Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide...
Uložené v:
| Vydané v: | Nucleic acids research Ročník 43; číslo 1; s. 282 - 294 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
01.01.2015
|
| Predmet: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. |
|---|---|
| AbstractList | Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) Kappa is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Pol Kappa can function independently of PCNA modification and that Pol eta can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna super(K164R)) or Pol Kappa , double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Pol eta and Pol Kappa are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Pol Kappa and establish Pol eta as an important backup polymerase in the absence of Pol Kappa in response to MMS-induced DNA damage. |
| Author | van den Berk, Paul C.M. Buoninfante, Olimpia Alessandra Hogenbirk, Marc A. Jacobs, Heinz Wit, Niek Jansen, Jacob G. de Wind, Niels |
| Author_xml | – sequence: 1 givenname: Niek surname: Wit fullname: Wit, Niek – sequence: 2 givenname: Olimpia Alessandra surname: Buoninfante fullname: Buoninfante, Olimpia Alessandra – sequence: 3 givenname: Paul C.M. surname: van den Berk fullname: van den Berk, Paul C.M. – sequence: 4 givenname: Jacob G. surname: Jansen fullname: Jansen, Jacob G. – sequence: 5 givenname: Marc A. surname: Hogenbirk fullname: Hogenbirk, Marc A. – sequence: 6 givenname: Niels surname: de Wind fullname: de Wind, Niels – sequence: 7 givenname: Heinz surname: Jacobs fullname: Jacobs, Heinz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25505145$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9q3DAQh0VJSTZpTrkHHQvFjcaWbPlSCNu_sLSlTc5CkqVdNbK0sezAPlmhD5FnqrLZhLYEehrQfPo0o98h2gsxGIROgLwG0lZnQQ5ny6sJKgLP0AyquixoW5d7aEYqwgoglB-gw5R-EAIUGN1HByVjhAFlM3TzLXqTcLT46_zzOZ6Uu57c6IIcXQxYhg5fLL7jdfSb3gwyZfT21_b49id2AY8rg9VmLdNW0ZtxtfHbIoNJk7cxi0zhQjdp0-G3-YVO9nJpXqDnVvpkjnf1CF2-f3cx_1gsvnz4ND9fFJpyOhZMglSay9JyqmgHDMoKlKo1r7llbaOJKrVpLHSyVbmrGG9UaalllaSkUdURenPvXU-qN502YRykF-vB9XLYiCid-LsT3Eos442gJefQQha83AmGeD2ZNIreJW28zwvGKQlo8qc2LWvJ_9GasoYT0txZT_8c63Geh1wy8Ooe0ENMaTD2EQEi7lIXOXWxSz3T8A-t3bhNMO_k_JN3fgNCl7Qo |
| CitedBy_id | crossref_primary_10_1038_nature23481 crossref_primary_10_1093_nar_gkac545 crossref_primary_10_1016_j_molcel_2016_12_020 crossref_primary_10_1016_j_dnarep_2019_03_016 crossref_primary_10_1093_nar_gkv712 crossref_primary_10_26508_lsa_202201584 crossref_primary_10_3389_fphar_2021_596535 crossref_primary_10_1016_j_dnarep_2016_10_007 crossref_primary_10_1073_pnas_2216055120 crossref_primary_10_1093_nar_gkw123 crossref_primary_10_3389_fonc_2024_1516165 crossref_primary_10_1371_journal_pone_0210526 crossref_primary_10_1016_j_dnarep_2015_02_011 crossref_primary_10_1093_nar_gkz531 crossref_primary_10_1038_s41419_025_07468_5 crossref_primary_10_1038_s41388_019_0724_7 crossref_primary_10_1371_journal_pgen_1007119 crossref_primary_10_1371_journal_pone_0223894 crossref_primary_10_1016_j_dnarep_2021_103230 crossref_primary_10_1158_0008_5472_CAN_15_1884 crossref_primary_10_1073_pnas_1706508114 crossref_primary_10_1371_journal_pone_0170719 crossref_primary_10_1038_s41467_024_55005_3 crossref_primary_10_3390_ijms241311129 crossref_primary_10_1007_s12011_018_1338_6 crossref_primary_10_1080_10409238_2017_1291576 crossref_primary_10_1093_pnasnexus_pgae242 crossref_primary_10_1080_10409238_2019_1687420 crossref_primary_10_1016_j_dnarep_2024_103715 crossref_primary_10_1038_s41467_020_15090_6 crossref_primary_10_3390_molecules28052337 crossref_primary_10_1038_s41389_020_00289_5 crossref_primary_10_1186_s13059_024_03451_z crossref_primary_10_1038_s41598_021_97523_w crossref_primary_10_3390_molecules24152805 crossref_primary_10_1080_09720529_2017_1392473 crossref_primary_10_1080_10409238_2020_1768205 crossref_primary_10_1128_AEM_01988_18 |
| Cites_doi | 10.1016/0022-2836(71)90204-X 10.1016/j.dnarep.2011.08.005 10.1016/j.molcel.2011.06.023 10.1073/pnas.0812548106 10.1093/genetics/68.1.21 10.1007/BF00156731 10.1074/jbc.M409155200 10.1074/jbc.M111.232835 10.1016/j.febslet.2008.12.057 10.1073/pnas.222377899 10.1146/annurev.biochem.74.082803.133250 10.1038/nature09097 10.1126/science.1120615 10.1016/j.molcel.2010.09.019 10.1038/nature04318 10.1128/MCB.00071-09 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2 10.1016/j.molcel.2007.11.005 10.1242/jcs.01603 10.1038/nature01965 10.1038/nature00991 10.1016/j.molcel.2009.12.039 10.1073/pnas.0510924103 10.1038/sj.emboj.7601178 10.1093/nar/gks453 10.1016/0022-2836(68)90445-2 10.1093/toxsci/kfs074 10.1128/MCB.01118-06 10.1038/nrc3185 10.1101/gad.1043203 10.1016/j.molcel.2008.03.024 10.1016/S1097-2765(04)00259-X 10.1038/sj.emboj.7600383 10.1093/nar/28.23.4717 10.1101/gad.14.13.1589 10.1093/nar/gkn058 10.1016/0022-2836(72)90418-4 10.1038/nrc2998 10.1016/j.cell.2007.05.003 10.1093/nar/gku779 10.1016/j.dnarep.2008.05.012 10.1074/jbc.M112139200 10.1371/journal.pgen.1001151 10.1084/jem.20052227 10.1074/jbc.M506153200 10.1038/35023030 10.1002/j.1460-2075.1991.tb07953.x 10.1371/journal.pgen.1002262 10.1073/pnas.0802727105 10.1084/jem.20070902 10.1111/j.1365-2443.2008.01255.x 10.1074/jbc.M207957200 10.1093/nar/gkr420 10.1016/j.dnarep.2009.09.003 10.1038/nrm3289 10.1016/j.cell.2010.02.028 10.1242/jcs.00162 10.1016/j.molcel.2010.01.021 10.1016/j.dnarep.2006.04.003 10.1074/jbc.M709275200 10.1074/jbc.C300023200 10.4049/jimmunol.0900177 10.1084/jem.20091707 10.1021/bi020049c |
| ContentType | Journal Article |
| Copyright | The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015 |
| Copyright_xml | – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
| DOI | 10.1093/nar/gku1301 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | 294 |
| ExternalDocumentID | PMC4288191 25505145 10_1093_nar_gku1301 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVD OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TEORI TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM .55 .GJ 3O- AAWDT AAYJJ ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACIPB ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AFSHK AGKRT AGMDO AGQPQ ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BEYMZ C1A CGR COF CUY CVF CXTWN D0S DFGAJ ECM EIF ELUNK FEDTE HVGLF H~9 MBTAY MVM NPM NTWIH O~Y PB- QBD RNI RZF RZO SJN TCN UHB X7M XSW ZXP 7X8 ESTFP 7TM 8FD FR3 P64 RC3 5PM |
| ID | FETCH-LOGICAL-c484t-5a1abc8a2f84b4d151231bb6c868f597c0b2ce7f1da9b151b587b2f4f53a407b3 |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350207100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Sep 30 16:50:35 EDT 2025 Fri Sep 05 11:52:15 EDT 2025 Mon Sep 08 10:52:58 EDT 2025 Mon Jul 21 06:03:40 EDT 2025 Sat Nov 29 03:24:31 EST 2025 Tue Nov 18 21:32:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c484t-5a1abc8a2f84b4d151231bb6c868f597c0b2ce7f1da9b151b587b2f4f53a407b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1093/nar/gku1301 |
| PMID | 25505145 |
| PQID | 1645780071 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4288191 proquest_miscellaneous_1701479590 proquest_miscellaneous_1645780071 pubmed_primary_25505145 crossref_primary_10_1093_nar_gku1301 crossref_citationtrail_10_1093_nar_gku1301 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2015 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Hirota ( key 20171013094334_B51) 2010; 6 Dirac ( key 20171013094334_B42) 2003; 278 Bergoglio ( key 20171013094334_B25) 2002; 115 Suzuki ( key 20171013094334_B14) 2002; 41 Elvers ( key 20171013094334_B49) 2011; 39 Gueranger ( key 20171013094334_B63) 2008; 7 Temviriyanukul ( key 20171013094334_B21) 2012; 127 Jarosz ( key 20171013094334_B15) 2006; 439 Plosky ( key 20171013094334_B34) 2006; 25 Daigaku ( key 20171013094334_B7) 2010; 465 Krijger ( key 20171013094334_B50) 2009; 206 Jansen ( key 20171013094334_B27) 2007; 28 Rolink ( key 20171013094334_B41) 1991; 10 Fu ( key 20171013094334_B54) 2012; 12 Watanabe ( key 20171013094334_B32) 2004; 23 Edmunds ( key 20171013094334_B9) 2008; 30 Petermann ( key 20171013094334_B43) 2010; 37 Zhang ( key 20171013094334_B11) 2000; 28 Sale ( key 20171013094334_B1) 2012; 13 Yuan ( key 20171013094334_B16) 2011; 286 Ohashi ( key 20171013094334_B24) 2009; 14 Lehmann ( key 20171013094334_B3) 1972; 66 Takenaka ( key 20171013094334_B19) 2006; 281 Ohashi ( key 20171013094334_B57) 2000; 14 Niimi ( key 20171013094334_B46) 2008; 105 Burr ( key 20171013094334_B23) 2006; 5 Guo ( key 20171013094334_B35) 2006; 26 Ciccia ( key 20171013094334_B48) 2010; 40 Niimi ( key 20171013094334_B45) 2012; 40 Lange ( key 20171013094334_B2) 2011; 11 Chiapperino ( key 20171013094334_B12) 2002; 277 Hoege ( key 20171013094334_B28) 2002; 419 Krijger ( key 20171013094334_B37) 2011; 10 Guo ( key 20171013094334_B38) 2008; 283 Hendel ( key 20171013094334_B36) 2011; 7 Johnson ( key 20171013094334_B59) 2000; 406 Plosky ( key 20171013094334_B55) 2008; 36 Schenten ( key 20171013094334_B17) 2002; 32 Stelter ( key 20171013094334_B30) 2003; 425 Jansen ( key 20171013094334_B53) 2015; 42 Haracska ( key 20171013094334_B29) 2006; 103 Jansen ( key 20171013094334_B10) 2009; 29 Bienko ( key 20171013094334_B33) 2005; 310 Ziv ( key 20171013094334_B52) 2009; 106 Takenaka ( key 20171013094334_B18) 2009; 583 Faili ( key 20171013094334_B44) 2009; 182 Rupp ( key 20171013094334_B6) 1971; 61 Karras ( key 20171013094334_B8) 2010; 141 Kannouche ( key 20171013094334_B31) 2004; 14 Kai ( key 20171013094334_B64) 2003; 17 Avkin ( key 20171013094334_B13) 2004; 279 Bienko ( key 20171013094334_B62) 2010; 37 Jansen ( key 20171013094334_B58) 2006; 203 Lemontt ( key 20171013094334_B4) 1971; 68 Ogi ( key 20171013094334_B20) 2002; 99 Langerak ( key 20171013094334_B40) 2007; 204 Zlatanou ( key 20171013094334_B60) 2011; 43 Moldovan ( key 20171013094334_B26) 2007; 129 Dusinska ( key 20171013094334_B47) 1992; 8 Okada ( key 20171013094334_B39) 2002; 277 Ogi ( key 20171013094334_B61) 2005; 118 Stancel ( key 20171013094334_B22) 2009; 8 Prakash ( key 20171013094334_B56) 2005; 74 Rupp ( key 20171013094334_B5) 1968; 31 20965415 - Mol Cell. 2010 Oct 22;40(2):179-204 12356753 - J Biol Chem. 2002 Dec 13;277(50):48690-5 16357261 - Science. 2005 Dec 16;310(5755):1821-4 21889916 - DNA Repair (Amst). 2011 Oct 10;10(10):1051-9 21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502 21258395 - Nat Rev Cancer. 2011 Feb;11(2):96-110 22331492 - Toxicol Sci. 2012 May;127(1):130-8 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 17248528 - Genetics. 1971 May;68(1):21-33 19170759 - Genes Cells. 2009 Feb;14(2):101-11 18281311 - Nucleic Acids Res. 2008 Apr;36(7):2152-62 1991449 - EMBO J. 1991 Feb;10(2):327-36 20403322 - Cell. 2010 Apr 16;141(2):255-67 11095682 - Nucleic Acids Res. 2000 Dec 1;28(23):4717-24 5037019 - J Mol Biol. 1972 May 28;66(3):319-37 16407906 - Nature. 2006 Jan 12;439(7073):225-8 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 20453836 - Nature. 2010 Jun 17;465(7300):951-5 17512402 - Cell. 2007 May 18;129(4):665-79 25170086 - Nucleic Acids Res. 2014;42(17):11071-82 12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53 11994005 - Biochemistry. 2002 May 14;41(19):6100-6 15952890 - Annu Rev Biochem. 2005;74:317-53 19783230 - DNA Repair (Amst). 2009 Dec 3;8(12):1355-62 19166845 - FEBS Lett. 2009 Feb 18;583(4):661-4 22638582 - Nucleic Acids Res. 2012 Aug;40(15):7393-403 22358330 - Nat Rev Mol Cell Biol. 2012 Mar;13(3):141-52 12414988 - J Cell Sci. 2002 Dec 1;115(Pt 23):4413-8 4947693 - J Mol Biol. 1971 Oct 14;61(1):25-44 19901081 - J Exp Med. 2009 Nov 23;206(12):2603-11 22237395 - Nat Rev Cancer. 2012 Feb;12(2):104-20 18042449 - Mol Cell. 2007 Nov 30;28(4):522-9 12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304 16731053 - DNA Repair (Amst). 2006 Jul 13;5(7):860-2 1493582 - Cell Biol Toxicol. 1992 Oct-Dec;8(4):207-16 12514100 - Genes Dev. 2003 Jan 1;17(1):64-76 21454642 - J Biol Chem. 2011 May 20;286(20):17503-11 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94 16308320 - J Biol Chem. 2006 Jan 27;281(4):2000-4 21855803 - Mol Cell. 2011 Aug 19;43(4):649-62 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82 20949111 - PLoS Genet. 2010 Oct;6(10). pii: e1001151. doi: 10.1371/journal.pgen.1001151 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 15601657 - J Cell Sci. 2005 Jan 1;118(Pt 1):129-36 11821420 - J Biol Chem. 2002 Apr 5;277(14):11765-71 18162470 - J Biol Chem. 2008 Feb 22;283(8):4658-64 21931560 - PLoS Genet. 2011 Sep;7(9):e1002262 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7 18498753 - Mol Cell. 2008 May 23;30(4):519-29 12226657 - Nature. 2002 Sep 12;419(6903):135-41 15149598 - Mol Cell. 2004 May 21;14(4):491-500 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23 12555660 - Eur J Immunol. 2002 Nov;32(11):3152-60 12968183 - Nature. 2003 Sep 11;425(6954):188-91 19414788 - J Immunol. 2009 May 15;182(10):6353-9 18586118 - DNA Repair (Amst). 2008 Sep 1;7(9):1551-62 16476771 - J Exp Med. 2006 Feb 20;203(2):319-23 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407 |
| References_xml | – volume: 61 start-page: 25 year: 1971 ident: key 20171013094334_B6 article-title: Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(71)90204-X – volume: 10 start-page: 1051 year: 2011 ident: key 20171013094334_B37 article-title: PCNA ubiquitination-independent activation of polymerase eta during somatic hypermutation and DNA damage tolerance publication-title: DNA Repair doi: 10.1016/j.dnarep.2011.08.005 – volume: 43 start-page: 649 year: 2011 ident: key 20171013094334_B60 article-title: The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.023 – volume: 106 start-page: 11552 year: 2009 ident: key 20171013094334_B52 article-title: DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.0812548106 – volume: 68 start-page: 21 year: 1971 ident: key 20171013094334_B4 article-title: Mutants of yeast defective in mutation induced by ultraviolet light publication-title: Genetics doi: 10.1093/genetics/68.1.21 – volume: 8 start-page: 207 year: 1992 ident: key 20171013094334_B47 article-title: Application of alkaline unwinding assay for detection of mutagen-induced DNA strand breaks publication-title: Cell Biol. Toxicol. doi: 10.1007/BF00156731 – volume: 279 start-page: 53298 year: 2004 ident: key 20171013094334_B13 article-title: Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409155200 – volume: 286 start-page: 17503 year: 2011 ident: key 20171013094334_B16 article-title: The roles of DNA polymerases kappa and iota in the error-free bypass of N2-carboxyalkyl-2′-deoxyguanosine lesions in mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.232835 – volume: 583 start-page: 661 year: 2009 ident: key 20171013094334_B18 article-title: Introduction and characterization of a polymerase-dead point mutation into the POLK gene in vertebrates publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.12.057 – volume: 99 start-page: 15548 year: 2002 ident: key 20171013094334_B20 article-title: Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.222377899 – volume: 74 start-page: 317 year: 2005 ident: key 20171013094334_B56 article-title: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133250 – volume: 465 start-page: 951 year: 2010 ident: key 20171013094334_B7 article-title: Ubiquitin-dependent DNA damage bypass is separable from genome replication publication-title: Nature doi: 10.1038/nature09097 – volume: 310 start-page: 1821 year: 2005 ident: key 20171013094334_B33 article-title: Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis publication-title: Science doi: 10.1126/science.1120615 – volume: 40 start-page: 179 year: 2010 ident: key 20171013094334_B48 article-title: The DNA damage response: making it safe to play with knives publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.09.019 – volume: 439 start-page: 225 year: 2006 ident: key 20171013094334_B15 article-title: A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates publication-title: Nature doi: 10.1038/nature04318 – volume: 29 start-page: 3113 year: 2009 ident: key 20171013094334_B10 article-title: Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00071-09 – volume: 32 start-page: 3152 year: 2002 ident: key 20171013094334_B17 article-title: DNA polymerase kappa deficiency does not affect somatic hypermutation in mice publication-title: Eur. J. Immunol. doi: 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2 – volume: 28 start-page: 522 year: 2007 ident: key 20171013094334_B27 article-title: Send in the clamps: control of DNA translesion synthesis in eukaryotes publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.005 – volume: 118 start-page: 129 year: 2005 ident: key 20171013094334_B61 article-title: Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci publication-title: J. Cell Sci. doi: 10.1242/jcs.01603 – volume: 425 start-page: 188 year: 2003 ident: key 20171013094334_B30 article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation publication-title: Nature doi: 10.1038/nature01965 – volume: 419 start-page: 135 year: 2002 ident: key 20171013094334_B28 article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO publication-title: Nature doi: 10.1038/nature00991 – volume: 37 start-page: 396 year: 2010 ident: key 20171013094334_B62 article-title: Regulation of translesion synthesis DNA polymerase eta by monoubiquitination publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.039 – volume: 103 start-page: 6477 year: 2006 ident: key 20171013094334_B29 article-title: Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.0510924103 – volume: 25 start-page: 2847 year: 2006 ident: key 20171013094334_B34 article-title: Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin publication-title: EMBO J. doi: 10.1038/sj.emboj.7601178 – volume: 40 start-page: 7393 year: 2012 ident: key 20171013094334_B45 article-title: A role for chromatin remodellers in replication of damaged DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks453 – volume: 31 start-page: 291 year: 1968 ident: key 20171013094334_B5 article-title: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(68)90445-2 – volume: 127 start-page: 130 year: 2012 ident: key 20171013094334_B21 article-title: Different sets of translesion synthesis DNA polymerases protect from genome instability induced by distinct food-derived genotoxins publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfs074 – volume: 26 start-page: 8892 year: 2006 ident: key 20171013094334_B35 article-title: Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01118-06 – volume: 12 start-page: 104 year: 2012 ident: key 20171013094334_B54 article-title: Balancing repair and tolerance of DNA damage caused by alkylating agents publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3185 – volume: 17 start-page: 64 year: 2003 ident: key 20171013094334_B64 article-title: Checkpoint activation regulates mutagenic translesion synthesis publication-title: Genes Dev. doi: 10.1101/gad.1043203 – volume: 30 start-page: 519 year: 2008 ident: key 20171013094334_B9 article-title: PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.03.024 – volume: 14 start-page: 491 year: 2004 ident: key 20171013094334_B31 article-title: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage publication-title: Mol. Cell doi: 10.1016/S1097-2765(04)00259-X – volume: 23 start-page: 3886 year: 2004 ident: key 20171013094334_B32 article-title: Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination publication-title: EMBO J. doi: 10.1038/sj.emboj.7600383 – volume: 28 start-page: 4717 year: 2000 ident: key 20171013094334_B11 article-title: Error-prone lesion bypass by human DNA polymerase eta publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.23.4717 – volume: 14 start-page: 1589 year: 2000 ident: key 20171013094334_B57 article-title: Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa publication-title: Genes Dev. doi: 10.1101/gad.14.13.1589 – volume: 36 start-page: 2152 year: 2008 ident: key 20171013094334_B55 article-title: Eukaryotic Y-family polymerases bypass a 3-methyl-2′-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn058 – volume: 66 start-page: 319 year: 1972 ident: key 20171013094334_B3 article-title: Postreplication repair of DNA in ultraviolet-irradiated mammalian cells publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(72)90418-4 – volume: 11 start-page: 96 year: 2011 ident: key 20171013094334_B2 article-title: DNA polymerases and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2998 – volume: 129 start-page: 665 year: 2007 ident: key 20171013094334_B26 article-title: PCNA, the maestro of the replication fork publication-title: Cell doi: 10.1016/j.cell.2007.05.003 – volume: 42 start-page: 11071 year: 2015 ident: key 20171013094334_B53 article-title: Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku779 – volume: 7 start-page: 1551 year: 2008 ident: key 20171013094334_B63 article-title: Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line publication-title: DNA Repair doi: 10.1016/j.dnarep.2008.05.012 – volume: 277 start-page: 11765 year: 2002 ident: key 20171013094334_B12 article-title: Preferential misincorporation of purine nucleotides by human DNA polymerase eta opposite benzo[a]pyrene 7,8-diol 9,10-epoxide deoxyguanosine adducts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112139200 – volume: 6 year: 2010 ident: key 20171013094334_B51 article-title: Simultaneous disruption of two DNA polymerases, Poleta and Polzeta, in Avian DT40 cells unmasks the role of Poleta in cellular response to various DNA lesions publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001151 – volume: 203 start-page: 319 year: 2006 ident: key 20171013094334_B58 article-title: Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice publication-title: J. Exp. Med. doi: 10.1084/jem.20052227 – volume: 281 start-page: 2000 year: 2006 ident: key 20171013094334_B19 article-title: Involvement of vertebrate Polkappa in translesion DNA synthesis across DNA monoalkylation damage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M506153200 – volume: 406 start-page: 1015 year: 2000 ident: key 20171013094334_B59 article-title: Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions publication-title: Nature doi: 10.1038/35023030 – volume: 10 start-page: 327 year: 1991 ident: key 20171013094334_B41 article-title: Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07953.x – volume: 7 start-page: 2262 year: 2011 ident: key 20171013094334_B36 article-title: PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002262 – volume: 105 start-page: 16125 year: 2008 ident: key 20171013094334_B46 article-title: Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.0802727105 – volume: 204 start-page: 1989 year: 2007 ident: key 20171013094334_B40 article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification publication-title: J. Exp. Med. doi: 10.1084/jem.20070902 – volume: 14 start-page: 101 year: 2009 ident: key 20171013094334_B24 article-title: Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function publication-title: Genes Cells doi: 10.1111/j.1365-2443.2008.01255.x – volume: 277 start-page: 48690 year: 2002 ident: key 20171013094334_B39 article-title: Involvement of vertebrate polkappa in Rad18-independent postreplication repair of UV damage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207957200 – volume: 39 start-page: 7049 year: 2011 ident: key 20171013094334_B49 article-title: UV stalled replication forks restart by re-priming in human fibroblasts publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr420 – volume: 8 start-page: 1355 year: 2009 ident: key 20171013094334_B22 article-title: Polk mutant mice have a spontaneous mutator phenotype publication-title: DNA Repair doi: 10.1016/j.dnarep.2009.09.003 – volume: 13 start-page: 141 year: 2012 ident: key 20171013094334_B1 article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3289 – volume: 141 start-page: 255 year: 2010 ident: key 20171013094334_B8 article-title: The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase publication-title: Cell doi: 10.1016/j.cell.2010.02.028 – volume: 115 start-page: 4413 year: 2002 ident: key 20171013094334_B25 article-title: Localisation of human DNA polymerase kappa to replication foci publication-title: J. Cell Sci. doi: 10.1242/jcs.00162 – volume: 37 start-page: 492 year: 2010 ident: key 20171013094334_B43 article-title: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.021 – volume: 5 start-page: 860 year: 2006 ident: key 20171013094334_B23 article-title: Elevated mutation rates in the germline of Polkappa mutant male mice publication-title: DNA Repair doi: 10.1016/j.dnarep.2006.04.003 – volume: 283 start-page: 4658 year: 2008 ident: key 20171013094334_B38 article-title: Requirements for the interaction of mouse Polkappa with ubiquitin and its biological significance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709275200 – volume: 278 start-page: 11731 year: 2003 ident: key 20171013094334_B42 article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300023200 – volume: 182 start-page: 6353 year: 2009 ident: key 20171013094334_B44 article-title: A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta publication-title: J. Immunol. doi: 10.4049/jimmunol.0900177 – volume: 206 start-page: 2603 year: 2009 ident: key 20171013094334_B50 article-title: Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation publication-title: J. Exp. Med. doi: 10.1084/jem.20091707 – volume: 41 start-page: 6100 year: 2002 ident: key 20171013094334_B14 article-title: Translesion synthesis by human DNA polymerase kappa on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) publication-title: Biochemistry doi: 10.1021/bi020049c – reference: 11994005 - Biochemistry. 2002 May 14;41(19):6100-6 – reference: 16731053 - DNA Repair (Amst). 2006 Jul 13;5(7):860-2 – reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4 – reference: 12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4 – reference: 12414988 - J Cell Sci. 2002 Dec 1;115(Pt 23):4413-8 – reference: 18042449 - Mol Cell. 2007 Nov 30;28(4):522-9 – reference: 16407906 - Nature. 2006 Jan 12;439(7073):225-8 – reference: 12514100 - Genes Dev. 2003 Jan 1;17(1):64-76 – reference: 12555660 - Eur J Immunol. 2002 Nov;32(11):3152-60 – reference: 10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94 – reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500 – reference: 18498753 - Mol Cell. 2008 May 23;30(4):519-29 – reference: 18162470 - J Biol Chem. 2008 Feb 22;283(8):4658-64 – reference: 22358330 - Nat Rev Mol Cell Biol. 2012 Mar;13(3):141-52 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55 – reference: 1991449 - EMBO J. 1991 Feb;10(2):327-36 – reference: 12356753 - J Biol Chem. 2002 Dec 13;277(50):48690-5 – reference: 15952890 - Annu Rev Biochem. 2005;74:317-53 – reference: 21855803 - Mol Cell. 2011 Aug 19;43(4):649-62 – reference: 25170086 - Nucleic Acids Res. 2014;42(17):11071-82 – reference: 11095682 - Nucleic Acids Res. 2000 Dec 1;28(23):4717-24 – reference: 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900 – reference: 21258395 - Nat Rev Cancer. 2011 Feb;11(2):96-110 – reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7 – reference: 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23 – reference: 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304 – reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 – reference: 18281311 - Nucleic Acids Res. 2008 Apr;36(7):2152-62 – reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 – reference: 20453836 - Nature. 2010 Jun 17;465(7300):951-5 – reference: 19901081 - J Exp Med. 2009 Nov 23;206(12):2603-11 – reference: 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502 – reference: 19783230 - DNA Repair (Amst). 2009 Dec 3;8(12):1355-62 – reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 – reference: 19166845 - FEBS Lett. 2009 Feb 18;583(4):661-4 – reference: 22237395 - Nat Rev Cancer. 2012 Feb;12(2):104-20 – reference: 22638582 - Nucleic Acids Res. 2012 Aug;40(15):7393-403 – reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 – reference: 12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53 – reference: 11821420 - J Biol Chem. 2002 Apr 5;277(14):11765-71 – reference: 16476771 - J Exp Med. 2006 Feb 20;203(2):319-23 – reference: 20949111 - PLoS Genet. 2010 Oct;6(10). pii: e1001151. doi: 10.1371/journal.pgen.1001151 – reference: 21931560 - PLoS Genet. 2011 Sep;7(9):e1002262 – reference: 21454642 - J Biol Chem. 2011 May 20;286(20):17503-11 – reference: 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407 – reference: 15601657 - J Cell Sci. 2005 Jan 1;118(Pt 1):129-36 – reference: 19414788 - J Immunol. 2009 May 15;182(10):6353-9 – reference: 20403322 - Cell. 2010 Apr 16;141(2):255-67 – reference: 21646340 - Nucleic Acids Res. 2011 Sep 1;39(16):7049-57 – reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91 – reference: 1493582 - Cell Biol Toxicol. 1992 Oct-Dec;8(4):207-16 – reference: 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96 – reference: 20965415 - Mol Cell. 2010 Oct 22;40(2):179-204 – reference: 16308320 - J Biol Chem. 2006 Jan 27;281(4):2000-4 – reference: 22331492 - Toxicol Sci. 2012 May;127(1):130-8 – reference: 5037019 - J Mol Biol. 1972 May 28;66(3):319-37 – reference: 17248528 - Genetics. 1971 May;68(1):21-33 – reference: 18586118 - DNA Repair (Amst). 2008 Sep 1;7(9):1551-62 – reference: 4947693 - J Mol Biol. 1971 Oct 14;61(1):25-44 – reference: 21889916 - DNA Repair (Amst). 2011 Oct 10;10(10):1051-9 – reference: 17512402 - Cell. 2007 May 18;129(4):665-79 – reference: 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6477-82 – reference: 19170759 - Genes Cells. 2009 Feb;14(2):101-11 |
| SSID | ssj0014154 |
| Score | 2.3495998 |
| Snippet | Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 282 |
| SubjectTerms | Animals Ataxia Telangiectasia Mutated Proteins - metabolism Cell Survival Cells, Cultured Checkpoint Kinase 1 DNA Damage DNA Replication DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - physiology Genome Integrity, Repair and Methyl Methanesulfonate - toxicity Mice, Knockout Mutation Proliferating Cell Nuclear Antigen - genetics Proliferating Cell Nuclear Antigen - metabolism Protein Kinases - metabolism S Phase Ubiquitination |
| Title | Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25505145 https://www.proquest.com/docview/1645780071 https://www.proquest.com/docview/1701479590 https://pubmed.ncbi.nlm.nih.gov/PMC4288191 |
| Volume | 43 |
| WOSCitedRecordID | wos000350207100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gQQvCDYu5TIZaeyBKVqTOrXz2JVOaJo6BJ3Ut8h2khHRpl3bVOsPQ0j8iP0mzrHdrmUDjQde0si2Ysvn6_HxuRKyy7SfSJDtPZ-FwmNpve6pNIi8RGaZ4gnXLNCm2ATvdESvF32qVL4vYmFmfV4U4vIyGv1XUkMbEBtDZ_-B3MuPQgO8A9HhCWSH550I_xlTNBnXtlanuV-q_KLMp7lV-hlTQffkC9ZmmKM6aoJa11b73WHTdJlXvvB9VPMRiNbWAg_07JsfCbyx7GeodE89uNCX6EDwAWZK5ECuOxZ1MFcy5oPVeYLWiRXFmdH0TC0U0-tgoRKVwxkSG7tO-_lglEsMwplMYHnj5RGCQVfAMPcPU-vpjf6N-yua3WNZOM3SMXB85QqIOeWGH64oNyw_NkFdkWPY6S1tjonbXE9rYHUc2dY2unFS2CxaBXqxH51_K-Eo96-PxIUbQOc0Pjo7OYm77V53b3ThYbEyNOq7yi0b5F7AwwiZafe0tzRegUxkaym7dbqwUJjxAOY7cLOtC0I3bje_O-muSD3dx-SRu67QpoXZE1JJiy2y3QTiDwdzukeNA7GxzGyRB61F8cBtMjMopMOMIgrpOgop0JICCukKCunVT9N89YPmBQX0UYs-_IRFH_0T-iigj1r0PSVnR-1u66PnSnx4mgk29ULpS6WFDDLBFEtQ_Kz7SjW0aIgM7rq6pgKd8gwYSqSgV4WCqyBjWViXrMZV_RnZLIZF-oJQvwE3lyDSGvYfeE5DiIzJMBFwAIlAclEl7xf7HWuX_x7LsPRj64dRj4E4sSNOlewuB49s2pfbh71dEC6GDUZbG-zDsJzEfoPBWYgC_F_GcMAKj8KoViXPLbGXkwWoOQD-WSV8DQbLAZgWfr2nyL-a9PAsEKiFeXmHtb0iD6__da_J5nRcpm_IfT2b5pPxDtngPbFjtFQ7BuG_ADNp334 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roles+of+PCNA+ubiquitination+and+TLS+polymerases+%CE%BA+and+%CE%B7+in+the+bypass+of+methyl+methanesulfonate-induced+DNA+damage&rft.jtitle=Nucleic+acids+research&rft.au=Wit%2C+Niek&rft.au=Buoninfante%2C+Olimpia+Alessandra&rft.au=van+den+Berk%2C+Paul+C+M&rft.au=Jansen%2C+Jacob+G&rft.date=2015-01-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=43&rft.issue=1&rft.spage=282&rft_id=info:doi/10.1093%2Fnar%2Fgku1301&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |