A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass

•Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and lignin, respectively.•The difference of soot yield from the basic biomass components is well captured.•Tar reforming plays an important role in co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) Jg. 303; S. 121240
Hauptverfasser: Chen, Tao, Li, Tian, Sjöblom, Jonas, Ström, Henrik
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.11.2021
Elsevier BV
Schlagworte:
ISSN:0016-2361, 1873-7153, 1873-7153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and lignin, respectively.•The difference of soot yield from the basic biomass components is well captured.•Tar reforming plays an important role in controlling soot generation during steam gasification.•The impact of surface growth through HACA mechanism on soot yield is relatively small. Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification.
AbstractList Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification.
Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification. © 2021 The Author(s)
•Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and lignin, respectively.•The difference of soot yield from the basic biomass components is well captured.•Tar reforming plays an important role in controlling soot generation during steam gasification.•The impact of surface growth through HACA mechanism on soot yield is relatively small. Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification.
ArticleNumber 121240
Author Chen, Tao
Li, Tian
Ström, Henrik
Sjöblom, Jonas
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0001-5700-4967
  surname: Chen
  fullname: Chen, Tao
  email: tchen@chalmers.se
  organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
– sequence: 2
  givenname: Tian
  surname: Li
  fullname: Li, Tian
  organization: RISE Fire Research, NO-7092 Tiller, Norway
– sequence: 3
  givenname: Jonas
  surname: Sjöblom
  fullname: Sjöblom, Jonas
  organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
– sequence: 4
  givenname: Henrik
  orcidid: 0000-0002-8581-5174
  surname: Ström
  fullname: Ström, Henrik
  organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-54696$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/524652$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kU2P0zAURSM0SHQG_gArSyxROrYTO43EpuowDNJILPjYPjn2c-sqictzAuq_xyWIBRKz8uae83R9r4urMY5YFK8FXwsu9O1x7Wfs15JLsRZSyJo_K1Zi01RlI1R1Vax4TpWy0uJFcZ3SkXPebFS9KsKWERo7RSqTNT2y3f0dG6LDnkXPUowT85EGM4U4MjdTGPfsEPaHcsLhhGSmmZCdzhT7cwqJmdGxvUnBB7sgWdKFOJiUXhbPvekTvvrz3hRf799_2T2Uj58-fNxtH0tbb-qpVFo3tdXeCdN54Ztcxece2jjZtp1Wnaq7DrU0Co3LpSxHY5pGYau458JXN8XnxZt-4mnu4ERhMHSGaAIQJjRkD2APph-QEiQELZ30RlSQDxqoXaehra2DrBQun6o2ArP17X-td-HbFiLtgQKoWrc6p98s6RPF7zOmCY5xpjHXBqkapapWtHVOySVlKaZE6P9aBYfLrHCEy6xwmRWWWTO0-QeyYfr91xOZ0D-NvltQzN__IyBBsgFHiy4Q2glcDE_hvwDmJsIH
CitedBy_id crossref_primary_10_1007_s13399_022_03488_9
crossref_primary_10_1016_j_jaap_2025_107030
crossref_primary_10_1002_ceat_70078
crossref_primary_10_3390_en16124580
crossref_primary_10_1088_1755_1315_1386_1_012018
crossref_primary_10_1016_j_renene_2022_05_039
crossref_primary_10_1016_j_biombioe_2023_107026
crossref_primary_10_1002_bbb_2545
crossref_primary_10_1016_j_fuel_2021_122234
crossref_primary_10_1016_j_apenergy_2022_119841
crossref_primary_10_1016_j_fuel_2024_131103
Cites_doi 10.1016/j.proci.2018.06.061
10.1016/j.ces.2018.10.020
10.1016/j.fuel.2017.01.032
10.1016/j.pecs.2017.05.004
10.1016/j.rser.2021.110710
10.1016/j.fuel.2012.09.048
10.1016/j.carbon.2019.12.043
10.1016/j.apt.2018.02.002
10.1016/j.proci.2018.08.019
10.1016/j.fuel.2018.07.022
10.1016/j.apenergy.2016.02.127
10.1016/j.biombioe.2016.06.015
10.1016/j.combustflame.2017.10.025
10.1016/j.combustflame.2019.03.042
10.1016/j.rser.2019.109426
10.1016/j.fuproc.2019.106252
10.1016/j.cej.2017.03.113
10.1016/j.renene.2019.04.033
10.1021/acs.energyfuels.8b01261
10.1039/D0CP00116C
10.1016/j.carbon.2017.06.009
10.1016/j.apenergy.2020.115360
10.1021/acs.energyfuels.6b03480
10.1016/j.fuproc.2020.106645
10.1021/acs.energyfuels.5b01753
10.1021/ef9702207
10.1080/13647830.2019.1656823
10.1016/j.biombioe.2017.12.030
10.1016/j.ijhydene.2017.04.018
10.1016/S0010-2180(98)00056-X
10.1016/j.fuel.2019.116699
10.1016/j.fuel.2019.116991
10.1016/j.biombioe.2018.01.010
10.1021/ef5010557
10.1016/j.biombioe.2019.105377
10.1016/j.enconman.2013.02.001
10.1021/ef800006z
10.1016/j.jaerosci.2020.105690
10.1007/s10494-019-00054-8
10.1021/ef800551t
10.1016/S0016-2361(97)00201-9
10.1016/j.proci.2004.08.088
10.1021/acs.energyfuels.5b00374
10.1016/j.cej.2020.127923
10.1016/j.biombioe.2020.105888
10.1021/ef4004297
10.1016/j.rser.2020.110380
10.1016/j.powtec.2019.05.011
10.1016/j.combustflame.2019.11.045
10.1021/acs.energyfuels.7b03558
10.1016/j.enconman.2020.112808
10.1016/j.apenergy.2019.113897
10.1016/j.fuel.2017.09.103
10.1016/j.rser.2020.110493
10.1016/j.combustflame.2018.06.020
10.1080/00102200903548124
10.1016/j.biombioe.2012.02.016
10.1016/j.fuel.2017.06.068
10.1016/j.pecs.2009.12.002
10.1016/j.fuproc.2021.106723
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright Elsevier BV Nov 1, 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright Elsevier BV Nov 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ADTPV
AOWAS
D8T
ZZAVC
ABBSD
F1S
DOI 10.1016/j.fuel.2021.121240
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID oai_research_chalmers_se_62d2fa13_abfa_4db6_94cd_5e91dbe6381e
oai_DiVA_org_ri_54696
10_1016_j_fuel_2021_121240
S0016236121011194
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ADTPV
AOWAS
D8T
ZZAVC
ABBSD
F1S
ID FETCH-LOGICAL-c484t-56674c6fd1abf1f7240f8736ad299b65b54bbe62a5ead016c0eaa775e950f01f3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687474400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
1873-7153
IngestDate Wed Nov 05 04:45:35 EST 2025
Wed Sep 24 03:37:08 EDT 2025
Wed Aug 13 09:13:20 EDT 2025
Tue Nov 18 21:44:01 EST 2025
Sat Nov 29 06:55:28 EST 2025
Fri Feb 23 02:43:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomass gasification
Soot formation
Eulerian-Lagrangian
Two-equation model
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-56674c6fd1abf1f7240f8736ad299b65b54bbe62a5ead016c0eaa775e950f01f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5700-4967
0000-0002-8581-5174
OpenAccessLink https://research.chalmers.se/publication/524652
PQID 2575539194
PQPubID 2045474
ParticipantIDs swepub_primary_oai_research_chalmers_se_62d2fa13_abfa_4db6_94cd_5e91dbe6381e
swepub_primary_oai_DiVA_org_ri_54696
proquest_journals_2575539194
crossref_primary_10_1016_j_fuel_2021_121240
crossref_citationtrail_10_1016_j_fuel_2021_121240
elsevier_sciencedirect_doi_10_1016_j_fuel_2021_121240
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Ku, Lin, Jin (b0290) 2019; 353
Zabrodiec, Massmeyer, Hees, Hatzfeld, Kneer (b0035) 2021; 138
Ashok, Dewangan, Das, Hongmanorom, Wai, Tomishige (b0020) 2020; 199
He, Guo, Umeki, Ding, Wang, Yu (b0045) 2021; 139
Ranzi, Cuoci, Faravelli, Frassoldati, Migliavacca, Pierucci (b0100) 2008; 22
Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 2017;62:33–86.
Brookes, Moss (b0145) 1999; 116
Gentile, Debiagi, Cuoci, Frassoldati, Ranzi, Faravelli (b0110) 2017; 321
OpenCFD Ltd. OpenFOAM-The open source CFD toolbox-user guide (Version2.1.1). 2012.
Pejpichestakul, Frassoldati, Parente, Faravelli (b0165) 2018; 234
Ku, Li, Løvås (b0310) 2014; 28
Koziński, Saade (b0050) 1998; 77
Frenklach, Wang (b0240) 1994
Vishwanathan, Reitz (b0250) 2010; 182
Debiagi, Pecchi, Gentile, Frassoldati, Cuoci, Faravelli (b0105) 2015; 29
Takahashi, Hashimoto, Watanabe, Kurose, Fujita (b0230) 2019; 37
Debiagi, Gentile, Pelucchi, Frassoldati, Cuoci, Faravelli (b0120) 2016; 93
Chang, Gao, Gao, Yu, Wang (b0180) 2020; 216
Deng, Wu (b0155) 2020; 000
Trubetskaya, Souihi, Umeki (b0065) 2019; 141
Josephson, Hopkins, Lignell, Linn (b0255) 2020; 24
Albashabsheh, Heier Stamm (b0025) 2021; 144
Wu, Wang, Zhao, Chen, Meng (b0060) 2015; 29
Chen, Ku, Lin, Fan (b0265) 2018; 32
Ren, Cao, Zhao, Yang, Wei (b0030) 2019; 116
Ahrenfeldt, Egsgaard, Stelte, Thomsen, Henriksen (b0125) 2013; 112
Brown, Fletcher (b0200) 1998; 12
Scheftelowitz, Becker, Thrän (b0005) 2018; 111
Commodo, Kaiser, De Falco, Minutolo, Schulz, D'Anna (b0140) 2019; 205
Morán, Poux, Yon (b0170) 2021; 152
Hall RJ, Smooke MD, Colket MB. Physical and chemical aspects of combustion. Gordon Breach 1997.
Muto, Yuasa, Kurose (b0225) 2018; 29
Rigopoulos (b0150) 2019; 103
Guizani, Valin, Billaud, Peyrot, Salvador (b0355) 2017; 207
Font Palma (b0080) 2013; 27
ANSYS Fluent Theory Guide 2013. 15th release, ANSYS Inc., Canonsburg, Pennsylvani.
Mao, van Duin, Luo (b0340) 2017; 121
Frenklach, Mebel (b0350) 2020; 22
Morf (b0095) 2002
Josephson (b0245) 2018
Feng, Zhao, Zhang, Sun (b0130) 2017; 42
Xu, Wu, Shen, Zhang, Zhang (b0220) 2017; 194
Horvat (b0135) 2016
Chang, Gao, Gao, Yu, Mathews, Wang (b0160) 2020; 265
Yu, Guo, Gong, Ding, Wang, Yu (b0195) 2021; 214
Salem, Zaini, Paul, Yang (b0270) 2019; 130
Umeki, Häggström, Bach-Oller, Kirtania, Furusjö (b0055) 2017; 31
Josephson, Linn, Lignell (b0205) 2018; 196
Tremel, Becherer, Fendt, Gaderer, Spliethoff (b0040) 2013; 69
Trubetskaya, Jensen, Jensen, Llamas, Umeki, Gardini (b0190) 2016; 171
Blondeau, Jeanmart (b0280) 2012; 41
Bogush, Stegemann, Williams, Wood (b0010) 2018; 211
Gómez-Barea, Leckner (b0085) 2010; 36
Ong (b0295) 2017
Lu, Robert, Peirce, Ripa, Baxter (b0260) 2008; 22
Salem, Paul (b0285) 2018; 109
Davis, Molnar, Novosselov (b0175) 2020; 159
Ferreiro, Segurado, Costa (b0215) 2020; 134
Yuan, Kong, Liu, Chen (b0345) 2019; 195
Wiinikka, Toth, Jansson, Molinder, Broström, Sandström (b0185) 2018; 189
Trubetskaya, Timko, Umeki (b0320) 2020; 257
Richter, Granata, Green, Howard (b0235) 2005; 30
Ngamsidhiphongsa, Ponpesh, Shotipruk, Arpornwichanop (b0275) 2020; 213
Niksa (b0210) 2019; 37
Deng, Liaw, Gao, Wu (b0325) 2020; 265
Jåstad, Bolkesjø, Trømborg, Rørstad (b0015) 2020; 274
Nguyen, Seemann, Thunman (b0070) 2018; 32
Chen, Ku, Li, Karlsson, Sjöblom, Ström (b0115) 2021; 417
Matamba, Tahmasebi, Rish, Yu (b0075) 2021; 213
Morán (10.1016/j.fuel.2021.121240_b0170) 2021; 152
Trubetskaya (10.1016/j.fuel.2021.121240_b0320) 2020; 257
Morf (10.1016/j.fuel.2021.121240_b0095) 2002
Mao (10.1016/j.fuel.2021.121240_b0340) 2017; 121
Trubetskaya (10.1016/j.fuel.2021.121240_b0190) 2016; 171
Ngamsidhiphongsa (10.1016/j.fuel.2021.121240_b0275) 2020; 213
Debiagi (10.1016/j.fuel.2021.121240_b0120) 2016; 93
Yu (10.1016/j.fuel.2021.121240_b0195) 2021; 214
He (10.1016/j.fuel.2021.121240_b0045) 2021; 139
Ranzi (10.1016/j.fuel.2021.121240_b0100) 2008; 22
Jåstad (10.1016/j.fuel.2021.121240_b0015) 2020; 274
Xu (10.1016/j.fuel.2021.121240_b0220) 2017; 194
Josephson (10.1016/j.fuel.2021.121240_b0245) 2018
Trubetskaya (10.1016/j.fuel.2021.121240_b0065) 2019; 141
Matamba (10.1016/j.fuel.2021.121240_b0075) 2021; 213
10.1016/j.fuel.2021.121240_b0300
Frenklach (10.1016/j.fuel.2021.121240_b0350) 2020; 22
Ashok (10.1016/j.fuel.2021.121240_b0020) 2020; 199
Frenklach (10.1016/j.fuel.2021.121240_b0240) 1994
10.1016/j.fuel.2021.121240_b0305
Rigopoulos (10.1016/j.fuel.2021.121240_b0150) 2019; 103
Muto (10.1016/j.fuel.2021.121240_b0225) 2018; 29
Niksa (10.1016/j.fuel.2021.121240_b0210) 2019; 37
Chang (10.1016/j.fuel.2021.121240_b0160) 2020; 265
Lu (10.1016/j.fuel.2021.121240_b0260) 2008; 22
Guizani (10.1016/j.fuel.2021.121240_b0355) 2017; 207
Wu (10.1016/j.fuel.2021.121240_b0060) 2015; 29
Zabrodiec (10.1016/j.fuel.2021.121240_b0035) 2021; 138
Gómez-Barea (10.1016/j.fuel.2021.121240_b0085) 2010; 36
Ahrenfeldt (10.1016/j.fuel.2021.121240_b0125) 2013; 112
Brookes (10.1016/j.fuel.2021.121240_b0145) 1999; 116
Tremel (10.1016/j.fuel.2021.121240_b0040) 2013; 69
Scheftelowitz (10.1016/j.fuel.2021.121240_b0005) 2018; 111
Horvat (10.1016/j.fuel.2021.121240_b0135) 2016
Commodo (10.1016/j.fuel.2021.121240_b0140) 2019; 205
Ku (10.1016/j.fuel.2021.121240_b0310) 2014; 28
Salem (10.1016/j.fuel.2021.121240_b0270) 2019; 130
10.1016/j.fuel.2021.121240_b0315
Chen (10.1016/j.fuel.2021.121240_b0290) 2019; 353
Bogush (10.1016/j.fuel.2021.121240_b0010) 2018; 211
Josephson (10.1016/j.fuel.2021.121240_b0255) 2020; 24
Chen (10.1016/j.fuel.2021.121240_b0115) 2021; 417
Deng (10.1016/j.fuel.2021.121240_b0155) 2020; 000
Chen (10.1016/j.fuel.2021.121240_b0265) 2018; 32
Nguyen (10.1016/j.fuel.2021.121240_b0070) 2018; 32
Gentile (10.1016/j.fuel.2021.121240_b0110) 2017; 321
Josephson (10.1016/j.fuel.2021.121240_b0205) 2018; 196
Feng (10.1016/j.fuel.2021.121240_b0130) 2017; 42
Ong (10.1016/j.fuel.2021.121240_b0295) 2017
Albashabsheh (10.1016/j.fuel.2021.121240_b0025) 2021; 144
Ferreiro (10.1016/j.fuel.2021.121240_b0215) 2020; 134
Ren (10.1016/j.fuel.2021.121240_b0030) 2019; 116
Chang (10.1016/j.fuel.2021.121240_b0180) 2020; 216
Yuan (10.1016/j.fuel.2021.121240_b0345) 2019; 195
Pejpichestakul (10.1016/j.fuel.2021.121240_b0165) 2018; 234
Salem (10.1016/j.fuel.2021.121240_b0285) 2018; 109
Debiagi (10.1016/j.fuel.2021.121240_b0105) 2015; 29
Richter (10.1016/j.fuel.2021.121240_b0235) 2005; 30
Deng (10.1016/j.fuel.2021.121240_b0325) 2020; 265
Umeki (10.1016/j.fuel.2021.121240_b0055) 2017; 31
Vishwanathan (10.1016/j.fuel.2021.121240_b0250) 2010; 182
Takahashi (10.1016/j.fuel.2021.121240_b0230) 2019; 37
Koziński (10.1016/j.fuel.2021.121240_b0050) 1998; 77
Blondeau (10.1016/j.fuel.2021.121240_b0280) 2012; 41
10.1016/j.fuel.2021.121240_b0090
Brown (10.1016/j.fuel.2021.121240_b0200) 1998; 12
Font Palma (10.1016/j.fuel.2021.121240_b0080) 2013; 27
Wiinikka (10.1016/j.fuel.2021.121240_b0185) 2018; 189
Davis (10.1016/j.fuel.2021.121240_b0175) 2020; 159
References_xml – volume: 196
  start-page: 265
  year: 2018
  end-page: 283
  ident: b0205
  article-title: Modeling soot formation from solid complex fuels
  publication-title: Combust Flame
– volume: 199
  start-page: 106252
  year: 2020
  ident: b0020
  article-title: Recent progress in the development of catalysts for steam reforming of biomass tar model reaction
  publication-title: Fuel Process Technol
– volume: 321
  start-page: 458
  year: 2017
  end-page: 473
  ident: b0110
  article-title: A computational framework for the pyrolysis of anisotropic biomass particles
  publication-title: Chem Eng J
– year: 2002
  ident: b0095
  article-title: Secondary reactions of tar during thermochemical biomass conversion
  publication-title: Ph.D. thesis. Swiss Federal Institute of Technology
– volume: 24
  start-page: 15
  year: 2020
  end-page: 40
  ident: b0255
  article-title: Reduction of a detailed soot model for simulations of pyrolysing solid fuels
  publication-title: Combust Theory Modell
– volume: 69
  start-page: 95
  year: 2013
  end-page: 106
  ident: b0040
  article-title: Performance of entrained flow and fluidised bed biomass gasifiers on different scales
  publication-title: Energy Convers Manage
– year: 2017
  ident: b0295
  article-title: Development of Lagrangian soot tracking method for the study of soot morphology in diesel spray combustion
– volume: 116
  start-page: 109426
  year: 2019
  ident: b0030
  article-title: Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models
  publication-title: Renew Sustain Energy Rev
– volume: 211
  start-page: 712
  year: 2018
  end-page: 725
  ident: b0010
  article-title: Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching
  publication-title: Fuel
– volume: 22
  start-page: 5314
  year: 2020
  ident: b0350
  article-title: On the mechanism of soot nucleation
  publication-title: PCCP
– volume: 36
  start-page: 444
  year: 2010
  end-page: 509
  ident: b0085
  article-title: Modeling of biomass gasification in fluidized bed
  publication-title: Prog Energy Combust Sci
– volume: 22
  start-page: 4292
  year: 2008
  end-page: 4300
  ident: b0100
  article-title: Chemical kinetics of biomass pyrolysis
  publication-title: Energy Fuels
– volume: 214
  start-page: 106723
  year: 2021
  ident: b0195
  article-title: A review of the effects of alkali and alkaline earth metal species on biomass gasification
  publication-title: Fuel Process Technol
– volume: 171
  start-page: 468
  year: 2016
  end-page: 482
  ident: b0190
  article-title: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures
  publication-title: Appl Energy
– reference: Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 2017;62:33–86.
– volume: 417
  start-page: 127923
  year: 2021
  ident: b0115
  article-title: High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model
  publication-title: Chem Eng J
– year: 2016
  ident: b0135
  article-title: A study of the uncertainty associated with tar measurement and an investigation of tar evolution and composition during the air-blown fluidised bed gasification of torrefied and nontorrefied grassy biomass
– volume: 29
  start-page: 1119
  year: 2018
  end-page: 1127
  ident: b0225
  article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism
  publication-title: Adv Powder Technol
– volume: 152
  start-page: 105690
  year: 2021
  ident: b0170
  article-title: Impact of the competition between aggregation and surface growth on the morphology of soot particles formed in an ethylene laminar premixed flame
  publication-title: J Aerosol Sci
– volume: 194
  start-page: 297
  year: 2017
  end-page: 305
  ident: b0220
  article-title: Predictions of soot formation and its effect on the flame temperature of a pulverized coal-air turbulent jet
  publication-title: Fuel
– volume: 159
  start-page: 255
  year: 2020
  end-page: 265
  ident: b0175
  article-title: Nanostructure transition of young soot aggregates to mature soot aggregates in diluted diffusion flames
  publication-title: Carbon
– volume: 353
  start-page: 110
  year: 2019
  end-page: 124
  ident: b0290
  article-title: Modeling of combustion for thermally thick biomass particles
  publication-title: Powder Technol
– volume: 130
  start-page: 105377
  year: 2019
  ident: b0270
  article-title: The evolution and formation of tar species in a downdraft gasifier: numerical modelling and experimental validation
  publication-title: Biomass Bioenergy
– volume: 116
  start-page: 486
  year: 1999
  end-page: 503
  ident: b0145
  article-title: Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames
  publication-title: Combust Flame
– year: 2018
  ident: b0245
  article-title: Modeling soot formation derived from solid fuels
– volume: 182
  start-page: 1050
  year: 2010
  end-page: 1082
  ident: b0250
  article-title: Development of a practical soot modeling approach and its application to low-temperature diesel combustion
  publication-title: Combust Sci Tech
– volume: 207
  start-page: 71
  year: 2017
  end-page: 84
  ident: b0355
  article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling
  publication-title: Fuel
– volume: 213
  start-page: 112808
  year: 2020
  ident: b0275
  article-title: Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions
  publication-title: Energy Convers Manage
– volume: 29
  start-page: 6544
  year: 2015
  end-page: 6555
  ident: b0105
  article-title: Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis
  publication-title: Energy Fuels
– volume: 134
  start-page: 110380
  year: 2020
  ident: b0215
  article-title: Modelling soot formation during biomass gasification
  publication-title: Renew Sustain Energy Rev
– volume: 139
  start-page: 110710
  year: 2021
  ident: b0045
  article-title: Soot formation during biomass gasification: a critical review
  publication-title: Renew Sustain Energy Rev
– volume: 41
  start-page: 107
  year: 2012
  end-page: 121
  ident: b0280
  article-title: Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle
  publication-title: Biomass Bioenergy
– volume: 77
  start-page: 225
  year: 1998
  end-page: 237
  ident: b0050
  article-title: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study
  publication-title: Fuel
– volume: 31
  start-page: 5104
  year: 2017
  end-page: 5110
  ident: b0055
  article-title: Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation
  publication-title: Energy Fuels
– volume: 93
  start-page: 60
  year: 2016
  end-page: 71
  ident: b0120
  article-title: Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis
  publication-title: Biomass Bioenergy
– volume: 205
  start-page: 154
  year: 2019
  end-page: 164
  ident: b0140
  article-title: On the early stages of soot formation: molecular structure elucidation by high-resolution atomic force microscopy
  publication-title: Combust Flame
– volume: 29
  start-page: 4168
  year: 2015
  end-page: 4180
  ident: b0060
  article-title: Product distribution during co-pyrolysis of bituminous coal and lignocellulosic biomass major components in a drop-tube furnace
  publication-title: Energy Fuels
– volume: 189
  start-page: 240
  year: 2018
  end-page: 256
  ident: b0185
  article-title: Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity
  publication-title: Combust Flame
– volume: 257
  start-page: 113897
  year: 2020
  ident: b0320
  article-title: Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents
  publication-title: Appl Energy
– volume: 111
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0005
  article-title: Improved power provision from biomass: a retrospective on the impacts of German energy policy
  publication-title: Biomass Bioenergy
– volume: 37
  start-page: 2883
  year: 2019
  end-page: 2891
  ident: b0230
  article-title: Prediction of soot formation characteristics in a pulverized-coal combustion field by large eddy simulations with the TDP model
  publication-title: Proc Combust Inst
– volume: 274
  start-page: 115360
  year: 2020
  ident: b0015
  article-title: The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector
  publication-title: Appl Energy
– volume: 265
  start-page: 116699
  year: 2020
  ident: b0160
  article-title: Experimental analysis of the evolution of soot structure during CO
  publication-title: Fuel
– reference: Hall RJ, Smooke MD, Colket MB. Physical and chemical aspects of combustion. Gordon Breach 1997.
– volume: 112
  start-page: 662
  year: 2013
  end-page: 680
  ident: b0125
  article-title: The influence of partial oxidation mechanisms on tar destruction in two stage biomass gasification
  publication-title: Fuel
– volume: 000
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0155
  article-title: Mechanistic insights into effect of feeding rate on soot formation during rapid pyrolysis of biomass model components in a drop-tube furnace at high temperature
  publication-title: Proc Combust Inst
– volume: 216
  start-page: 111
  year: 2020
  end-page: 125
  ident: b0180
  article-title: The structural evolution and fragmentation of coal-derived soot and carbon black during high-temperature air oxidation
  publication-title: Combust Flame
– volume: 22
  start-page: 2826
  year: 2008
  end-page: 2839
  ident: b0260
  article-title: Comprehensive study of biomass particle combustion
  publication-title: Energy Fuels
– volume: 30
  start-page: 1397
  year: 2005
  end-page: 1405
  ident: b0235
  article-title: Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame
  publication-title: Proc Combust Inst
– volume: 265
  start-page: 116991
  year: 2020
  ident: b0325
  article-title: Differences in soot produced from rapid pyrolysis of xylan, cellulose and lignin under pulverized-fuel conditions
  publication-title: Fuel
– volume: 42
  start-page: 13070
  year: 2017
  end-page: 13084
  ident: b0130
  article-title: Effects of H
  publication-title: Int J Hydrogen Energy
– reference: ANSYS Fluent Theory Guide 2013. 15th release, ANSYS Inc., Canonsburg, Pennsylvani.
– volume: 12
  start-page: 745
  year: 1998
  end-page: 757
  ident: b0200
  article-title: Modeling soot derived from pulverized coal
  publication-title: Energy Fuels
– volume: 109
  start-page: 172
  year: 2018
  end-page: 181
  ident: b0285
  article-title: An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier
  publication-title: Biomass Bioenergy
– start-page: 165
  year: 1994
  end-page: 192
  ident: b0240
  article-title: Detailed mechanism and modeling of soot particle formation
  publication-title: Soot formation in combustion
– volume: 37
  start-page: 2757
  year: 2019
  end-page: 2764
  ident: b0210
  article-title: Predicting ultimate soot yields from any coal
  publication-title: Proc Combust Inst
– volume: 32
  start-page: 3499
  year: 2018
  end-page: 3509
  ident: b0070
  article-title: Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass
  publication-title: Energy Fuels
– volume: 234
  start-page: 199
  year: 2018
  end-page: 206
  ident: b0165
  article-title: Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition
  publication-title: Fuel
– volume: 27
  start-page: 2693
  year: 2013
  end-page: 2702
  ident: b0080
  article-title: Model for biomass gasification including tar formation and evolution
  publication-title: Energy Fuels
– volume: 28
  start-page: 5184
  year: 2014
  end-page: 5196
  ident: b0310
  article-title: Eulerian-Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor
  publication-title: Energy Fuel
– volume: 141
  start-page: 751
  year: 2019
  end-page: 759
  ident: b0065
  article-title: Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature
  publication-title: Renew Energy
– volume: 121
  start-page: 380
  year: 2017
  end-page: 388
  ident: b0340
  article-title: Formation of incipient soot particles from polycyclic aromatic hydrocarbons: a ReaxFF molecular dynamics study
  publication-title: Carbon
– volume: 213
  start-page: 106645
  year: 2021
  ident: b0075
  article-title: Understanding the enhanced production of poly-aromatic hydrocarbons during the pyrolysis of lignocellulosic biomass components under pressurized entrained-flow conditions
  publication-title: Fuel Process Technol
– volume: 144
  start-page: 105888
  year: 2021
  ident: b0025
  article-title: Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review
  publication-title: Biomass Bioenergy
– reference: OpenCFD Ltd. OpenFOAM-The open source CFD toolbox-user guide (Version2.1.1). 2012.
– volume: 138
  start-page: 110493
  year: 2021
  ident: b0035
  article-title: Flow pattern and behavior of 40 kWth pulverized torrefied biomass flames under atmospheric and oxy-fuel conditions
  publication-title: Renew Sustain Energy Rev
– volume: 195
  start-page: 748
  year: 2019
  end-page: 757
  ident: b0345
  article-title: Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics
  publication-title: Chem Eng Sci
– volume: 103
  start-page: 565
  year: 2019
  end-page: 604
  ident: b0150
  article-title: Modelling of soot aerosol dynamics in turbulent flow
  publication-title: Flow Turbul Combust
– volume: 32
  start-page: 9399
  year: 2018
  end-page: 9414
  ident: b0265
  article-title: New pyrolysis model for biomass particles in a thermally thick regime
  publication-title: Energy Fuels
– volume: 37
  start-page: 2757
  issue: 3
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0210
  article-title: Predicting ultimate soot yields from any coal
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2018.06.061
– volume: 195
  start-page: 748
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0345
  article-title: Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2018.10.020
– volume: 194
  start-page: 297
  year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0220
  article-title: Predictions of soot formation and its effect on the flame temperature of a pulverized coal-air turbulent jet
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.01.032
– ident: 10.1016/j.fuel.2021.121240_b0090
  doi: 10.1016/j.pecs.2017.05.004
– volume: 139
  start-page: 110710
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0045
  article-title: Soot formation during biomass gasification: a critical review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.110710
– volume: 112
  start-page: 662
  year: 2013
  ident: 10.1016/j.fuel.2021.121240_b0125
  article-title: The influence of partial oxidation mechanisms on tar destruction in two stage biomass gasification
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.09.048
– volume: 159
  start-page: 255
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0175
  article-title: Nanostructure transition of young soot aggregates to mature soot aggregates in diluted diffusion flames
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.12.043
– volume: 29
  start-page: 1119
  issue: 5
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0225
  article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2018.02.002
– ident: 10.1016/j.fuel.2021.121240_b0305
– volume: 37
  start-page: 2883
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0230
  article-title: Prediction of soot formation characteristics in a pulverized-coal combustion field by large eddy simulations with the TDP model
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2018.08.019
– volume: 234
  start-page: 199
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0165
  article-title: Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.07.022
– volume: 171
  start-page: 468
  year: 2016
  ident: 10.1016/j.fuel.2021.121240_b0190
  article-title: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.127
– volume: 93
  start-page: 60
  year: 2016
  ident: 10.1016/j.fuel.2021.121240_b0120
  article-title: Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2016.06.015
– volume: 189
  start-page: 240
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0185
  article-title: Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2017.10.025
– volume: 205
  start-page: 154
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0140
  article-title: On the early stages of soot formation: molecular structure elucidation by high-resolution atomic force microscopy
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.03.042
– volume: 116
  start-page: 109426
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0030
  article-title: Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109426
– volume: 199
  start-page: 106252
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0020
  article-title: Recent progress in the development of catalysts for steam reforming of biomass tar model reaction
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2019.106252
– volume: 321
  start-page: 458
  year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0110
  article-title: A computational framework for the pyrolysis of anisotropic biomass particles
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2017.03.113
– volume: 141
  start-page: 751
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0065
  article-title: Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.04.033
– ident: 10.1016/j.fuel.2021.121240_b0315
– volume: 32
  start-page: 9399
  issue: 9
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0265
  article-title: New pyrolysis model for biomass particles in a thermally thick regime
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b01261
– volume: 22
  start-page: 5314
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0350
  article-title: On the mechanism of soot nucleation
  publication-title: PCCP
  doi: 10.1039/D0CP00116C
– volume: 121
  start-page: 380
  year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0340
  article-title: Formation of incipient soot particles from polycyclic aromatic hydrocarbons: a ReaxFF molecular dynamics study
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.06.009
– volume: 274
  start-page: 115360
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0015
  article-title: The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115360
– volume: 31
  start-page: 5104
  issue: 5
  year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0055
  article-title: Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b03480
– volume: 213
  start-page: 106645
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0075
  article-title: Understanding the enhanced production of poly-aromatic hydrocarbons during the pyrolysis of lignocellulosic biomass components under pressurized entrained-flow conditions
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2020.106645
– volume: 29
  start-page: 6544
  issue: 10
  year: 2015
  ident: 10.1016/j.fuel.2021.121240_b0105
  article-title: Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01753
– volume: 12
  start-page: 745
  issue: 4
  year: 1998
  ident: 10.1016/j.fuel.2021.121240_b0200
  article-title: Modeling soot derived from pulverized coal
  publication-title: Energy Fuels
  doi: 10.1021/ef9702207
– volume: 24
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0255
  article-title: Reduction of a detailed soot model for simulations of pyrolysing solid fuels
  publication-title: Combust Theory Modell
  doi: 10.1080/13647830.2019.1656823
– volume: 109
  start-page: 172
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0285
  article-title: An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.12.030
– volume: 42
  start-page: 13070
  issue: 18
  year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0130
  article-title: Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.018
– volume: 116
  start-page: 486
  issue: 4
  year: 1999
  ident: 10.1016/j.fuel.2021.121240_b0145
  article-title: Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(98)00056-X
– volume: 265
  start-page: 116699
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0160
  article-title: Experimental analysis of the evolution of soot structure during CO2 gasification
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116699
– volume: 265
  start-page: 116991
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0325
  article-title: Differences in soot produced from rapid pyrolysis of xylan, cellulose and lignin under pulverized-fuel conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116991
– volume: 111
  start-page: 1
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0005
  article-title: Improved power provision from biomass: a retrospective on the impacts of German energy policy
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2018.01.010
– volume: 28
  start-page: 5184
  issue: 8
  year: 2014
  ident: 10.1016/j.fuel.2021.121240_b0310
  article-title: Eulerian-Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor
  publication-title: Energy Fuel
  doi: 10.1021/ef5010557
– volume: 130
  start-page: 105377
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0270
  article-title: The evolution and formation of tar species in a downdraft gasifier: numerical modelling and experimental validation
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.105377
– volume: 69
  start-page: 95
  year: 2013
  ident: 10.1016/j.fuel.2021.121240_b0040
  article-title: Performance of entrained flow and fluidised bed biomass gasifiers on different scales
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.02.001
– volume: 22
  start-page: 2826
  issue: 4
  year: 2008
  ident: 10.1016/j.fuel.2021.121240_b0260
  article-title: Comprehensive study of biomass particle combustion
  publication-title: Energy Fuels
  doi: 10.1021/ef800006z
– volume: 152
  start-page: 105690
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0170
  article-title: Impact of the competition between aggregation and surface growth on the morphology of soot particles formed in an ethylene laminar premixed flame
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2020.105690
– ident: 10.1016/j.fuel.2021.121240_b0300
– year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0295
– year: 2002
  ident: 10.1016/j.fuel.2021.121240_b0095
  article-title: Secondary reactions of tar during thermochemical biomass conversion
  publication-title: Ph.D. thesis. Swiss Federal Institute of Technology
– volume: 103
  start-page: 565
  issue: 3
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0150
  article-title: Modelling of soot aerosol dynamics in turbulent flow
  publication-title: Flow Turbul Combust
  doi: 10.1007/s10494-019-00054-8
– volume: 22
  start-page: 4292
  issue: 6
  year: 2008
  ident: 10.1016/j.fuel.2021.121240_b0100
  article-title: Chemical kinetics of biomass pyrolysis
  publication-title: Energy Fuels
  doi: 10.1021/ef800551t
– volume: 77
  start-page: 225
  issue: 4
  year: 1998
  ident: 10.1016/j.fuel.2021.121240_b0050
  article-title: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study
  publication-title: Fuel
  doi: 10.1016/S0016-2361(97)00201-9
– volume: 30
  start-page: 1397
  year: 2005
  ident: 10.1016/j.fuel.2021.121240_b0235
  article-title: Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2004.08.088
– start-page: 165
  year: 1994
  ident: 10.1016/j.fuel.2021.121240_b0240
  article-title: Detailed mechanism and modeling of soot particle formation
– volume: 29
  start-page: 4168
  issue: 7
  year: 2015
  ident: 10.1016/j.fuel.2021.121240_b0060
  article-title: Product distribution during co-pyrolysis of bituminous coal and lignocellulosic biomass major components in a drop-tube furnace
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b00374
– volume: 000
  start-page: 1
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0155
  article-title: Mechanistic insights into effect of feeding rate on soot formation during rapid pyrolysis of biomass model components in a drop-tube furnace at high temperature
  publication-title: Proc Combust Inst
– volume: 417
  start-page: 127923
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0115
  article-title: High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127923
– year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0245
– volume: 144
  start-page: 105888
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0025
  article-title: Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2020.105888
– year: 2016
  ident: 10.1016/j.fuel.2021.121240_b0135
– volume: 27
  start-page: 2693
  issue: 5
  year: 2013
  ident: 10.1016/j.fuel.2021.121240_b0080
  article-title: Model for biomass gasification including tar formation and evolution
  publication-title: Energy Fuels
  doi: 10.1021/ef4004297
– volume: 134
  start-page: 110380
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0215
  article-title: Modelling soot formation during biomass gasification
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110380
– volume: 353
  start-page: 110
  year: 2019
  ident: 10.1016/j.fuel.2021.121240_b0290
  article-title: Modeling of combustion for thermally thick biomass particles
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2019.05.011
– volume: 216
  start-page: 111
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0180
  article-title: The structural evolution and fragmentation of coal-derived soot and carbon black during high-temperature air oxidation
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.11.045
– volume: 32
  start-page: 3499
  issue: 3
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0070
  article-title: Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b03558
– volume: 213
  start-page: 112808
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0275
  article-title: Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112808
– volume: 257
  start-page: 113897
  year: 2020
  ident: 10.1016/j.fuel.2021.121240_b0320
  article-title: Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113897
– volume: 211
  start-page: 712
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0010
  article-title: Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.09.103
– volume: 138
  start-page: 110493
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0035
  article-title: Flow pattern and behavior of 40 kWth pulverized torrefied biomass flames under atmospheric and oxy-fuel conditions
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110493
– volume: 196
  start-page: 265
  year: 2018
  ident: 10.1016/j.fuel.2021.121240_b0205
  article-title: Modeling soot formation from solid complex fuels
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2018.06.020
– volume: 182
  start-page: 1050
  year: 2010
  ident: 10.1016/j.fuel.2021.121240_b0250
  article-title: Development of a practical soot modeling approach and its application to low-temperature diesel combustion
  publication-title: Combust Sci Tech
  doi: 10.1080/00102200903548124
– volume: 41
  start-page: 107
  year: 2012
  ident: 10.1016/j.fuel.2021.121240_b0280
  article-title: Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.02.016
– volume: 207
  start-page: 71
  year: 2017
  ident: 10.1016/j.fuel.2021.121240_b0355
  article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.06.068
– volume: 36
  start-page: 444
  year: 2010
  ident: 10.1016/j.fuel.2021.121240_b0085
  article-title: Modeling of biomass gasification in fluidized bed
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2009.12.002
– volume: 214
  start-page: 106723
  year: 2021
  ident: 10.1016/j.fuel.2021.121240_b0195
  article-title: A review of the effects of alkali and alkaline earth metal species on biomass gasification
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2021.106723
SSID ssj0007854
Score 2.4294384
Snippet •Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and...
Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121240
SubjectTerms Air pollution
Air temperature
Algorithms
Biomass
Biomass gasification
Cellulose
Computational fluid dynamics
Computational fluid dynamics modeling
Computer applications
Contamination
current
Dust
Eulerian-Lagrangian
Fluid dynamics
Gasification
Hemicellulose
High temperature
High-temperature gasification
High-temperature pyrolysis
Hydrodynamics
Lignin
Mass transfer
Mathematical models
Multiphase flow
Operating temperature
Optimization
Pyrolysis
Pyrolysis and gasification
Reactors
Soot
Soot formation
Soot formations
Soot generations
Tar
Tube furnaces
Two-equation model
Title A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass
URI https://dx.doi.org/10.1016/j.fuel.2021.121240
https://www.proquest.com/docview/2575539194
https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-54696
https://research.chalmers.se/publication/524652
Volume 303
WOSCitedRecordID wos000687474400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID5FYSA_TLxUmeoktuPHsg8BqgrSuqpvluPEW8vWlKSbxt_BP8y5drJsGhU88BJVaeI4d7-cL5e73yG0y7VO04yoIDaCB3EuSJBETAWGJSw1_Vzkawa-yZCPRsl0Kr51Or_qWpirc75YJNfXYvlfVQ37QNm2dPYf1N0MCjvgNygdtqB22P6V4gc98ANtKD6oQP55b__owPW7sX5hVRSrm4LFukjRchYHlqTKMyz3lj_LwnGV2Lj6qapsQlHjXNqSfeUTN-oOn5cwvo042C7bLl--iTDs-wKQsSqa9J-Zw8kNNI_n9pP9R5aeFxd1VL9x949Xpfv3wq2Ui3L2vR2uCImv22tiaE0dzaRtlgkLLAuMW5ScJU54FHDimIRrUx31o5axJfcuAS4aMd8zcON7dgaWQCN0nFC3-bZHX-XRyXAox4fT8Yflj8C2IrOf7H1flgdoO-RUgPHcHnw-nH5pFnieUEfu7Wfta7Fc2uDdy_7J32m_z7Q5atd-zfgpeuJfSPDAAekZ6uSL5-hxi6byBZoN8C1IYYAUXkMKFwZbSOEGUthBCt-FFG4ghQFSuA0pO4iH1Et0cnQ43v8U-BYdgY6TeBXAywCPNTPwtKeGGA43bEBxTGXg5qSMpjRO05yFioLFAgHpfq4U5zQXtG_6xESv0NaiWOSvEVaZ4eA4CKqMjjUME2ZJSPpZSHWYikR3EakFKbXnr7dtVM5lnag4l1b40gpfOuF3Ua85Z-nYWzYeTWv9SO9_Or9SArY2nrdTK1N6Q1BJWAopjQQRcRftOgU3U7CU7gezyUAW5aksZ5LGTLAuGt5zmKf8OpP6bN1PqZJVLlmYhUaRSILQlYyzlEkR60yCWEkG4gYvPH-zeVJv0aObp3MHba3Ky_wdeqivVrOqfO8R_xv3Mtc_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reactor-scale+CFD+model+of+soot+formation+during+high-temperature+pyrolysis+and+gasification+of+biomass&rft.jtitle=Fuel+%28Guildford%29&rft.au=Chen%2C+Tao&rft.au=Li%2C+Tian&rft.au=Sj%C3%B6blom%2C+Jonas&rft.au=Str%C3%B6m%2C+Henrik&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=303&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuel.2021.121240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon