Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage

Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research Jg. 43; H. 1; S. 282 - 294
Hauptverfasser: Wit, Niek, Buoninfante, Olimpia Alessandra, van den Berk, Paul C.M., Jansen, Jacob G., Hogenbirk, Marc A., de Wind, Niels, Jacobs, Heinz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 01.01.2015
Schlagworte:
ISSN:0305-1048, 1362-4962, 1362-4962
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gku1301