010107544976300_btac759-B21) 2021; 89
van Zundert (2023010107544976300_btac759-B40) 2016; 428
Réau (2023010107544976300_btac759-B29) 2021
Hagberg (2023010107544976300_btac759-B1200) 2008
Lensink (2023010107544976300_btac759-B22) 2014; 82
Francoeur (2023010107544976300_btac759-B9) 2020; 60
Duarte (2023010107544976300_btac759-B5) 2012; 13
Lu (2023010107544976300_btac759-B23) 2020; 48
Wang (2023010107544976300_btac759-B39) 2021; 8
Lensink (2023010107544976300_btac759-B20) 2016; 84
Mayr (2023010107544976300_btac759-B25) 2016; 3
Baskaran (2023010107544976300_btac759-B2) 2014; 14
Jumper (2023010107544976300_btac759-B15) 2021; 596
Torng (2023010107544976300_btac759-B36) 2019; 59
Baldassarre (2023010107544976300_btac759-B1) 2021; 37
Renaud (2023010107544976300_btac759-B32) 2021
Karlov (2023010107544976300_btac759-B16) 2020; 5
References_xml – volume: 60
  start-page: 84
  year: 2017
  ident: 2023010107544976300_btac759-B18
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 60
  start-page: 4170
  year: 2020
  ident: 2023010107544976300_btac759-B26
  article-title: Combining docking pose rank and structure with deep learning improves protein-ligand binding mode prediction
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.9b00927
– volume: 9
  start-page: e1410
  year: 2019
  ident: 2023010107544976300_btac759-B11
  article-title: Finding the ΔΔG spot: are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it?
  publication-title: WIREs Comput. Mol. Sci
  doi: 10.1002/wcms.1410
– volume: 69
  start-page: 704
  year: 2007
  ident: 2023010107544976300_btac759-B19
  article-title: Docking and scoring protein complexes: CAPRI 3rd edition
  publication-title: Proteins
  doi: 10.1002/prot.21804
– volume: 57
  start-page: 942
  year: 2017
  ident: 2023010107544976300_btac759-B28
  article-title: Protein–ligand scoring with convolutional neural networks
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.6b00740
– year: 2021
  ident: 2023010107544976300_btac759-B32
– volume: 427
  start-page: 3031
  year: 2015
  ident: 2023010107544976300_btac759-B37
  article-title: Updates to the integrated protein-protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2015.07.016
– year: 2021
  ident: 2023010107544976300_btac759-B33
– volume: 89
  start-page: 1800
  year: 2021
  ident: 2023010107544976300_btac759-B21
  article-title: Prediction of protein assemblies, the next frontier: the CASP14-CAPRI experiment
  publication-title: Proteins
  doi: 10.1002/prot.26222
– volume: 37
  start-page: 360
  year: 2021
  ident: 2023010107544976300_btac759-B1
  article-title: GraphQA: protein model quality assessment using graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa714
– volume: 48
  start-page: D265
  year: 2020
  ident: 2023010107544976300_btac759-B23
  article-title: CDD/SPARCLE: the conserved domain database in 2020
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz991
– volume: 17
  start-page: 184
  year: 2020
  ident: 2023010107544976300_btac759-B10
  article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0666-6
– year: 2021
  ident: 2023010107544976300_btac759-B31
  doi: 10.1101/2021.01.29.425727
– volume: 88
  start-page: 1091
  year: 2020
  ident: 2023010107544976300_btac759-B4
  article-title: Energy-based graph convolutional networks for scoring protein docking models
  publication-title: Proteins: Struct., Funct. Bioinformatics
  doi: 10.1002/prot.25888
– volume: 36
  start-page: 112
  year: 2020
  ident: 2023010107544976300_btac759-B12
  article-title: iScore: a novel graph kernel-based function for scoring protein-protein docking models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz496
– volume: 13
  start-page: 334
  year: 2012
  ident: 2023010107544976300_btac759-B5
  article-title: Protein interface classification by evolutionary analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-334
– year: 2020
  ident: 2023010107544976300_btac759-B30
– volume: 82
  start-page: 3163
  year: 2014
  ident: 2023010107544976300_btac759-B22
  article-title: Score_set: a CAPRI benchmark for scoring protein complexes
  publication-title: Proteins: Struct., Funct. Bioinformatics
  doi: 10.1002/prot.24678
– volume: 37
  start-page: 2332
  year: 2021
  ident: 2023010107544976300_btac759-B13
  article-title: VoroCNN: deep convolutional neural network built on 3D voronoi tessellation of protein structures
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab118
– volume: 16
  start-page: e0249404
  year: 2021
  ident: 2023010107544976300_btac759-B35
  article-title: Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0249404
– volume: 35
  start-page: 3313
  year: 2019
  ident: 2023010107544976300_btac759-B27
  article-title: Protein model quality assessment using 3D oriented convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz122
– year: 2008
  ident: 2023010107544976300_btac759-B1200
– volume: 3
  year: 2016
  ident: 2023010107544976300_btac759-B25
  article-title: DeepTox: toxicity prediction using deep learning
  publication-title: Front. Environ. Sci
  doi: 10.3389/fenvs.2015.00080
– volume: 59
  start-page: 4131
  year: 2019
  ident: 2023010107544976300_btac759-B36
  article-title: Graph convolutional neural networks for predicting drug-target interactions
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.9b00628
– volume: 58
  start-page: 287
  year: 2018
  ident: 2023010107544976300_btac759-B14
  article-title: KDEEP: protein–ligand absolute binding affinity prediction via 3D-Convolutional neural networks
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.7b00650
– volume: 84
  start-page: 323
  year: 2016
  ident: 2023010107544976300_btac759-B20
  article-title: Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment
  publication-title: Proteins: Struct., Funct., Bioinformatics
  doi: 10.1002/prot.25007
– volume: 14
  start-page: 22
  year: 2014
  ident: 2023010107544976300_btac759-B2
  article-title: A PDB-wide, evolution-based assessment of protein-protein interfaces
  publication-title: BMC Struct. Biol
  doi: 10.1186/s12900-014-0022-0
– volume: 60
  start-page: 4200
  year: 2020
  ident: 2023010107544976300_btac759-B9
  article-title: Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.0c00411
– volume: 5
  start-page: 5150
  year: 2020
  ident: 2023010107544976300_btac759-B16
  article-title: graphDelta: MPNN scoring function for the affinity prediction of protein–ligand complexes
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b04162
– year: 2017
  ident: 2023010107544976300_btac759-B8
– volume: 8
  start-page: 647915
  year: 2021
  ident: 2023010107544976300_btac759-B39
  article-title: Protein docking model evaluation by graph neural networks
  publication-title: Front. Mol. Biosci
  doi: 10.3389/fmolb.2021.647915
– year: 2021
  ident: 2023010107544976300_btac759-B29
– volume: 596
  start-page: 583
  year: 2021
  ident: 2023010107544976300_btac759-B15
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– year: 2017
  ident: 2023010107544976300_btac759-B17
– year: 2022
  ident: 2023010107544976300_btac759-B24
– year: 2017
  ident: 2023010107544976300_btac759-B7
– volume: 428
  start-page: 720
  year: 2016
  ident: 2023010107544976300_btac759-B40
  article-title: The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2015.09.014
– volume: 36
  start-page: 2113
  year: 2020
  ident: 2023010107544976300_btac759-B38
  article-title: Protein docking model evaluation by 3D deep convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz870
SSID ssj0005056
Score 2.6935678
Snippet Abstract Motivation Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for...
Gaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design...
Motivation Gaining structural insights into the protein–protein interactome is essential to understand biological phenomena and extract knowledge for rational...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Artificial neural networks
Availability
Bioinformatics
Data augmentation
Deep learning
Drug development
Graph neural networks
Graphical representations
Graphical user interface
Graphs
Interfaces
Invariants
Machine learning
Neural networks
Neural Networks, Computer
Original Paper
Protein engineering
Proteins
Proteins - chemistry
Rotation
Title DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/36420989
https://www.proquest.com/docview/3133521385
https://www.proquest.com/docview/2739739257
https://pubmed.ncbi.nlm.nih.gov/PMC9805592
Volume 39
WOSCitedRecordID wos000896780100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RRKVeoPQBC3RlpJ4qRbuOE-L0VtFSDmiLqlW1t9Se2CICeVe7AYkb_4F_yC9hnMeWIFUtSDlYiieP8euzZ-YbgI-Y5jkeSB5oAqOBRwSBthoDFOjtvGh5lT_l10kyGsnJJD1dAd7Gwjw24adioItpQyLqiYsHulSYxD5kj8fS5ywY_5j8ceqg9byNA_6raGcJ6oS1PUCXj50kH6w6RxvP-N7XsN5ATPal7hObsGLcG3hZJ528fgu_vxoz-6ncefB9NPrMFKs4q5kntiQpV7uFM9s6bbFyyqrUEmxWUXG6BSuo7OkdCnd3c9uUmOedmFvv4PUOxkffxofHQZNnIcBIRmVwgCo0CXJMIq11nIuhSUykcKhVHnoOL6tyAgrC5Foai0KJPCHUECJGStlUvIdVN3VmG5gQJo2kii3te2kGRomCK8tVriLSoxE9iFvNZ9hwkPtUGBdZbQsXWVd5WaO8HgyWcrOaheOfEp-oYf-78l7b_lkzhBeZ4D4cjQsZ92B_eZsGn7eoKGeml4uMsF9KF017Pdiqu8vylYJ2dsNU0sOTTkdaVvDE3t07rjirCL5TOaSNXrjzlH_YhVch4a_6dGgPVsv5pfkAa3hVFot5H14kE9mvDhz61Yi5B6VpI9Y
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepRank-GNN%3A+a+graph+neural+network+framework+to+learn+patterns+in+protein-protein+interfaces&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=R%C3%A9au%2C+Manon&rft.au=Renaud%2C+Nicolas&rft.au=Xue%2C+Li+C&rft.au=Bonvin%2C+Alexandre+M+J+J&rft.date=2023-01-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac759&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon