High-efficiency and high-accuracy digital image correlation for three-dimensional measurement

The computational efficiency and measurement accuracy of the digital image correlation (DIC) have become more and more important in recent years. For the three-dimensional DIC (3D-DIC), these issues are much more serious. First, there are two cameras employed which increases the computational amount...

Full description

Saved in:
Bibliographic Details
Published in:Optics and lasers in engineering Vol. 65; pp. 73 - 80
Main Authors: Gao, Yue, Cheng, Teng, Su, Yong, Xu, Xiaohai, Zhang, Yong, Zhang, Qingchuan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2015
Subjects:
ISSN:0143-8166, 1873-0302
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The computational efficiency and measurement accuracy of the digital image correlation (DIC) have become more and more important in recent years. For the three-dimensional DIC (3D-DIC), these issues are much more serious. First, there are two cameras employed which increases the computational amount several times. Second, because of the differences in view angles, the must-do stereo correspondence between the left and right images is equivalently a non-uniform deformation, and cannot be weakened by increasing the sampling frequency of digital cameras. This work mainly focuses on the efficiency and accuracy of 3D-DIC. The inverse compositional Gauss–Newton algorithm (IC-GN2) with the second-order shape function is firstly proposed. Because it contains the second-order displacement gradient terms, the measurement accuracy for the non-uniform deformation thus can be improved significantly, which is typically one order higher than the first-order shape function combined with the IC-GN algorithm (IC-GN1), and 2 times faster than the second-order shape function combined with the forward additive Gauss–Newton algorithm (FA-GN2). Then, based on the features of the IC-GN1 and IC-GN2 algorithms, a high-efficiency and high-accuracy measurement strategy for 3D-DIC is proposed in the end. •Inverse compositional Gauss–Newton with second-order shape function is proposed.•Simulation results show that the new algorithm has second-order precision.•Simulation results show that the new algorithm is faster than forward algorithms.•Experiment results further validate the speed and precision of the new algorithm.•The new algorithm is practical on large deformation and stereo correspondence.
AbstractList The computational efficiency and measurement accuracy of the digital image correlation (DIC) have become more and more important in recent years. For the three-dimensional DIC (3D-DIC), these issues are much more serious. First, there are two cameras employed which increases the computational amount several times. Second, because of the differences in view angles, the must-do stereo correspondence between the left and right images is equivalently a non-uniform deformation, and cannot be weakened by increasing the sampling frequency of digital cameras. This work mainly focuses on the efficiency and accuracy of 3D-DIC. The inverse compositional Gauss-Newton algorithm (IC-GN super(2)) with the second-order shape function is firstly proposed. Because it contains the second-order displacement gradient terms, the measurement accuracy for the non-uniform deformation thus can be improved significantly, which is typically one order higher than the first-order shape function combined with the IC-GN algorithm (IC-GN super(1)), and 2 times faster than the second-order shape function combined with the forward additive Gauss-Newton algorithm (FA-GN super(2)). Then, based on the features of the IC-GN super(1) and IC-GN super(2) algorithms, a high-efficiency and high-accuracy measurement strategy for 3D-DIC is proposed in the end.
The computational efficiency and measurement accuracy of the digital image correlation (DIC) have become more and more important in recent years. For the three-dimensional DIC (3D-DIC), these issues are much more serious. First, there are two cameras employed which increases the computational amount several times. Second, because of the differences in view angles, the must-do stereo correspondence between the left and right images is equivalently a non-uniform deformation, and cannot be weakened by increasing the sampling frequency of digital cameras. This work mainly focuses on the efficiency and accuracy of 3D-DIC. The inverse compositional Gauss–Newton algorithm (IC-GN2) with the second-order shape function is firstly proposed. Because it contains the second-order displacement gradient terms, the measurement accuracy for the non-uniform deformation thus can be improved significantly, which is typically one order higher than the first-order shape function combined with the IC-GN algorithm (IC-GN1), and 2 times faster than the second-order shape function combined with the forward additive Gauss–Newton algorithm (FA-GN2). Then, based on the features of the IC-GN1 and IC-GN2 algorithms, a high-efficiency and high-accuracy measurement strategy for 3D-DIC is proposed in the end. •Inverse compositional Gauss–Newton with second-order shape function is proposed.•Simulation results show that the new algorithm has second-order precision.•Simulation results show that the new algorithm is faster than forward algorithms.•Experiment results further validate the speed and precision of the new algorithm.•The new algorithm is practical on large deformation and stereo correspondence.
Author Su, Yong
Xu, Xiaohai
Zhang, Qingchuan
Cheng, Teng
Gao, Yue
Zhang, Yong
Author_xml – sequence: 1
  givenname: Yue
  surname: Gao
  fullname: Gao, Yue
– sequence: 2
  givenname: Teng
  surname: Cheng
  fullname: Cheng, Teng
  email: chteng@ustc.edu.cn
– sequence: 3
  givenname: Yong
  surname: Su
  fullname: Su, Yong
– sequence: 4
  givenname: Xiaohai
  surname: Xu
  fullname: Xu, Xiaohai
– sequence: 5
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
– sequence: 6
  givenname: Qingchuan
  surname: Zhang
  fullname: Zhang, Qingchuan
  email: zhangqc@ustc.edu.cn
BookMark eNqNkLFOwzAQhi1UJNrCM5CRJcF2HMcdGKoKKFIlFhiR5diX1lUaF9tB6tvjUsTAAtNJ__3fSfdN0Kh3PSB0TXBBMOG328LtY6cC9OuCYsIKXBWYlGdoTERd5rjEdITGaVHmgnB-gSYhbHEiGSFj9La0600ObWu1hV4fMtWbbHPMlNaDVykxdm2j6jK7U2vItPMeOhWt67PW-SxuPEBu7A76kLLU24EKg4cUxEt03qouwNX3nKLXh_uXxTJfPT8-LearXDPBYs4rTStRc6yEpi3jQqu6npmWVYbXpuHCNDPTMCNYyWmDKaVKGI6B8lY3daXKKbo53d179z5AiHJng4auUz24IUjCK8IYrmqRqnenqvYuBA-t1Om74zvRK9tJguVRq9zKH63yqFXiSiatia9_8XufzPjDP8j5iYRk4sOCl-HLORjrQUdpnP3zxieV7JvJ
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2843725
crossref_primary_10_1080_25740881_2019_1695273
crossref_primary_10_1016_j_measurement_2023_112567
crossref_primary_10_1364_AO_380322
crossref_primary_10_1016_j_optlaseng_2022_107234
crossref_primary_10_1088_2515_7647_abcbe4
crossref_primary_10_1016_j_optlaseng_2024_108568
crossref_primary_10_3390_s17122782
crossref_primary_10_1016_j_optlaseng_2023_107879
crossref_primary_10_3389_fmats_2020_598973
crossref_primary_10_1007_s11431_017_9125_7
crossref_primary_10_1016_j_optlaseng_2021_106541
crossref_primary_10_1016_j_istruc_2025_109277
crossref_primary_10_1007_s11340_017_0274_2
crossref_primary_10_1016_j_measurement_2024_116517
crossref_primary_10_1016_j_neucom_2024_127617
crossref_primary_10_1016_j_engfracmech_2025_111262
crossref_primary_10_1016_j_optlaseng_2025_109245
crossref_primary_10_3390_s18041208
crossref_primary_10_1007_s11440_024_02275_2
crossref_primary_10_1016_j_optlaseng_2019_105942
crossref_primary_10_1007_s11340_016_0133_6
crossref_primary_10_1364_AO_54_010089
crossref_primary_10_1109_JSEN_2019_2915986
crossref_primary_10_1016_j_optlaseng_2023_107777
crossref_primary_10_1007_s00603_023_03351_x
crossref_primary_10_1364_AO_57_000924
crossref_primary_10_1016_j_optlaseng_2024_108582
crossref_primary_10_1016_j_tafmec_2023_103947
crossref_primary_10_1007_s11431_019_9525_3
crossref_primary_10_1016_j_optlaseng_2018_03_029
crossref_primary_10_1016_j_ymssp_2022_109273
crossref_primary_10_1007_s11340_015_0080_7
crossref_primary_10_1016_j_ndteint_2020_102219
crossref_primary_10_3390_s25185675
crossref_primary_10_1007_s11340_015_0054_9
crossref_primary_10_1016_j_polymertesting_2019_106015
crossref_primary_10_1016_j_ymssp_2022_108980
crossref_primary_10_1007_s11340_022_00905_y
crossref_primary_10_1016_j_ymssp_2021_108040
crossref_primary_10_1016_j_optcom_2022_129015
crossref_primary_10_1016_j_measurement_2018_06_022
crossref_primary_10_1016_j_optlaseng_2019_105964
crossref_primary_10_3390_s19214726
crossref_primary_10_1016_j_asoc_2017_08_011
crossref_primary_10_1007_s10409_017_0719_y
crossref_primary_10_1016_j_ijsolstr_2024_112948
crossref_primary_10_1007_s11340_017_0253_7
crossref_primary_10_3390_rs12182906
crossref_primary_10_1016_j_measurement_2025_117301
crossref_primary_10_1016_j_measurement_2025_117783
crossref_primary_10_1016_j_optlaseng_2024_108362
crossref_primary_10_1364_AO_481625
crossref_primary_10_1007_s40799_025_00791_8
crossref_primary_10_1016_j_mechmat_2021_104138
crossref_primary_10_1007_s11431_022_2122_y
crossref_primary_10_1016_j_optlaseng_2024_108250
crossref_primary_10_3390_en17071566
crossref_primary_10_1016_j_polymertesting_2019_106111
crossref_primary_10_1088_1361_6501_ab1c9c
crossref_primary_10_1016_j_optlastec_2025_112958
crossref_primary_10_1016_j_jnucmat_2020_152565
crossref_primary_10_1016_j_optlaseng_2016_09_010
crossref_primary_10_1016_j_optlastec_2024_112177
crossref_primary_10_1016_j_optlaseng_2016_09_011
crossref_primary_10_1016_j_engstruct_2020_110551
crossref_primary_10_1016_j_jmst_2020_02_001
crossref_primary_10_3390_app11114904
crossref_primary_10_1088_1361_6501_adb5ad
crossref_primary_10_1088_1361_6501_aaf846
crossref_primary_10_1016_j_compstruct_2019_01_024
crossref_primary_10_1109_ACCESS_2021_3068467
crossref_primary_10_1177_0309324716668674
crossref_primary_10_1016_j_measurement_2024_115617
crossref_primary_10_1520_JTE20230485
crossref_primary_10_1007_s10409_024_23464_x
crossref_primary_10_1088_1361_6501_aac55b
crossref_primary_10_1016_j_cja_2024_02_003
crossref_primary_10_3389_fbuil_2019_00085
crossref_primary_10_1109_TIM_2021_3065436
crossref_primary_10_1016_j_optlaseng_2014_12_010
crossref_primary_10_1016_j_optlaseng_2024_108267
crossref_primary_10_1016_j_optlaseng_2015_03_001
crossref_primary_10_1016_j_taml_2016_04_003
crossref_primary_10_3390_s23063317
crossref_primary_10_1016_j_engstruct_2022_113998
crossref_primary_10_1088_1361_6501_aaa940
crossref_primary_10_1016_j_measurement_2021_109999
crossref_primary_10_1016_j_optlaseng_2023_107566
crossref_primary_10_1016_j_polymertesting_2018_12_001
crossref_primary_10_1016_j_optlaseng_2018_10_012
crossref_primary_10_1016_j_tafmec_2025_104884
crossref_primary_10_1016_j_ijmecsci_2020_106002
crossref_primary_10_1016_j_optlaseng_2016_05_019
crossref_primary_10_1007_s00264_017_3728_3
crossref_primary_10_1016_j_optlaseng_2015_03_005
crossref_primary_10_1007_s11340_016_0138_1
crossref_primary_10_1111_str_12315
crossref_primary_10_1364_AO_405551
crossref_primary_10_3390_jmse12111955
crossref_primary_10_1016_j_optlaseng_2016_08_016
crossref_primary_10_1007_s11340_021_00790_x
crossref_primary_10_1016_j_engstruct_2023_117416
crossref_primary_10_1007_s11340_017_0294_y
crossref_primary_10_1109_JSEN_2017_2786747
crossref_primary_10_1007_s11340_016_0180_z
crossref_primary_10_1007_s00170_019_03717_y
crossref_primary_10_1016_j_measurement_2020_108618
crossref_primary_10_3390_met6050120
crossref_primary_10_1117_1_OE_61_7_070901
crossref_primary_10_1016_j_optlaseng_2017_06_019
crossref_primary_10_1088_1361_6501_aa70f8
crossref_primary_10_1016_j_cemconcomp_2025_106012
crossref_primary_10_1016_j_optlaseng_2018_08_022
crossref_primary_10_1088_1361_6501_acb2e2
crossref_primary_10_1016_j_optlaseng_2017_06_010
crossref_primary_10_1088_1361_6501_ac7a06
crossref_primary_10_1016_j_optlaseng_2021_106812
crossref_primary_10_1016_j_optlaseng_2021_106930
crossref_primary_10_1016_j_culher_2022_11_007
crossref_primary_10_1088_0957_0233_27_12_125010
crossref_primary_10_1007_s12274_021_3357_4
crossref_primary_10_1016_j_optlaseng_2016_01_007
crossref_primary_10_1007_s11340_024_01079_5
crossref_primary_10_1007_s11340_020_00588_3
crossref_primary_10_3390_f13101627
crossref_primary_10_3390_s20123530
crossref_primary_10_1016_j_ijleo_2023_170901
crossref_primary_10_1016_j_optlaseng_2016_01_002
crossref_primary_10_1016_j_oceaneng_2022_111512
crossref_primary_10_3390_ma15217543
crossref_primary_10_1016_j_optlaseng_2024_108622
crossref_primary_10_1007_s11340_025_01183_0
crossref_primary_10_1016_j_ymssp_2024_111792
crossref_primary_10_1088_1361_6501_ab3c80
crossref_primary_10_1016_j_optlaseng_2024_108070
crossref_primary_10_1016_j_heliyon_2024_e37782
crossref_primary_10_1016_j_optlaseng_2021_106905
crossref_primary_10_1017_jfm_2021_403
crossref_primary_10_3139_120_111406
crossref_primary_10_1016_j_measurement_2024_115809
crossref_primary_10_1088_1361_6501_ad7971
crossref_primary_10_1177_14759217231172297
crossref_primary_10_1016_j_optlaseng_2018_05_016
crossref_primary_10_1007_s11340_021_00714_9
crossref_primary_10_1109_ACCESS_2024_3398786
crossref_primary_10_1016_j_optlaseng_2018_07_013
crossref_primary_10_1007_s11340_017_0268_0
crossref_primary_10_1016_j_optlaseng_2017_09_020
crossref_primary_10_1016_j_optlaseng_2024_108405
crossref_primary_10_1364_AO_387678
crossref_primary_10_3788_AOSOL250476
crossref_primary_10_1016_j_measurement_2021_110212
crossref_primary_10_1088_1361_6501_acda53
crossref_primary_10_1364_AO_529326
crossref_primary_10_1016_j_optlaseng_2021_106743
crossref_primary_10_1109_ACCESS_2020_3017236
crossref_primary_10_1109_JSEN_2021_3054805
crossref_primary_10_1016_j_compgeo_2023_106027
crossref_primary_10_1109_TIM_2025_3593568
crossref_primary_10_1016_j_optlaseng_2017_05_010
crossref_primary_10_1364_AO_55_007186
crossref_primary_10_1088_0957_0233_26_4_045202
crossref_primary_10_1007_s12559_014_9313_9
crossref_primary_10_1016_j_jnucmat_2020_151992
crossref_primary_10_3390_s22249766
crossref_primary_10_1016_j_polymertesting_2024_108377
crossref_primary_10_1016_j_optlaseng_2024_108651
crossref_primary_10_1088_1361_6501_adbbc8
crossref_primary_10_1016_j_cemconcomp_2017_11_005
crossref_primary_10_1016_j_optlaseng_2017_05_018
crossref_primary_10_1016_j_optlaseng_2020_106510
crossref_primary_10_1088_1742_6596_2468_1_012121
crossref_primary_10_1007_s11440_018_0676_z
crossref_primary_10_3390_app13032019
crossref_primary_10_1016_j_optlaseng_2019_04_023
crossref_primary_10_1016_j_measurement_2023_112549
crossref_primary_10_1016_j_tust_2023_105154
crossref_primary_10_3390_ma16083137
crossref_primary_10_1016_j_ultramic_2024_113924
crossref_primary_10_1109_TIM_2024_3463020
crossref_primary_10_1016_j_ymssp_2021_108072
crossref_primary_10_1016_j_optlaseng_2019_03_018
crossref_primary_10_1016_j_optlaseng_2025_108981
crossref_primary_10_1111_str_12469
crossref_primary_10_1016_j_measurement_2023_113760
crossref_primary_10_1155_2021_5583355
crossref_primary_10_1016_j_ijsolstr_2018_03_030
crossref_primary_10_1016_j_optlaseng_2020_106097
crossref_primary_10_1038_s41378_024_00735_z
crossref_primary_10_1016_j_optlaseng_2017_09_013
crossref_primary_10_1016_j_optlaseng_2018_12_008
crossref_primary_10_1364_AO_443878
crossref_primary_10_1016_j_optlaseng_2015_01_012
crossref_primary_10_1016_j_optlaseng_2016_07_002
crossref_primary_10_1088_1361_6501_aa7a6e
crossref_primary_10_3390_s22218110
Cites_doi 10.1023/B:FRAC.0000007376.06477.e8
10.1007/BF02321649
10.1016/j.materresbull.2006.03.002
10.1016/j.ijplas.2005.03.017
10.1109/CVPR.2001.990652
10.1016/j.msea.2004.11.044
10.1016/j.optlaseng.2008.05.005
10.1111/j.1475-1305.2006.00258.x
10.1117/1.1511749
10.1016/j.measurement.2006.03.008
10.1117/1.1387992
10.1016/j.optlaseng.2007.11.009
10.1007/BF02326485
10.1016/j.optlaseng.2011.02.023
10.1007/BF02410987
10.1364/AO.45.007785
10.1364/AO.48.001535
10.1088/0957-0233/20/6/062001
10.1364/AO.49.005501
10.1088/0957-0233/21/3/035101
10.1023/B:VISI.0000011205.11775.fd
10.1007/s11340-013-9717-6
10.1007/BF02321405
10.1007/BF02325092
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
H8D
L7M
DOI 10.1016/j.optlaseng.2014.05.013
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
EndPage 80
ExternalDocumentID 10_1016_j_optlaseng_2014_05_013
S0143816614001493
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7TB
7U5
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c484t-65c258760a8c2f468ca779df45d67db68db9db4d84362b0222a8d60e26fcb75a3
ISICitedReferencesCount 240
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345492500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Wed Oct 01 13:49:44 EDT 2025
Sat Nov 29 07:58:49 EST 2025
Tue Nov 18 22:11:30 EST 2025
Fri Feb 23 02:22:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Second-order shape function
Inverse compositional Gauss–Newton algorithm
Three-dimensional measurement
Digital image correlation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-65c258760a8c2f468ca779df45d67db68db9db4d84362b0222a8d60e26fcb75a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651440578
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1651440578
crossref_citationtrail_10_1016_j_optlaseng_2014_05_013
crossref_primary_10_1016_j_optlaseng_2014_05_013
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2014_05_013
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Optics and lasers in engineering
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pan, Li, Tong (bib21) 2013; 53
Wang, Hu, Wu (bib6) 2006; 41
Sutton, Yan, Tiwari, Schreier, Orteu (bib24) 2008; 46
B Lucas, T Kanade. An iterative image registration technique with an application to stereo vision. In: Proceedings of the international joint conference on artificial intelligence; 1981. pp. 674–679.
Zhou, Goodson (bib27) 2001; 40
Kang, Zhang, Wang, Qin (bib9) 2005; 394
Zhang, Kang, Wang, Qin, Qiu, Li (bib10) 2006; 39
Bruck, McNeil, Sutton, Peters (bib17) 1989; 29
Orteu (bib23) 2009; 47
Pan, Qian, Xie, Asundi (bib22) 2009; 20
Lu, Cary (bib25) 2000; 40
Pan, Li (bib12) 2011; 49
S Baker, I Matthews. Equivalence and efficiency of image alignment algorithms. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition; 2001. pp. 1090–1097.
Wang, Kang (bib7) 2002; 41
Baker, Matthews (bib20) 2004; 56
Sutton, Orteu, Schreier (bib3) 2009
Hild, Roux (bib4) 2006; 42
Yang, He, Quan (bib11) 2006; 45
Chu, Ranson, Sutton, Peters (bib2) 1985; 25
Zhang, Jiang, Jiang, Chen, Wu (bib5) 2005; 21
Huang, Zhu, Pan, Qin, Peng, Xiong (bib15) 2010; 21
Pan (bib13) 2009; 48
Vendroux, Knauss (bib14) 1998; 38
Pan, Xie, Wang (bib18) 2010; 49
Schreier, Sutton (bib26) 2002; 42
Wang, Kang, Zhang, Qin (bib8) 2003; 123
Peters, Ranson (bib1) 1981; 21
Sutton (10.1016/j.optlaseng.2014.05.013_bib24) 2008; 46
Baker (10.1016/j.optlaseng.2014.05.013_bib20) 2004; 56
Huang (10.1016/j.optlaseng.2014.05.013_bib15) 2010; 21
Zhang (10.1016/j.optlaseng.2014.05.013_bib5) 2005; 21
Chu (10.1016/j.optlaseng.2014.05.013_bib2) 1985; 25
Wang (10.1016/j.optlaseng.2014.05.013_bib7) 2002; 41
Pan (10.1016/j.optlaseng.2014.05.013_bib18) 2010; 49
Peters (10.1016/j.optlaseng.2014.05.013_bib1) 1981; 21
Yang (10.1016/j.optlaseng.2014.05.013_bib11) 2006; 45
Bruck (10.1016/j.optlaseng.2014.05.013_bib17) 1989; 29
Pan (10.1016/j.optlaseng.2014.05.013_bib13) 2009; 48
Orteu (10.1016/j.optlaseng.2014.05.013_bib23) 2009; 47
Wang (10.1016/j.optlaseng.2014.05.013_bib8) 2003; 123
Pan (10.1016/j.optlaseng.2014.05.013_bib21) 2013; 53
Hild (10.1016/j.optlaseng.2014.05.013_bib4) 2006; 42
Zhou (10.1016/j.optlaseng.2014.05.013_bib27) 2001; 40
Pan (10.1016/j.optlaseng.2014.05.013_bib12) 2011; 49
Sutton (10.1016/j.optlaseng.2014.05.013_bib3) 2009
Wang (10.1016/j.optlaseng.2014.05.013_bib6) 2006; 41
Pan (10.1016/j.optlaseng.2014.05.013_bib22) 2009; 20
Vendroux (10.1016/j.optlaseng.2014.05.013_bib14) 1998; 38
10.1016/j.optlaseng.2014.05.013_bib16
Schreier (10.1016/j.optlaseng.2014.05.013_bib26) 2002; 42
Zhang (10.1016/j.optlaseng.2014.05.013_bib10) 2006; 39
10.1016/j.optlaseng.2014.05.013_bib19
Kang (10.1016/j.optlaseng.2014.05.013_bib9) 2005; 394
Lu (10.1016/j.optlaseng.2014.05.013_bib25) 2000; 40
References_xml – volume: 21
  start-page: 427
  year: 1981
  end-page: 431
  ident: bib1
  article-title: Digital imaging techniques in experimental stress analysis
  publication-title: Opt Eng
– volume: 25
  start-page: 232
  year: 1985
  end-page: 244
  ident: bib2
  article-title: Applications of digital-image-correlation techniques to experimental mechanics
  publication-title: Exp Mech
– volume: 49
  start-page: 841
  year: 2011
  end-page: 847
  ident: bib12
  article-title: A fast digital image correlation method for deformation measurement
  publication-title: Opt Lasers Eng
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: bib21
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
– volume: 21
  start-page: 035101
  year: 2010
  ident: bib15
  article-title: A high-efficiency digital image correlation method based on a fast recursive scheme
  publication-title: Meas Sci Technol
– year: 2009
  ident: bib3
  article-title: Image correlation for shape, motion and deformation measurements
– volume: 48
  start-page: 1535
  year: 2009
  end-page: 1542
  ident: bib13
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl Opt
– reference: S Baker, I Matthews. Equivalence and efficiency of image alignment algorithms. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition; 2001. pp. 1090–1097.
– volume: 42
  start-page: 69
  year: 2006
  end-page: 80
  ident: bib4
  article-title: Digital image correlation: from displacement measurement to identification of elastic properties – a review
  publication-title: Strain
– volume: 21
  start-page: 2150
  year: 2005
  end-page: 2173
  ident: bib5
  article-title: On the propagation and pulsation of Portevin-Le Chatelier deformation bands: an experimental study with digital speckle pattern metrology
  publication-title: Int J Plast
– volume: 41
  start-page: 2793
  year: 2002
  end-page: 2798
  ident: bib7
  article-title: Improved digital speckle correlation method and its application in fracture analysis of metallic foil
  publication-title: Opt Eng
– volume: 394
  start-page: 312
  year: 2005
  end-page: 319
  ident: bib9
  article-title: Experimental investigations of the effect of thickness on fracture toughness of metallic foils
  publication-title: Mater Sci Eng A
– reference: B Lucas, T Kanade. An iterative image registration technique with an application to stereo vision. In: Proceedings of the international joint conference on artificial intelligence; 1981. pp. 674–679.
– volume: 40
  start-page: 393
  year: 2000
  end-page: 400
  ident: bib25
  article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient
  publication-title: Exp Mech
– volume: 45
  start-page: 7785
  year: 2006
  end-page: 7790
  ident: bib11
  article-title: Characterization of dynamic microgyroscopes by use of temporal digital image correlation
  publication-title: Appl Opt
– volume: 41
  start-page: 1949
  year: 2006
  end-page: 1958
  ident: bib6
  article-title: Internal microstructure evolution of aluminum foams under compression
  publication-title: Mater Res Bull
– volume: 29
  start-page: 261
  year: 1989
  end-page: 267
  ident: bib17
  article-title: Digital image correlation using Newton–Raphson method of partial differential correction
  publication-title: Exp Mech
– volume: 123
  start-page: 177
  year: 2003
  end-page: 185
  ident: bib8
  article-title: Size effect on the fracture toughness of metallic foil
  publication-title: Int J Fract
– volume: 49
  start-page: 5501
  year: 2010
  end-page: 5509
  ident: bib18
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
– volume: 20
  start-page: 062001
  year: 2009
  ident: bib22
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
– volume: 38
  start-page: 86
  year: 1998
  end-page: 92
  ident: bib14
  article-title: Submicron deformation field measurements: Part 2. Improved digital image correlation
  publication-title: Exp Mech
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: bib20
  article-title: Lucas-Kanade 20 years on: a unifying framework
  publication-title: Int J Comput Vis
– volume: 47
  start-page: 282
  year: 2009
  end-page: 291
  ident: bib23
  article-title: 3-D computer vision in experimental mechanics
  publication-title: Opt Lasers Eng
– volume: 40
  start-page: 1613
  year: 2001
  end-page: 1620
  ident: bib27
  article-title: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC)
  publication-title: Opt Eng
– volume: 39
  start-page: 710
  year: 2006
  end-page: 718
  ident: bib10
  article-title: A novel coarse-fine search scheme for digital image correlation method
  publication-title: Measurement
– volume: 46
  start-page: 746
  year: 2008
  end-page: 757
  ident: bib24
  article-title: The effect of out-of-plane motion on 2D and 3D digital image correlation measurements
  publication-title: Opt Lasers Eng
– volume: 42
  start-page: 303
  year: 2002
  end-page: 310
  ident: bib26
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
– volume: 123
  start-page: 177
  year: 2003
  ident: 10.1016/j.optlaseng.2014.05.013_bib8
  article-title: Size effect on the fracture toughness of metallic foil
  publication-title: Int J Fract
  doi: 10.1023/B:FRAC.0000007376.06477.e8
– volume: 38
  start-page: 86
  year: 1998
  ident: 10.1016/j.optlaseng.2014.05.013_bib14
  article-title: Submicron deformation field measurements: Part 2. Improved digital image correlation
  publication-title: Exp Mech
  doi: 10.1007/BF02321649
– volume: 21
  start-page: 427
  year: 1981
  ident: 10.1016/j.optlaseng.2014.05.013_bib1
  article-title: Digital imaging techniques in experimental stress analysis
  publication-title: Opt Eng
– volume: 41
  start-page: 1949
  year: 2006
  ident: 10.1016/j.optlaseng.2014.05.013_bib6
  article-title: Internal microstructure evolution of aluminum foams under compression
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2006.03.002
– volume: 21
  start-page: 2150
  year: 2005
  ident: 10.1016/j.optlaseng.2014.05.013_bib5
  article-title: On the propagation and pulsation of Portevin-Le Chatelier deformation bands: an experimental study with digital speckle pattern metrology
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2005.03.017
– ident: 10.1016/j.optlaseng.2014.05.013_bib19
  doi: 10.1109/CVPR.2001.990652
– volume: 394
  start-page: 312
  year: 2005
  ident: 10.1016/j.optlaseng.2014.05.013_bib9
  article-title: Experimental investigations of the effect of thickness on fracture toughness of metallic foils
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.11.044
– volume: 46
  start-page: 746
  year: 2008
  ident: 10.1016/j.optlaseng.2014.05.013_bib24
  article-title: The effect of out-of-plane motion on 2D and 3D digital image correlation measurements
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2008.05.005
– year: 2009
  ident: 10.1016/j.optlaseng.2014.05.013_bib3
– volume: 42
  start-page: 69
  year: 2006
  ident: 10.1016/j.optlaseng.2014.05.013_bib4
  article-title: Digital image correlation: from displacement measurement to identification of elastic properties – a review
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2006.00258.x
– volume: 41
  start-page: 2793
  year: 2002
  ident: 10.1016/j.optlaseng.2014.05.013_bib7
  article-title: Improved digital speckle correlation method and its application in fracture analysis of metallic foil
  publication-title: Opt Eng
  doi: 10.1117/1.1511749
– volume: 39
  start-page: 710
  year: 2006
  ident: 10.1016/j.optlaseng.2014.05.013_bib10
  article-title: A novel coarse-fine search scheme for digital image correlation method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2006.03.008
– volume: 40
  start-page: 1613
  year: 2001
  ident: 10.1016/j.optlaseng.2014.05.013_bib27
  article-title: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC)
  publication-title: Opt Eng
  doi: 10.1117/1.1387992
– volume: 47
  start-page: 282
  year: 2009
  ident: 10.1016/j.optlaseng.2014.05.013_bib23
  article-title: 3-D computer vision in experimental mechanics
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2007.11.009
– volume: 40
  start-page: 393
  year: 2000
  ident: 10.1016/j.optlaseng.2014.05.013_bib25
  article-title: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient
  publication-title: Exp Mech
  doi: 10.1007/BF02326485
– volume: 49
  start-page: 841
  year: 2011
  ident: 10.1016/j.optlaseng.2014.05.013_bib12
  article-title: A fast digital image correlation method for deformation measurement
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2011.02.023
– volume: 42
  start-page: 303
  year: 2002
  ident: 10.1016/j.optlaseng.2014.05.013_bib26
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
  doi: 10.1007/BF02410987
– volume: 45
  start-page: 7785
  year: 2006
  ident: 10.1016/j.optlaseng.2014.05.013_bib11
  article-title: Characterization of dynamic microgyroscopes by use of temporal digital image correlation
  publication-title: Appl Opt
  doi: 10.1364/AO.45.007785
– volume: 48
  start-page: 1535
  year: 2009
  ident: 10.1016/j.optlaseng.2014.05.013_bib13
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl Opt
  doi: 10.1364/AO.48.001535
– volume: 20
  start-page: 062001
  year: 2009
  ident: 10.1016/j.optlaseng.2014.05.013_bib22
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/20/6/062001
– ident: 10.1016/j.optlaseng.2014.05.013_bib16
– volume: 49
  start-page: 5501
  year: 2010
  ident: 10.1016/j.optlaseng.2014.05.013_bib18
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
  doi: 10.1364/AO.49.005501
– volume: 21
  start-page: 035101
  year: 2010
  ident: 10.1016/j.optlaseng.2014.05.013_bib15
  article-title: A high-efficiency digital image correlation method based on a fast recursive scheme
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/21/3/035101
– volume: 56
  start-page: 221
  year: 2004
  ident: 10.1016/j.optlaseng.2014.05.013_bib20
  article-title: Lucas-Kanade 20 years on: a unifying framework
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 53
  start-page: 1277
  year: 2013
  ident: 10.1016/j.optlaseng.2014.05.013_bib21
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– volume: 29
  start-page: 261
  year: 1989
  ident: 10.1016/j.optlaseng.2014.05.013_bib17
  article-title: Digital image correlation using Newton–Raphson method of partial differential correction
  publication-title: Exp Mech
  doi: 10.1007/BF02321405
– volume: 25
  start-page: 232
  year: 1985
  ident: 10.1016/j.optlaseng.2014.05.013_bib2
  article-title: Applications of digital-image-correlation techniques to experimental mechanics
  publication-title: Exp Mech
  doi: 10.1007/BF02325092
SSID ssj0016411
Score 2.5222635
Snippet The computational efficiency and measurement accuracy of the digital image correlation (DIC) have become more and more important in recent years. For the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms Accuracy
Algorithms
Correlation analysis
Deformation
Digital
Digital image correlation
Inverse compositional Gauss–Newton algorithm
Second-order shape function
Shape functions
Three dimensional
Three-dimensional measurement
Title High-efficiency and high-accuracy digital image correlation for three-dimensional measurement
URI https://dx.doi.org/10.1016/j.optlaseng.2014.05.013
https://www.proquest.com/docview/1651440578
Volume 65
WOSCitedRecordID wos000345492500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7WVsE-iFaLrRci-FYiu8nc4lspFRWpgqvEBwlzS5uyzS57Kf0L_mvPyeS2tVJFfAm7Q2aTnfPNOWfOfHMOIS-dkDZSOgkN1SykGuectlHI4bs2sORi1fHorx_E8bFM0-TTYPCjOQtzMRFlKS8vk9l_FTW0gbDx6OxfiLv9UWiAzyB0uILY4fpHgkfmRuiqzBDVsUqMjGNS4lAZs5pjdXdbnGCpkP3iHAk7ButzTPqcw7lzocWs_z5jx_55F0fs-7IfZ22KZ3DB8SAwph_p8hu21B5VhWO_rVoMHZ46r2LGrrvt86q6a9q1pFVLWqjpqSr64YkRaxjNTcysOTfTkZR8GDMOccfSWyGveqWIQ1A5a7qZs55y9TVPGjM9vNYA-FjE2avpbIl_vTxB9h71yVnjzua1TEQkt1V7p7DQxNVifItsRoIloOM3D94dpe_bLSlOR764Zf3qa2TBax_3O1fnitGvPJnxfXKvXoIEBx46D8jAldtkq5eYcpvcqYjBZvGQfL8CpwDEHazBKajhFFRwCnpwCgBOwS9wCnpwekS-vDkaH74N65IcMJclXYacmYiBAR0qaaKccmmUEInNKbNcWM2l1YnV1EoKjpHGYIKSlg9dxHOjBVPxDtkop6V7TAKa84TFkUqEchSc4gTXKoprOXJCqJzvEt6MXmbqfPVYNmWSNcTEs6wd9gyHPRuyDIZ9lwzbjjOfsuXmLq8b8WS15-k9ygxwdXPnF41AM9DNuOGmSjddLbIRZ8idAKO49y8PeELudjPrKdlYzlfuGbltLpbFYv68xulPsY676w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+and+high-accuracy+digital+image+correlation+for+three-dimensional+measurement&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Gao%2C+Yue&rft.au=Cheng%2C+Teng&rft.au=Su%2C+Yong&rft.au=Xu%2C+Xiaohai&rft.date=2015-02-01&rft.pub=Elsevier+Ltd&rft.issn=0143-8166&rft.eissn=1873-0302&rft.volume=65&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1016%2Fj.optlaseng.2014.05.013&rft.externalDocID=S0143816614001493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon