Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage

Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nucleic acids research Ročník 43; číslo 1; s. 282 - 294
Hlavní autori: Wit, Niek, Buoninfante, Olimpia Alessandra, van den Berk, Paul C.M., Jansen, Jacob G., Hogenbirk, Marc A., de Wind, Niels, Jacobs, Heinz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 01.01.2015
Predmet:
ISSN:0305-1048, 1362-4962, 1362-4962
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
AbstractList Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) Kappa is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Pol Kappa can function independently of PCNA modification and that Pol eta can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna super(K164R)) or Pol Kappa , double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Pol eta and Pol Kappa are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Pol Kappa and establish Pol eta as an important backup polymerase in the absence of Pol Kappa in response to MMS-induced DNA damage.
Author van den Berk, Paul C.M.
Buoninfante, Olimpia Alessandra
Hogenbirk, Marc A.
Jacobs, Heinz
Wit, Niek
Jansen, Jacob G.
de Wind, Niels
Author_xml – sequence: 1
  givenname: Niek
  surname: Wit
  fullname: Wit, Niek
– sequence: 2
  givenname: Olimpia Alessandra
  surname: Buoninfante
  fullname: Buoninfante, Olimpia Alessandra
– sequence: 3
  givenname: Paul C.M.
  surname: van den Berk
  fullname: van den Berk, Paul C.M.
– sequence: 4
  givenname: Jacob G.
  surname: Jansen
  fullname: Jansen, Jacob G.
– sequence: 5
  givenname: Marc A.
  surname: Hogenbirk
  fullname: Hogenbirk, Marc A.
– sequence: 6
  givenname: Niels
  surname: de Wind
  fullname: de Wind, Niels
– sequence: 7
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25505145$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9q3DAQh0VJSTZpTrkHHQvFjcaWbPlSCNu_sLSlTc5CkqVdNbK0sezAPlmhD5FnqrLZhLYEehrQfPo0o98h2gsxGIROgLwG0lZnQQ5ny6sJKgLP0AyquixoW5d7aEYqwgoglB-gw5R-EAIUGN1HByVjhAFlM3TzLXqTcLT46_zzOZ6Uu57c6IIcXQxYhg5fLL7jdfSb3gwyZfT21_b49id2AY8rg9VmLdNW0ZtxtfHbIoNJk7cxi0zhQjdp0-G3-YVO9nJpXqDnVvpkjnf1CF2-f3cx_1gsvnz4ND9fFJpyOhZMglSay9JyqmgHDMoKlKo1r7llbaOJKrVpLHSyVbmrGG9UaalllaSkUdURenPvXU-qN502YRykF-vB9XLYiCid-LsT3Eos442gJefQQha83AmGeD2ZNIreJW28zwvGKQlo8qc2LWvJ_9GasoYT0txZT_8c63Geh1wy8Ooe0ENMaTD2EQEi7lIXOXWxSz3T8A-t3bhNMO_k_JN3fgNCl7Qo
CitedBy_id crossref_primary_10_1038_nature23481
crossref_primary_10_1093_nar_gkac545
crossref_primary_10_1016_j_molcel_2016_12_020
crossref_primary_10_1016_j_dnarep_2019_03_016
crossref_primary_10_1093_nar_gkv712
crossref_primary_10_26508_lsa_202201584
crossref_primary_10_3389_fphar_2021_596535
crossref_primary_10_1016_j_dnarep_2016_10_007
crossref_primary_10_1073_pnas_2216055120
crossref_primary_10_1093_nar_gkw123
crossref_primary_10_3389_fonc_2024_1516165
crossref_primary_10_1371_journal_pone_0210526
crossref_primary_10_1016_j_dnarep_2015_02_011
crossref_primary_10_1093_nar_gkz531
crossref_primary_10_1038_s41419_025_07468_5
crossref_primary_10_1038_s41388_019_0724_7
crossref_primary_10_1371_journal_pgen_1007119
crossref_primary_10_1371_journal_pone_0223894
crossref_primary_10_1016_j_dnarep_2021_103230
crossref_primary_10_1158_0008_5472_CAN_15_1884
crossref_primary_10_1073_pnas_1706508114
crossref_primary_10_1371_journal_pone_0170719
crossref_primary_10_1038_s41467_024_55005_3
crossref_primary_10_3390_ijms241311129
crossref_primary_10_1007_s12011_018_1338_6
crossref_primary_10_1080_10409238_2017_1291576
crossref_primary_10_1093_pnasnexus_pgae242
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_1016_j_dnarep_2024_103715
crossref_primary_10_1038_s41467_020_15090_6
crossref_primary_10_3390_molecules28052337
crossref_primary_10_1038_s41389_020_00289_5
crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1038_s41598_021_97523_w
crossref_primary_10_3390_molecules24152805
crossref_primary_10_1080_09720529_2017_1392473
crossref_primary_10_1080_10409238_2020_1768205
crossref_primary_10_1128_AEM_01988_18
Cites_doi 10.1016/0022-2836(71)90204-X
10.1016/j.dnarep.2011.08.005
10.1016/j.molcel.2011.06.023
10.1073/pnas.0812548106
10.1093/genetics/68.1.21
10.1007/BF00156731
10.1074/jbc.M409155200
10.1074/jbc.M111.232835
10.1016/j.febslet.2008.12.057
10.1073/pnas.222377899
10.1146/annurev.biochem.74.082803.133250
10.1038/nature09097
10.1126/science.1120615
10.1016/j.molcel.2010.09.019
10.1038/nature04318
10.1128/MCB.00071-09
10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2
10.1016/j.molcel.2007.11.005
10.1242/jcs.01603
10.1038/nature01965
10.1038/nature00991
10.1016/j.molcel.2009.12.039
10.1073/pnas.0510924103
10.1038/sj.emboj.7601178
10.1093/nar/gks453
10.1016/0022-2836(68)90445-2
10.1093/toxsci/kfs074
10.1128/MCB.01118-06
10.1038/nrc3185
10.1101/gad.1043203
10.1016/j.molcel.2008.03.024
10.1016/S1097-2765(04)00259-X
10.1038/sj.emboj.7600383
10.1093/nar/28.23.4717
10.1101/gad.14.13.1589
10.1093/nar/gkn058
10.1016/0022-2836(72)90418-4
10.1038/nrc2998
10.1016/j.cell.2007.05.003
10.1093/nar/gku779
10.1016/j.dnarep.2008.05.012
10.1074/jbc.M112139200
10.1371/journal.pgen.1001151
10.1084/jem.20052227
10.1074/jbc.M506153200
10.1038/35023030
10.1002/j.1460-2075.1991.tb07953.x
10.1371/journal.pgen.1002262
10.1073/pnas.0802727105
10.1084/jem.20070902
10.1111/j.1365-2443.2008.01255.x
10.1074/jbc.M207957200
10.1093/nar/gkr420
10.1016/j.dnarep.2009.09.003
10.1038/nrm3289
10.1016/j.cell.2010.02.028
10.1242/jcs.00162
10.1016/j.molcel.2010.01.021
10.1016/j.dnarep.2006.04.003
10.1074/jbc.M709275200
10.1074/jbc.C300023200
10.4049/jimmunol.0900177
10.1084/jem.20091707
10.1021/bi020049c
ContentType Journal Article
Copyright The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015
Copyright_xml – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1093/nar/gku1301
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 294
ExternalDocumentID PMC4288191
25505145
10_1093_nar_gku1301
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TEORI
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
.55
.GJ
3O-
AAWDT
AAYJJ
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACIPB
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AFSHK
AGKRT
AGMDO
AGQPQ
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BEYMZ
C1A
CGR
COF
CUY
CVF
CXTWN
D0S
DFGAJ
ECM
EIF
ELUNK
FEDTE
HVGLF
H~9
MBTAY
MVM
NPM
NTWIH
O~Y
PB-
QBD
RNI
RZF
RZO
SJN
TCN
UHB
X7M
XSW
ZXP
7X8
ESTFP
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c484t-5a1abc8a2f84b4d151231bb6c868f597c0b2ce7f1da9b151b587b2f4f53a407b3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350207100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 16:50:35 EDT 2025
Fri Sep 05 11:52:15 EDT 2025
Mon Sep 08 10:52:58 EDT 2025
Mon Jul 21 06:03:40 EDT 2025
Sat Nov 29 03:24:31 EST 2025
Tue Nov 18 21:32:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-5a1abc8a2f84b4d151231bb6c868f597c0b2ce7f1da9b151b587b2f4f53a407b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gku1301
PMID 25505145
PQID 1645780071
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288191
proquest_miscellaneous_1701479590
proquest_miscellaneous_1645780071
pubmed_primary_25505145
crossref_primary_10_1093_nar_gku1301
crossref_citationtrail_10_1093_nar_gku1301
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hirota ( key 20171013094334_B51) 2010; 6
Dirac ( key 20171013094334_B42) 2003; 278
Bergoglio ( key 20171013094334_B25) 2002; 115
Suzuki ( key 20171013094334_B14) 2002; 41
Elvers ( key 20171013094334_B49) 2011; 39
Gueranger ( key 20171013094334_B63) 2008; 7
Temviriyanukul ( key 20171013094334_B21) 2012; 127
Jarosz ( key 20171013094334_B15) 2006; 439
Plosky ( key 20171013094334_B34) 2006; 25
Daigaku ( key 20171013094334_B7) 2010; 465
Krijger ( key 20171013094334_B50) 2009; 206
Jansen ( key 20171013094334_B27) 2007; 28
Rolink ( key 20171013094334_B41) 1991; 10
Fu ( key 20171013094334_B54) 2012; 12
Watanabe ( key 20171013094334_B32) 2004; 23
Edmunds ( key 20171013094334_B9) 2008; 30
Petermann ( key 20171013094334_B43) 2010; 37
Zhang ( key 20171013094334_B11) 2000; 28
Sale ( key 20171013094334_B1) 2012; 13
Yuan ( key 20171013094334_B16) 2011; 286
Ohashi ( key 20171013094334_B24) 2009; 14
Lehmann ( key 20171013094334_B3) 1972; 66
Takenaka ( key 20171013094334_B19) 2006; 281
Ohashi ( key 20171013094334_B57) 2000; 14
Niimi ( key 20171013094334_B46) 2008; 105
Burr ( key 20171013094334_B23) 2006; 5
Guo ( key 20171013094334_B35) 2006; 26
Ciccia ( key 20171013094334_B48) 2010; 40
Niimi ( key 20171013094334_B45) 2012; 40
Lange ( key 20171013094334_B2) 2011; 11
Chiapperino ( key 20171013094334_B12) 2002; 277
Hoege ( key 20171013094334_B28) 2002; 419
Krijger ( key 20171013094334_B37) 2011; 10
Guo ( key 20171013094334_B38) 2008; 283
Hendel ( key 20171013094334_B36) 2011; 7
Johnson ( key 20171013094334_B59) 2000; 406
Plosky ( key 20171013094334_B55) 2008; 36
Schenten ( key 20171013094334_B17) 2002; 32
Stelter ( key 20171013094334_B30) 2003; 425
Jansen ( key 20171013094334_B53) 2015; 42
Haracska ( key 20171013094334_B29) 2006; 103
Jansen ( key 20171013094334_B10) 2009; 29
Bienko ( key 20171013094334_B33) 2005; 310
Ziv ( key 20171013094334_B52) 2009; 106
Takenaka ( key 20171013094334_B18) 2009; 583
Faili ( key 20171013094334_B44) 2009; 182
Rupp ( key 20171013094334_B6) 1971; 61
Karras ( key 20171013094334_B8) 2010; 141
Kannouche ( key 20171013094334_B31) 2004; 14
Kai ( key 20171013094334_B64) 2003; 17
Avkin ( key 20171013094334_B13) 2004; 279
Bienko ( key 20171013094334_B62) 2010; 37
Jansen ( key 20171013094334_B58) 2006; 203
Lemontt ( key 20171013094334_B4) 1971; 68
Ogi ( key 20171013094334_B20) 2002; 99
Langerak ( key 20171013094334_B40) 2007; 204
Zlatanou ( key 20171013094334_B60) 2011; 43
Moldovan ( key 20171013094334_B26) 2007; 129
Dusinska ( key 20171013094334_B47) 1992; 8
Okada ( key 20171013094334_B39) 2002; 277
Ogi ( key 20171013094334_B61) 2005; 118
Stancel ( key 20171013094334_B22) 2009; 8
Prakash ( key 20171013094334_B56) 2005; 74
Rupp ( key 20171013094334_B5) 1968; 31
20965415 - Mol Cell. 2010 Oct 22;40(2):179-204
12356753 - J Biol Chem. 2002 Dec 13;277(50):48690-5
16357261 - Science. 2005 Dec 16;310(5755):1821-4
21889916 - DNA Repair (Amst). 2011 Oct 10;10(10):1051-9
21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57
20188668 - Mol Cell. 2010 Feb 26;37(4):492-502
21258395 - Nat Rev Cancer. 2011 Feb;11(2):96-110
22331492 - Toxicol Sci. 2012 May;127(1):130-8
16763556 - EMBO J. 2006 Jun 21;25(12):2847-55
15359278 - EMBO J. 2004 Oct 1;23(19):3886-96
18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
17248528 - Genetics. 1971 May;68(1):21-33
19170759 - Genes Cells. 2009 Feb;14(2):101-11
18281311 - Nucleic Acids Res. 2008 Apr;36(7):2152-62
1991449 - EMBO J. 1991 Feb;10(2):327-36
20403322 - Cell. 2010 Apr 16;141(2):255-67
11095682 - Nucleic Acids Res. 2000 Dec 1;28(23):4717-24
5037019 - J Mol Biol. 1972 May 28;66(3):319-37
16407906 - Nature. 2006 Jan 12;439(7073):225-8
15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
20453836 - Nature. 2010 Jun 17;465(7300):951-5
17512402 - Cell. 2007 May 18;129(4):665-79
25170086 - Nucleic Acids Res. 2014;42(17):11071-82
12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53
11994005 - Biochemistry. 2002 May 14;41(19):6100-6
15952890 - Annu Rev Biochem. 2005;74:317-53
19783230 - DNA Repair (Amst). 2009 Dec 3;8(12):1355-62
19166845 - FEBS Lett. 2009 Feb 18;583(4):661-4
22638582 - Nucleic Acids Res. 2012 Aug;40(15):7393-403
22358330 - Nat Rev Mol Cell Biol. 2012 Mar;13(3):141-52
12414988 - J Cell Sci. 2002 Dec 1;115(Pt 23):4413-8
4947693 - J Mol Biol. 1971 Oct 14;61(1):25-44
19901081 - J Exp Med. 2009 Nov 23;206(12):2603-11
22237395 - Nat Rev Cancer. 2012 Feb;12(2):104-20
18042449 - Mol Cell. 2007 Nov 30;28(4):522-9
12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4
4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304
16731053 - DNA Repair (Amst). 2006 Jul 13;5(7):860-2
1493582 - Cell Biol Toxicol. 1992 Oct-Dec;8(4):207-16
12514100 - Genes Dev. 2003 Jan 1;17(1):64-76
21454642 - J Biol Chem. 2011 May 20;286(20):17503-11
16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900
17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94
16308320 - J Biol Chem. 2006 Jan 27;281(4):2000-4
21855803 - Mol Cell. 2011 Aug 19;43(4):649-62
16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82
20949111 - PLoS Genet. 2010 Oct;6(10). pii: e1001151. doi: 10.1371/journal.pgen.1001151
10984059 - Nature. 2000 Aug 31;406(6799):1015-9
15601657 - J Cell Sci. 2005 Jan 1;118(Pt 1):129-36
11821420 - J Biol Chem. 2002 Apr 5;277(14):11765-71
18162470 - J Biol Chem. 2008 Feb 22;283(8):4658-64
21931560 - PLoS Genet. 2011 Sep;7(9):e1002262
19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
18498753 - Mol Cell. 2008 May 23;30(4):519-29
12226657 - Nature. 2002 Sep 12;419(6903):135-41
15149598 - Mol Cell. 2004 May 21;14(4):491-500
19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23
12555660 - Eur J Immunol. 2002 Nov;32(11):3152-60
12968183 - Nature. 2003 Sep 11;425(6954):188-91
19414788 - J Immunol. 2009 May 15;182(10):6353-9
18586118 - DNA Repair (Amst). 2008 Sep 1;7(9):1551-62
16476771 - J Exp Med. 2006 Feb 20;203(2):319-23
20159558 - Mol Cell. 2010 Feb 12;37(3):396-407
References_xml – volume: 61
  start-page: 25
  year: 1971
  ident: key 20171013094334_B6
  article-title: Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(71)90204-X
– volume: 10
  start-page: 1051
  year: 2011
  ident: key 20171013094334_B37
  article-title: PCNA ubiquitination-independent activation of polymerase eta during somatic hypermutation and DNA damage tolerance
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2011.08.005
– volume: 43
  start-page: 649
  year: 2011
  ident: key 20171013094334_B60
  article-title: The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.023
– volume: 106
  start-page: 11552
  year: 2009
  ident: key 20171013094334_B52
  article-title: DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0812548106
– volume: 68
  start-page: 21
  year: 1971
  ident: key 20171013094334_B4
  article-title: Mutants of yeast defective in mutation induced by ultraviolet light
  publication-title: Genetics
  doi: 10.1093/genetics/68.1.21
– volume: 8
  start-page: 207
  year: 1992
  ident: key 20171013094334_B47
  article-title: Application of alkaline unwinding assay for detection of mutagen-induced DNA strand breaks
  publication-title: Cell Biol. Toxicol.
  doi: 10.1007/BF00156731
– volume: 279
  start-page: 53298
  year: 2004
  ident: key 20171013094334_B13
  article-title: Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409155200
– volume: 286
  start-page: 17503
  year: 2011
  ident: key 20171013094334_B16
  article-title: The roles of DNA polymerases kappa and iota in the error-free bypass of N2-carboxyalkyl-2′-deoxyguanosine lesions in mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.232835
– volume: 583
  start-page: 661
  year: 2009
  ident: key 20171013094334_B18
  article-title: Introduction and characterization of a polymerase-dead point mutation into the POLK gene in vertebrates
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.12.057
– volume: 99
  start-page: 15548
  year: 2002
  ident: key 20171013094334_B20
  article-title: Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.222377899
– volume: 74
  start-page: 317
  year: 2005
  ident: key 20171013094334_B56
  article-title: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133250
– volume: 465
  start-page: 951
  year: 2010
  ident: key 20171013094334_B7
  article-title: Ubiquitin-dependent DNA damage bypass is separable from genome replication
  publication-title: Nature
  doi: 10.1038/nature09097
– volume: 310
  start-page: 1821
  year: 2005
  ident: key 20171013094334_B33
  article-title: Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis
  publication-title: Science
  doi: 10.1126/science.1120615
– volume: 40
  start-page: 179
  year: 2010
  ident: key 20171013094334_B48
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.09.019
– volume: 439
  start-page: 225
  year: 2006
  ident: key 20171013094334_B15
  article-title: A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates
  publication-title: Nature
  doi: 10.1038/nature04318
– volume: 29
  start-page: 3113
  year: 2009
  ident: key 20171013094334_B10
  article-title: Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00071-09
– volume: 32
  start-page: 3152
  year: 2002
  ident: key 20171013094334_B17
  article-title: DNA polymerase kappa deficiency does not affect somatic hypermutation in mice
  publication-title: Eur. J. Immunol.
  doi: 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2
– volume: 28
  start-page: 522
  year: 2007
  ident: key 20171013094334_B27
  article-title: Send in the clamps: control of DNA translesion synthesis in eukaryotes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.005
– volume: 118
  start-page: 129
  year: 2005
  ident: key 20171013094334_B61
  article-title: Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01603
– volume: 425
  start-page: 188
  year: 2003
  ident: key 20171013094334_B30
  article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
  publication-title: Nature
  doi: 10.1038/nature01965
– volume: 419
  start-page: 135
  year: 2002
  ident: key 20171013094334_B28
  article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
  publication-title: Nature
  doi: 10.1038/nature00991
– volume: 37
  start-page: 396
  year: 2010
  ident: key 20171013094334_B62
  article-title: Regulation of translesion synthesis DNA polymerase eta by monoubiquitination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.039
– volume: 103
  start-page: 6477
  year: 2006
  ident: key 20171013094334_B29
  article-title: Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0510924103
– volume: 25
  start-page: 2847
  year: 2006
  ident: key 20171013094334_B34
  article-title: Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601178
– volume: 40
  start-page: 7393
  year: 2012
  ident: key 20171013094334_B45
  article-title: A role for chromatin remodellers in replication of damaged DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks453
– volume: 31
  start-page: 291
  year: 1968
  ident: key 20171013094334_B5
  article-title: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(68)90445-2
– volume: 127
  start-page: 130
  year: 2012
  ident: key 20171013094334_B21
  article-title: Different sets of translesion synthesis DNA polymerases protect from genome instability induced by distinct food-derived genotoxins
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfs074
– volume: 26
  start-page: 8892
  year: 2006
  ident: key 20171013094334_B35
  article-title: Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01118-06
– volume: 12
  start-page: 104
  year: 2012
  ident: key 20171013094334_B54
  article-title: Balancing repair and tolerance of DNA damage caused by alkylating agents
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3185
– volume: 17
  start-page: 64
  year: 2003
  ident: key 20171013094334_B64
  article-title: Checkpoint activation regulates mutagenic translesion synthesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1043203
– volume: 30
  start-page: 519
  year: 2008
  ident: key 20171013094334_B9
  article-title: PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.03.024
– volume: 14
  start-page: 491
  year: 2004
  ident: key 20171013094334_B31
  article-title: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(04)00259-X
– volume: 23
  start-page: 3886
  year: 2004
  ident: key 20171013094334_B32
  article-title: Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600383
– volume: 28
  start-page: 4717
  year: 2000
  ident: key 20171013094334_B11
  article-title: Error-prone lesion bypass by human DNA polymerase eta
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.23.4717
– volume: 14
  start-page: 1589
  year: 2000
  ident: key 20171013094334_B57
  article-title: Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.13.1589
– volume: 36
  start-page: 2152
  year: 2008
  ident: key 20171013094334_B55
  article-title: Eukaryotic Y-family polymerases bypass a 3-methyl-2′-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn058
– volume: 66
  start-page: 319
  year: 1972
  ident: key 20171013094334_B3
  article-title: Postreplication repair of DNA in ultraviolet-irradiated mammalian cells
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(72)90418-4
– volume: 11
  start-page: 96
  year: 2011
  ident: key 20171013094334_B2
  article-title: DNA polymerases and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2998
– volume: 129
  start-page: 665
  year: 2007
  ident: key 20171013094334_B26
  article-title: PCNA, the maestro of the replication fork
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.003
– volume: 42
  start-page: 11071
  year: 2015
  ident: key 20171013094334_B53
  article-title: Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku779
– volume: 7
  start-page: 1551
  year: 2008
  ident: key 20171013094334_B63
  article-title: Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2008.05.012
– volume: 277
  start-page: 11765
  year: 2002
  ident: key 20171013094334_B12
  article-title: Preferential misincorporation of purine nucleotides by human DNA polymerase eta opposite benzo[a]pyrene 7,8-diol 9,10-epoxide deoxyguanosine adducts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112139200
– volume: 6
  year: 2010
  ident: key 20171013094334_B51
  article-title: Simultaneous disruption of two DNA polymerases, Poleta and Polzeta, in Avian DT40 cells unmasks the role of Poleta in cellular response to various DNA lesions
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001151
– volume: 203
  start-page: 319
  year: 2006
  ident: key 20171013094334_B58
  article-title: Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20052227
– volume: 281
  start-page: 2000
  year: 2006
  ident: key 20171013094334_B19
  article-title: Involvement of vertebrate Polkappa in translesion DNA synthesis across DNA monoalkylation damage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506153200
– volume: 406
  start-page: 1015
  year: 2000
  ident: key 20171013094334_B59
  article-title: Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions
  publication-title: Nature
  doi: 10.1038/35023030
– volume: 10
  start-page: 327
  year: 1991
  ident: key 20171013094334_B41
  article-title: Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07953.x
– volume: 7
  start-page: 2262
  year: 2011
  ident: key 20171013094334_B36
  article-title: PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002262
– volume: 105
  start-page: 16125
  year: 2008
  ident: key 20171013094334_B46
  article-title: Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0802727105
– volume: 204
  start-page: 1989
  year: 2007
  ident: key 20171013094334_B40
  article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070902
– volume: 14
  start-page: 101
  year: 2009
  ident: key 20171013094334_B24
  article-title: Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2008.01255.x
– volume: 277
  start-page: 48690
  year: 2002
  ident: key 20171013094334_B39
  article-title: Involvement of vertebrate polkappa in Rad18-independent postreplication repair of UV damage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207957200
– volume: 39
  start-page: 7049
  year: 2011
  ident: key 20171013094334_B49
  article-title: UV stalled replication forks restart by re-priming in human fibroblasts
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr420
– volume: 8
  start-page: 1355
  year: 2009
  ident: key 20171013094334_B22
  article-title: Polk mutant mice have a spontaneous mutator phenotype
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2009.09.003
– volume: 13
  start-page: 141
  year: 2012
  ident: key 20171013094334_B1
  article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3289
– volume: 141
  start-page: 255
  year: 2010
  ident: key 20171013094334_B8
  article-title: The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.028
– volume: 115
  start-page: 4413
  year: 2002
  ident: key 20171013094334_B25
  article-title: Localisation of human DNA polymerase kappa to replication foci
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00162
– volume: 37
  start-page: 492
  year: 2010
  ident: key 20171013094334_B43
  article-title: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.01.021
– volume: 5
  start-page: 860
  year: 2006
  ident: key 20171013094334_B23
  article-title: Elevated mutation rates in the germline of Polkappa mutant male mice
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2006.04.003
– volume: 283
  start-page: 4658
  year: 2008
  ident: key 20171013094334_B38
  article-title: Requirements for the interaction of mouse Polkappa with ubiquitin and its biological significance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709275200
– volume: 278
  start-page: 11731
  year: 2003
  ident: key 20171013094334_B42
  article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300023200
– volume: 182
  start-page: 6353
  year: 2009
  ident: key 20171013094334_B44
  article-title: A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900177
– volume: 206
  start-page: 2603
  year: 2009
  ident: key 20171013094334_B50
  article-title: Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091707
– volume: 41
  start-page: 6100
  year: 2002
  ident: key 20171013094334_B14
  article-title: Translesion synthesis by human DNA polymerase kappa on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene)
  publication-title: Biochemistry
  doi: 10.1021/bi020049c
– reference: 11994005 - Biochemistry. 2002 May 14;41(19):6100-6
– reference: 16731053 - DNA Repair (Amst). 2006 Jul 13;5(7):860-2
– reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4
– reference: 12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4
– reference: 12414988 - J Cell Sci. 2002 Dec 1;115(Pt 23):4413-8
– reference: 18042449 - Mol Cell. 2007 Nov 30;28(4):522-9
– reference: 16407906 - Nature. 2006 Jan 12;439(7073):225-8
– reference: 12514100 - Genes Dev. 2003 Jan 1;17(1):64-76
– reference: 12555660 - Eur J Immunol. 2002 Nov;32(11):3152-60
– reference: 10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94
– reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500
– reference: 18498753 - Mol Cell. 2008 May 23;30(4):519-29
– reference: 18162470 - J Biol Chem. 2008 Feb 22;283(8):4658-64
– reference: 22358330 - Nat Rev Mol Cell Biol. 2012 Mar;13(3):141-52
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55
– reference: 1991449 - EMBO J. 1991 Feb;10(2):327-36
– reference: 12356753 - J Biol Chem. 2002 Dec 13;277(50):48690-5
– reference: 15952890 - Annu Rev Biochem. 2005;74:317-53
– reference: 21855803 - Mol Cell. 2011 Aug 19;43(4):649-62
– reference: 25170086 - Nucleic Acids Res. 2014;42(17):11071-82
– reference: 11095682 - Nucleic Acids Res. 2000 Dec 1;28(23):4717-24
– reference: 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900
– reference: 21258395 - Nat Rev Cancer. 2011 Feb;11(2):96-110
– reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
– reference: 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23
– reference: 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304
– reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
– reference: 18281311 - Nucleic Acids Res. 2008 Apr;36(7):2152-62
– reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
– reference: 20453836 - Nature. 2010 Jun 17;465(7300):951-5
– reference: 19901081 - J Exp Med. 2009 Nov 23;206(12):2603-11
– reference: 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502
– reference: 19783230 - DNA Repair (Amst). 2009 Dec 3;8(12):1355-62
– reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
– reference: 19166845 - FEBS Lett. 2009 Feb 18;583(4):661-4
– reference: 22237395 - Nat Rev Cancer. 2012 Feb;12(2):104-20
– reference: 22638582 - Nucleic Acids Res. 2012 Aug;40(15):7393-403
– reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9
– reference: 12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53
– reference: 11821420 - J Biol Chem. 2002 Apr 5;277(14):11765-71
– reference: 16476771 - J Exp Med. 2006 Feb 20;203(2):319-23
– reference: 20949111 - PLoS Genet. 2010 Oct;6(10). pii: e1001151. doi: 10.1371/journal.pgen.1001151
– reference: 21931560 - PLoS Genet. 2011 Sep;7(9):e1002262
– reference: 21454642 - J Biol Chem. 2011 May 20;286(20):17503-11
– reference: 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407
– reference: 15601657 - J Cell Sci. 2005 Jan 1;118(Pt 1):129-36
– reference: 19414788 - J Immunol. 2009 May 15;182(10):6353-9
– reference: 20403322 - Cell. 2010 Apr 16;141(2):255-67
– reference: 21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57
– reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91
– reference: 1493582 - Cell Biol Toxicol. 1992 Oct-Dec;8(4):207-16
– reference: 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96
– reference: 20965415 - Mol Cell. 2010 Oct 22;40(2):179-204
– reference: 16308320 - J Biol Chem. 2006 Jan 27;281(4):2000-4
– reference: 22331492 - Toxicol Sci. 2012 May;127(1):130-8
– reference: 5037019 - J Mol Biol. 1972 May 28;66(3):319-37
– reference: 17248528 - Genetics. 1971 May;68(1):21-33
– reference: 18586118 - DNA Repair (Amst). 2008 Sep 1;7(9):1551-62
– reference: 4947693 - J Mol Biol. 1971 Oct 14;61(1):25-44
– reference: 21889916 - DNA Repair (Amst). 2011 Oct 10;10(10):1051-9
– reference: 17512402 - Cell. 2007 May 18;129(4):665-79
– reference: 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82
– reference: 19170759 - Genes Cells. 2009 Feb;14(2):101-11
SSID ssj0014154
Score 2.3495998
Snippet Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 282
SubjectTerms Animals
Ataxia Telangiectasia Mutated Proteins - metabolism
Cell Survival
Cells, Cultured
Checkpoint Kinase 1
DNA Damage
DNA Replication
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - physiology
Genome Integrity, Repair and
Methyl Methanesulfonate - toxicity
Mice, Knockout
Mutation
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Protein Kinases - metabolism
S Phase
Ubiquitination
Title Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage
URI https://www.ncbi.nlm.nih.gov/pubmed/25505145
https://www.proquest.com/docview/1645780071
https://www.proquest.com/docview/1701479590
https://pubmed.ncbi.nlm.nih.gov/PMC4288191
Volume 43
WOSCitedRecordID wos000350207100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gQQvCDYu5TIZaeyBKVqTOrXz2JVOaJo6BJ3Ut8h2khHRpl3bVOsPQ0j8iP0mzrHdrmUDjQde0si2Ysvn6_HxuRKyy7SfSJDtPZ-FwmNpve6pNIi8RGaZ4gnXLNCm2ATvdESvF32qVL4vYmFmfV4U4vIyGv1XUkMbEBtDZ_-B3MuPQgO8A9HhCWSH550I_xlTNBnXtlanuV-q_KLMp7lV-hlTQffkC9ZmmKM6aoJa11b73WHTdJlXvvB9VPMRiNbWAg_07JsfCbyx7GeodE89uNCX6EDwAWZK5ECuOxZ1MFcy5oPVeYLWiRXFmdH0TC0U0-tgoRKVwxkSG7tO-_lglEsMwplMYHnj5RGCQVfAMPcPU-vpjf6N-yua3WNZOM3SMXB85QqIOeWGH64oNyw_NkFdkWPY6S1tjonbXE9rYHUc2dY2unFS2CxaBXqxH51_K-Eo96-PxIUbQOc0Pjo7OYm77V53b3ThYbEyNOq7yi0b5F7AwwiZafe0tzRegUxkaym7dbqwUJjxAOY7cLOtC0I3bje_O-muSD3dx-SRu67QpoXZE1JJiy2y3QTiDwdzukeNA7GxzGyRB61F8cBtMjMopMOMIgrpOgop0JICCukKCunVT9N89YPmBQX0UYs-_IRFH_0T-iigj1r0PSVnR-1u66PnSnx4mgk29ULpS6WFDDLBFEtQ_Kz7SjW0aIgM7rq6pgKd8gwYSqSgV4WCqyBjWViXrMZV_RnZLIZF-oJQvwE3lyDSGvYfeE5DiIzJMBFwAIlAclEl7xf7HWuX_x7LsPRj64dRj4E4sSNOlewuB49s2pfbh71dEC6GDUZbG-zDsJzEfoPBWYgC_F_GcMAKj8KoViXPLbGXkwWoOQD-WSV8DQbLAZgWfr2nyL-a9PAsEKiFeXmHtb0iD6__da_J5nRcpm_IfT2b5pPxDtngPbFjtFQ7BuG_ADNp334
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+PCNA+ubiquitination+and+TLS+polymerases+%CE%BA+and+%CE%B7+in+the+bypass+of+methyl+methanesulfonate-induced+DNA+damage&rft.jtitle=Nucleic+acids+research&rft.au=Wit%2C+Niek&rft.au=Buoninfante%2C+Olimpia+Alessandra&rft.au=van+den+Berk%2C+Paul+C+M&rft.au=Jansen%2C+Jacob+G&rft.date=2015-01-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=43&rft.issue=1&rft.spage=282&rft_id=info:doi/10.1093%2Fnar%2Fgku1301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon