A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass
•Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and lignin, respectively.•The difference of soot yield from the basic biomass components is well captured.•Tar reforming plays an important role in co...
Gespeichert in:
| Veröffentlicht in: | Fuel (Guildford) Jg. 303; S. 121240 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.11.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0016-2361, 1873-7153, 1873-7153 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and lignin, respectively.•The difference of soot yield from the basic biomass components is well captured.•Tar reforming plays an important role in controlling soot generation during steam gasification.•The impact of surface growth through HACA mechanism on soot yield is relatively small.
Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification. |
|---|---|
| AbstractList | Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification. Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification. © 2021 The Author(s) •Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and lignin, respectively.•The difference of soot yield from the basic biomass components is well captured.•Tar reforming plays an important role in controlling soot generation during steam gasification.•The impact of surface growth through HACA mechanism on soot yield is relatively small. Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification. |
| ArticleNumber | 121240 |
| Author | Chen, Tao Li, Tian Ström, Henrik Sjöblom, Jonas |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0001-5700-4967 surname: Chen fullname: Chen, Tao email: tchen@chalmers.se organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden – sequence: 2 givenname: Tian surname: Li fullname: Li, Tian organization: RISE Fire Research, NO-7092 Tiller, Norway – sequence: 3 givenname: Jonas surname: Sjöblom fullname: Sjöblom, Jonas organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden – sequence: 4 givenname: Henrik orcidid: 0000-0002-8581-5174 surname: Ström fullname: Ström, Henrik organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-54696$$DView record from Swedish Publication Index https://research.chalmers.se/publication/524652$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kU2P0zAURSM0SHQG_gArSyxROrYTO43EpuowDNJILPjYPjn2c-sqictzAuq_xyWIBRKz8uae83R9r4urMY5YFK8FXwsu9O1x7Wfs15JLsRZSyJo_K1Zi01RlI1R1Vax4TpWy0uJFcZ3SkXPebFS9KsKWERo7RSqTNT2y3f0dG6LDnkXPUowT85EGM4U4MjdTGPfsEPaHcsLhhGSmmZCdzhT7cwqJmdGxvUnBB7sgWdKFOJiUXhbPvekTvvrz3hRf799_2T2Uj58-fNxtH0tbb-qpVFo3tdXeCdN54Ztcxece2jjZtp1Wnaq7DrU0Co3LpSxHY5pGYau458JXN8XnxZt-4mnu4ERhMHSGaAIQJjRkD2APph-QEiQELZ30RlSQDxqoXaehra2DrBQun6o2ArP17X-td-HbFiLtgQKoWrc6p98s6RPF7zOmCY5xpjHXBqkapapWtHVOySVlKaZE6P9aBYfLrHCEy6xwmRWWWTO0-QeyYfr91xOZ0D-NvltQzN__IyBBsgFHiy4Q2glcDE_hvwDmJsIH |
| CitedBy_id | crossref_primary_10_1007_s13399_022_03488_9 crossref_primary_10_1016_j_jaap_2025_107030 crossref_primary_10_1002_ceat_70078 crossref_primary_10_3390_en16124580 crossref_primary_10_1088_1755_1315_1386_1_012018 crossref_primary_10_1016_j_renene_2022_05_039 crossref_primary_10_1016_j_biombioe_2023_107026 crossref_primary_10_1002_bbb_2545 crossref_primary_10_1016_j_fuel_2021_122234 crossref_primary_10_1016_j_apenergy_2022_119841 crossref_primary_10_1016_j_fuel_2024_131103 |
| Cites_doi | 10.1016/j.proci.2018.06.061 10.1016/j.ces.2018.10.020 10.1016/j.fuel.2017.01.032 10.1016/j.pecs.2017.05.004 10.1016/j.rser.2021.110710 10.1016/j.fuel.2012.09.048 10.1016/j.carbon.2019.12.043 10.1016/j.apt.2018.02.002 10.1016/j.proci.2018.08.019 10.1016/j.fuel.2018.07.022 10.1016/j.apenergy.2016.02.127 10.1016/j.biombioe.2016.06.015 10.1016/j.combustflame.2017.10.025 10.1016/j.combustflame.2019.03.042 10.1016/j.rser.2019.109426 10.1016/j.fuproc.2019.106252 10.1016/j.cej.2017.03.113 10.1016/j.renene.2019.04.033 10.1021/acs.energyfuels.8b01261 10.1039/D0CP00116C 10.1016/j.carbon.2017.06.009 10.1016/j.apenergy.2020.115360 10.1021/acs.energyfuels.6b03480 10.1016/j.fuproc.2020.106645 10.1021/acs.energyfuels.5b01753 10.1021/ef9702207 10.1080/13647830.2019.1656823 10.1016/j.biombioe.2017.12.030 10.1016/j.ijhydene.2017.04.018 10.1016/S0010-2180(98)00056-X 10.1016/j.fuel.2019.116699 10.1016/j.fuel.2019.116991 10.1016/j.biombioe.2018.01.010 10.1021/ef5010557 10.1016/j.biombioe.2019.105377 10.1016/j.enconman.2013.02.001 10.1021/ef800006z 10.1016/j.jaerosci.2020.105690 10.1007/s10494-019-00054-8 10.1021/ef800551t 10.1016/S0016-2361(97)00201-9 10.1016/j.proci.2004.08.088 10.1021/acs.energyfuels.5b00374 10.1016/j.cej.2020.127923 10.1016/j.biombioe.2020.105888 10.1021/ef4004297 10.1016/j.rser.2020.110380 10.1016/j.powtec.2019.05.011 10.1016/j.combustflame.2019.11.045 10.1021/acs.energyfuels.7b03558 10.1016/j.enconman.2020.112808 10.1016/j.apenergy.2019.113897 10.1016/j.fuel.2017.09.103 10.1016/j.rser.2020.110493 10.1016/j.combustflame.2018.06.020 10.1080/00102200903548124 10.1016/j.biombioe.2012.02.016 10.1016/j.fuel.2017.06.068 10.1016/j.pecs.2009.12.002 10.1016/j.fuproc.2021.106723 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Copyright Elsevier BV Nov 1, 2021 |
| Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright Elsevier BV Nov 1, 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 ADTPV AOWAS D8T ZZAVC ABBSD F1S |
| DOI | 10.1016/j.fuel.2021.121240 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text SWEPUB Chalmers tekniska högskola full text SWEPUB Chalmers tekniska högskola |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| ExternalDocumentID | oai_research_chalmers_se_62d2fa13_abfa_4db6_94cd_5e91dbe6381e oai_DiVA_org_ri_54696 10_1016_j_fuel_2021_121240 S0016236121011194 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 ADTPV AOWAS D8T ZZAVC ABBSD F1S |
| ID | FETCH-LOGICAL-c484t-56674c6fd1abf1f7240f8736ad299b65b54bbe62a5ead016c0eaa775e950f01f3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687474400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-2361 1873-7153 |
| IngestDate | Wed Nov 05 04:45:35 EST 2025 Wed Sep 24 03:37:08 EDT 2025 Wed Aug 13 09:13:20 EDT 2025 Tue Nov 18 21:44:01 EST 2025 Sat Nov 29 06:55:28 EST 2025 Fri Feb 23 02:43:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biomass gasification Soot formation Eulerian-Lagrangian Two-equation model |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c484t-56674c6fd1abf1f7240f8736ad299b65b54bbe62a5ead016c0eaa775e950f01f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5700-4967 0000-0002-8581-5174 |
| OpenAccessLink | https://research.chalmers.se/publication/524652 |
| PQID | 2575539194 |
| PQPubID | 2045474 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_62d2fa13_abfa_4db6_94cd_5e91dbe6381e swepub_primary_oai_DiVA_org_ri_54696 proquest_journals_2575539194 crossref_primary_10_1016_j_fuel_2021_121240 crossref_citationtrail_10_1016_j_fuel_2021_121240 elsevier_sciencedirect_doi_10_1016_j_fuel_2021_121240 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Chen, Ku, Lin, Jin (b0290) 2019; 353 Zabrodiec, Massmeyer, Hees, Hatzfeld, Kneer (b0035) 2021; 138 Ashok, Dewangan, Das, Hongmanorom, Wai, Tomishige (b0020) 2020; 199 He, Guo, Umeki, Ding, Wang, Yu (b0045) 2021; 139 Ranzi, Cuoci, Faravelli, Frassoldati, Migliavacca, Pierucci (b0100) 2008; 22 Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 2017;62:33–86. Brookes, Moss (b0145) 1999; 116 Gentile, Debiagi, Cuoci, Frassoldati, Ranzi, Faravelli (b0110) 2017; 321 OpenCFD Ltd. OpenFOAM-The open source CFD toolbox-user guide (Version2.1.1). 2012. Pejpichestakul, Frassoldati, Parente, Faravelli (b0165) 2018; 234 Ku, Li, Løvås (b0310) 2014; 28 Koziński, Saade (b0050) 1998; 77 Frenklach, Wang (b0240) 1994 Vishwanathan, Reitz (b0250) 2010; 182 Debiagi, Pecchi, Gentile, Frassoldati, Cuoci, Faravelli (b0105) 2015; 29 Takahashi, Hashimoto, Watanabe, Kurose, Fujita (b0230) 2019; 37 Debiagi, Gentile, Pelucchi, Frassoldati, Cuoci, Faravelli (b0120) 2016; 93 Chang, Gao, Gao, Yu, Wang (b0180) 2020; 216 Deng, Wu (b0155) 2020; 000 Trubetskaya, Souihi, Umeki (b0065) 2019; 141 Josephson, Hopkins, Lignell, Linn (b0255) 2020; 24 Albashabsheh, Heier Stamm (b0025) 2021; 144 Wu, Wang, Zhao, Chen, Meng (b0060) 2015; 29 Chen, Ku, Lin, Fan (b0265) 2018; 32 Ren, Cao, Zhao, Yang, Wei (b0030) 2019; 116 Ahrenfeldt, Egsgaard, Stelte, Thomsen, Henriksen (b0125) 2013; 112 Brown, Fletcher (b0200) 1998; 12 Scheftelowitz, Becker, Thrän (b0005) 2018; 111 Commodo, Kaiser, De Falco, Minutolo, Schulz, D'Anna (b0140) 2019; 205 Morán, Poux, Yon (b0170) 2021; 152 Hall RJ, Smooke MD, Colket MB. Physical and chemical aspects of combustion. Gordon Breach 1997. Muto, Yuasa, Kurose (b0225) 2018; 29 Rigopoulos (b0150) 2019; 103 Guizani, Valin, Billaud, Peyrot, Salvador (b0355) 2017; 207 Font Palma (b0080) 2013; 27 ANSYS Fluent Theory Guide 2013. 15th release, ANSYS Inc., Canonsburg, Pennsylvani. Mao, van Duin, Luo (b0340) 2017; 121 Frenklach, Mebel (b0350) 2020; 22 Morf (b0095) 2002 Josephson (b0245) 2018 Feng, Zhao, Zhang, Sun (b0130) 2017; 42 Xu, Wu, Shen, Zhang, Zhang (b0220) 2017; 194 Horvat (b0135) 2016 Chang, Gao, Gao, Yu, Mathews, Wang (b0160) 2020; 265 Yu, Guo, Gong, Ding, Wang, Yu (b0195) 2021; 214 Salem, Zaini, Paul, Yang (b0270) 2019; 130 Umeki, Häggström, Bach-Oller, Kirtania, Furusjö (b0055) 2017; 31 Josephson, Linn, Lignell (b0205) 2018; 196 Tremel, Becherer, Fendt, Gaderer, Spliethoff (b0040) 2013; 69 Trubetskaya, Jensen, Jensen, Llamas, Umeki, Gardini (b0190) 2016; 171 Blondeau, Jeanmart (b0280) 2012; 41 Bogush, Stegemann, Williams, Wood (b0010) 2018; 211 Gómez-Barea, Leckner (b0085) 2010; 36 Ong (b0295) 2017 Lu, Robert, Peirce, Ripa, Baxter (b0260) 2008; 22 Salem, Paul (b0285) 2018; 109 Davis, Molnar, Novosselov (b0175) 2020; 159 Ferreiro, Segurado, Costa (b0215) 2020; 134 Yuan, Kong, Liu, Chen (b0345) 2019; 195 Wiinikka, Toth, Jansson, Molinder, Broström, Sandström (b0185) 2018; 189 Trubetskaya, Timko, Umeki (b0320) 2020; 257 Richter, Granata, Green, Howard (b0235) 2005; 30 Ngamsidhiphongsa, Ponpesh, Shotipruk, Arpornwichanop (b0275) 2020; 213 Niksa (b0210) 2019; 37 Deng, Liaw, Gao, Wu (b0325) 2020; 265 Jåstad, Bolkesjø, Trømborg, Rørstad (b0015) 2020; 274 Nguyen, Seemann, Thunman (b0070) 2018; 32 Chen, Ku, Li, Karlsson, Sjöblom, Ström (b0115) 2021; 417 Matamba, Tahmasebi, Rish, Yu (b0075) 2021; 213 Morán (10.1016/j.fuel.2021.121240_b0170) 2021; 152 Trubetskaya (10.1016/j.fuel.2021.121240_b0320) 2020; 257 Morf (10.1016/j.fuel.2021.121240_b0095) 2002 Mao (10.1016/j.fuel.2021.121240_b0340) 2017; 121 Trubetskaya (10.1016/j.fuel.2021.121240_b0190) 2016; 171 Ngamsidhiphongsa (10.1016/j.fuel.2021.121240_b0275) 2020; 213 Debiagi (10.1016/j.fuel.2021.121240_b0120) 2016; 93 Yu (10.1016/j.fuel.2021.121240_b0195) 2021; 214 He (10.1016/j.fuel.2021.121240_b0045) 2021; 139 Ranzi (10.1016/j.fuel.2021.121240_b0100) 2008; 22 Jåstad (10.1016/j.fuel.2021.121240_b0015) 2020; 274 Xu (10.1016/j.fuel.2021.121240_b0220) 2017; 194 Josephson (10.1016/j.fuel.2021.121240_b0245) 2018 Trubetskaya (10.1016/j.fuel.2021.121240_b0065) 2019; 141 Matamba (10.1016/j.fuel.2021.121240_b0075) 2021; 213 10.1016/j.fuel.2021.121240_b0300 Frenklach (10.1016/j.fuel.2021.121240_b0350) 2020; 22 Ashok (10.1016/j.fuel.2021.121240_b0020) 2020; 199 Frenklach (10.1016/j.fuel.2021.121240_b0240) 1994 10.1016/j.fuel.2021.121240_b0305 Rigopoulos (10.1016/j.fuel.2021.121240_b0150) 2019; 103 Muto (10.1016/j.fuel.2021.121240_b0225) 2018; 29 Niksa (10.1016/j.fuel.2021.121240_b0210) 2019; 37 Chang (10.1016/j.fuel.2021.121240_b0160) 2020; 265 Lu (10.1016/j.fuel.2021.121240_b0260) 2008; 22 Guizani (10.1016/j.fuel.2021.121240_b0355) 2017; 207 Wu (10.1016/j.fuel.2021.121240_b0060) 2015; 29 Zabrodiec (10.1016/j.fuel.2021.121240_b0035) 2021; 138 Gómez-Barea (10.1016/j.fuel.2021.121240_b0085) 2010; 36 Ahrenfeldt (10.1016/j.fuel.2021.121240_b0125) 2013; 112 Brookes (10.1016/j.fuel.2021.121240_b0145) 1999; 116 Tremel (10.1016/j.fuel.2021.121240_b0040) 2013; 69 Scheftelowitz (10.1016/j.fuel.2021.121240_b0005) 2018; 111 Horvat (10.1016/j.fuel.2021.121240_b0135) 2016 Commodo (10.1016/j.fuel.2021.121240_b0140) 2019; 205 Ku (10.1016/j.fuel.2021.121240_b0310) 2014; 28 Salem (10.1016/j.fuel.2021.121240_b0270) 2019; 130 10.1016/j.fuel.2021.121240_b0315 Chen (10.1016/j.fuel.2021.121240_b0290) 2019; 353 Bogush (10.1016/j.fuel.2021.121240_b0010) 2018; 211 Josephson (10.1016/j.fuel.2021.121240_b0255) 2020; 24 Chen (10.1016/j.fuel.2021.121240_b0115) 2021; 417 Deng (10.1016/j.fuel.2021.121240_b0155) 2020; 000 Chen (10.1016/j.fuel.2021.121240_b0265) 2018; 32 Nguyen (10.1016/j.fuel.2021.121240_b0070) 2018; 32 Gentile (10.1016/j.fuel.2021.121240_b0110) 2017; 321 Josephson (10.1016/j.fuel.2021.121240_b0205) 2018; 196 Feng (10.1016/j.fuel.2021.121240_b0130) 2017; 42 Ong (10.1016/j.fuel.2021.121240_b0295) 2017 Albashabsheh (10.1016/j.fuel.2021.121240_b0025) 2021; 144 Ferreiro (10.1016/j.fuel.2021.121240_b0215) 2020; 134 Ren (10.1016/j.fuel.2021.121240_b0030) 2019; 116 Chang (10.1016/j.fuel.2021.121240_b0180) 2020; 216 Yuan (10.1016/j.fuel.2021.121240_b0345) 2019; 195 Pejpichestakul (10.1016/j.fuel.2021.121240_b0165) 2018; 234 Salem (10.1016/j.fuel.2021.121240_b0285) 2018; 109 Debiagi (10.1016/j.fuel.2021.121240_b0105) 2015; 29 Richter (10.1016/j.fuel.2021.121240_b0235) 2005; 30 Deng (10.1016/j.fuel.2021.121240_b0325) 2020; 265 Umeki (10.1016/j.fuel.2021.121240_b0055) 2017; 31 Vishwanathan (10.1016/j.fuel.2021.121240_b0250) 2010; 182 Takahashi (10.1016/j.fuel.2021.121240_b0230) 2019; 37 Koziński (10.1016/j.fuel.2021.121240_b0050) 1998; 77 Blondeau (10.1016/j.fuel.2021.121240_b0280) 2012; 41 10.1016/j.fuel.2021.121240_b0090 Brown (10.1016/j.fuel.2021.121240_b0200) 1998; 12 Font Palma (10.1016/j.fuel.2021.121240_b0080) 2013; 27 Wiinikka (10.1016/j.fuel.2021.121240_b0185) 2018; 189 Davis (10.1016/j.fuel.2021.121240_b0175) 2020; 159 |
| References_xml | – volume: 196 start-page: 265 year: 2018 end-page: 283 ident: b0205 article-title: Modeling soot formation from solid complex fuels publication-title: Combust Flame – volume: 199 start-page: 106252 year: 2020 ident: b0020 article-title: Recent progress in the development of catalysts for steam reforming of biomass tar model reaction publication-title: Fuel Process Technol – volume: 321 start-page: 458 year: 2017 end-page: 473 ident: b0110 article-title: A computational framework for the pyrolysis of anisotropic biomass particles publication-title: Chem Eng J – year: 2002 ident: b0095 article-title: Secondary reactions of tar during thermochemical biomass conversion publication-title: Ph.D. thesis. Swiss Federal Institute of Technology – volume: 24 start-page: 15 year: 2020 end-page: 40 ident: b0255 article-title: Reduction of a detailed soot model for simulations of pyrolysing solid fuels publication-title: Combust Theory Modell – volume: 69 start-page: 95 year: 2013 end-page: 106 ident: b0040 article-title: Performance of entrained flow and fluidised bed biomass gasifiers on different scales publication-title: Energy Convers Manage – year: 2017 ident: b0295 article-title: Development of Lagrangian soot tracking method for the study of soot morphology in diesel spray combustion – volume: 116 start-page: 109426 year: 2019 ident: b0030 article-title: Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models publication-title: Renew Sustain Energy Rev – volume: 211 start-page: 712 year: 2018 end-page: 725 ident: b0010 article-title: Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching publication-title: Fuel – volume: 22 start-page: 5314 year: 2020 ident: b0350 article-title: On the mechanism of soot nucleation publication-title: PCCP – volume: 36 start-page: 444 year: 2010 end-page: 509 ident: b0085 article-title: Modeling of biomass gasification in fluidized bed publication-title: Prog Energy Combust Sci – volume: 22 start-page: 4292 year: 2008 end-page: 4300 ident: b0100 article-title: Chemical kinetics of biomass pyrolysis publication-title: Energy Fuels – volume: 214 start-page: 106723 year: 2021 ident: b0195 article-title: A review of the effects of alkali and alkaline earth metal species on biomass gasification publication-title: Fuel Process Technol – volume: 171 start-page: 468 year: 2016 end-page: 482 ident: b0190 article-title: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures publication-title: Appl Energy – reference: Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 2017;62:33–86. – volume: 417 start-page: 127923 year: 2021 ident: b0115 article-title: High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model publication-title: Chem Eng J – year: 2016 ident: b0135 article-title: A study of the uncertainty associated with tar measurement and an investigation of tar evolution and composition during the air-blown fluidised bed gasification of torrefied and nontorrefied grassy biomass – volume: 29 start-page: 1119 year: 2018 end-page: 1127 ident: b0225 article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism publication-title: Adv Powder Technol – volume: 152 start-page: 105690 year: 2021 ident: b0170 article-title: Impact of the competition between aggregation and surface growth on the morphology of soot particles formed in an ethylene laminar premixed flame publication-title: J Aerosol Sci – volume: 194 start-page: 297 year: 2017 end-page: 305 ident: b0220 article-title: Predictions of soot formation and its effect on the flame temperature of a pulverized coal-air turbulent jet publication-title: Fuel – volume: 159 start-page: 255 year: 2020 end-page: 265 ident: b0175 article-title: Nanostructure transition of young soot aggregates to mature soot aggregates in diluted diffusion flames publication-title: Carbon – volume: 353 start-page: 110 year: 2019 end-page: 124 ident: b0290 article-title: Modeling of combustion for thermally thick biomass particles publication-title: Powder Technol – volume: 130 start-page: 105377 year: 2019 ident: b0270 article-title: The evolution and formation of tar species in a downdraft gasifier: numerical modelling and experimental validation publication-title: Biomass Bioenergy – volume: 116 start-page: 486 year: 1999 end-page: 503 ident: b0145 article-title: Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames publication-title: Combust Flame – year: 2018 ident: b0245 article-title: Modeling soot formation derived from solid fuels – volume: 182 start-page: 1050 year: 2010 end-page: 1082 ident: b0250 article-title: Development of a practical soot modeling approach and its application to low-temperature diesel combustion publication-title: Combust Sci Tech – volume: 207 start-page: 71 year: 2017 end-page: 84 ident: b0355 article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling publication-title: Fuel – volume: 213 start-page: 112808 year: 2020 ident: b0275 article-title: Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions publication-title: Energy Convers Manage – volume: 29 start-page: 6544 year: 2015 end-page: 6555 ident: b0105 article-title: Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis publication-title: Energy Fuels – volume: 134 start-page: 110380 year: 2020 ident: b0215 article-title: Modelling soot formation during biomass gasification publication-title: Renew Sustain Energy Rev – volume: 139 start-page: 110710 year: 2021 ident: b0045 article-title: Soot formation during biomass gasification: a critical review publication-title: Renew Sustain Energy Rev – volume: 41 start-page: 107 year: 2012 end-page: 121 ident: b0280 article-title: Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle publication-title: Biomass Bioenergy – volume: 77 start-page: 225 year: 1998 end-page: 237 ident: b0050 article-title: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study publication-title: Fuel – volume: 31 start-page: 5104 year: 2017 end-page: 5110 ident: b0055 article-title: Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation publication-title: Energy Fuels – volume: 93 start-page: 60 year: 2016 end-page: 71 ident: b0120 article-title: Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis publication-title: Biomass Bioenergy – volume: 205 start-page: 154 year: 2019 end-page: 164 ident: b0140 article-title: On the early stages of soot formation: molecular structure elucidation by high-resolution atomic force microscopy publication-title: Combust Flame – volume: 29 start-page: 4168 year: 2015 end-page: 4180 ident: b0060 article-title: Product distribution during co-pyrolysis of bituminous coal and lignocellulosic biomass major components in a drop-tube furnace publication-title: Energy Fuels – volume: 189 start-page: 240 year: 2018 end-page: 256 ident: b0185 article-title: Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity publication-title: Combust Flame – volume: 257 start-page: 113897 year: 2020 ident: b0320 article-title: Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents publication-title: Appl Energy – volume: 111 start-page: 1 year: 2018 end-page: 12 ident: b0005 article-title: Improved power provision from biomass: a retrospective on the impacts of German energy policy publication-title: Biomass Bioenergy – volume: 37 start-page: 2883 year: 2019 end-page: 2891 ident: b0230 article-title: Prediction of soot formation characteristics in a pulverized-coal combustion field by large eddy simulations with the TDP model publication-title: Proc Combust Inst – volume: 274 start-page: 115360 year: 2020 ident: b0015 article-title: The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector publication-title: Appl Energy – volume: 265 start-page: 116699 year: 2020 ident: b0160 article-title: Experimental analysis of the evolution of soot structure during CO publication-title: Fuel – reference: Hall RJ, Smooke MD, Colket MB. Physical and chemical aspects of combustion. Gordon Breach 1997. – volume: 112 start-page: 662 year: 2013 end-page: 680 ident: b0125 article-title: The influence of partial oxidation mechanisms on tar destruction in two stage biomass gasification publication-title: Fuel – volume: 000 start-page: 1 year: 2020 end-page: 9 ident: b0155 article-title: Mechanistic insights into effect of feeding rate on soot formation during rapid pyrolysis of biomass model components in a drop-tube furnace at high temperature publication-title: Proc Combust Inst – volume: 216 start-page: 111 year: 2020 end-page: 125 ident: b0180 article-title: The structural evolution and fragmentation of coal-derived soot and carbon black during high-temperature air oxidation publication-title: Combust Flame – volume: 22 start-page: 2826 year: 2008 end-page: 2839 ident: b0260 article-title: Comprehensive study of biomass particle combustion publication-title: Energy Fuels – volume: 30 start-page: 1397 year: 2005 end-page: 1405 ident: b0235 article-title: Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame publication-title: Proc Combust Inst – volume: 265 start-page: 116991 year: 2020 ident: b0325 article-title: Differences in soot produced from rapid pyrolysis of xylan, cellulose and lignin under pulverized-fuel conditions publication-title: Fuel – volume: 42 start-page: 13070 year: 2017 end-page: 13084 ident: b0130 article-title: Effects of H publication-title: Int J Hydrogen Energy – reference: ANSYS Fluent Theory Guide 2013. 15th release, ANSYS Inc., Canonsburg, Pennsylvani. – volume: 12 start-page: 745 year: 1998 end-page: 757 ident: b0200 article-title: Modeling soot derived from pulverized coal publication-title: Energy Fuels – volume: 109 start-page: 172 year: 2018 end-page: 181 ident: b0285 article-title: An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier publication-title: Biomass Bioenergy – start-page: 165 year: 1994 end-page: 192 ident: b0240 article-title: Detailed mechanism and modeling of soot particle formation publication-title: Soot formation in combustion – volume: 37 start-page: 2757 year: 2019 end-page: 2764 ident: b0210 article-title: Predicting ultimate soot yields from any coal publication-title: Proc Combust Inst – volume: 32 start-page: 3499 year: 2018 end-page: 3509 ident: b0070 article-title: Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass publication-title: Energy Fuels – volume: 234 start-page: 199 year: 2018 end-page: 206 ident: b0165 article-title: Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition publication-title: Fuel – volume: 27 start-page: 2693 year: 2013 end-page: 2702 ident: b0080 article-title: Model for biomass gasification including tar formation and evolution publication-title: Energy Fuels – volume: 28 start-page: 5184 year: 2014 end-page: 5196 ident: b0310 article-title: Eulerian-Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor publication-title: Energy Fuel – volume: 141 start-page: 751 year: 2019 end-page: 759 ident: b0065 article-title: Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature publication-title: Renew Energy – volume: 121 start-page: 380 year: 2017 end-page: 388 ident: b0340 article-title: Formation of incipient soot particles from polycyclic aromatic hydrocarbons: a ReaxFF molecular dynamics study publication-title: Carbon – volume: 213 start-page: 106645 year: 2021 ident: b0075 article-title: Understanding the enhanced production of poly-aromatic hydrocarbons during the pyrolysis of lignocellulosic biomass components under pressurized entrained-flow conditions publication-title: Fuel Process Technol – volume: 144 start-page: 105888 year: 2021 ident: b0025 article-title: Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review publication-title: Biomass Bioenergy – reference: OpenCFD Ltd. OpenFOAM-The open source CFD toolbox-user guide (Version2.1.1). 2012. – volume: 138 start-page: 110493 year: 2021 ident: b0035 article-title: Flow pattern and behavior of 40 kWth pulverized torrefied biomass flames under atmospheric and oxy-fuel conditions publication-title: Renew Sustain Energy Rev – volume: 195 start-page: 748 year: 2019 end-page: 757 ident: b0345 article-title: Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics publication-title: Chem Eng Sci – volume: 103 start-page: 565 year: 2019 end-page: 604 ident: b0150 article-title: Modelling of soot aerosol dynamics in turbulent flow publication-title: Flow Turbul Combust – volume: 32 start-page: 9399 year: 2018 end-page: 9414 ident: b0265 article-title: New pyrolysis model for biomass particles in a thermally thick regime publication-title: Energy Fuels – volume: 37 start-page: 2757 issue: 3 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0210 article-title: Predicting ultimate soot yields from any coal publication-title: Proc Combust Inst doi: 10.1016/j.proci.2018.06.061 – volume: 195 start-page: 748 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0345 article-title: Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics publication-title: Chem Eng Sci doi: 10.1016/j.ces.2018.10.020 – volume: 194 start-page: 297 year: 2017 ident: 10.1016/j.fuel.2021.121240_b0220 article-title: Predictions of soot formation and its effect on the flame temperature of a pulverized coal-air turbulent jet publication-title: Fuel doi: 10.1016/j.fuel.2017.01.032 – ident: 10.1016/j.fuel.2021.121240_b0090 doi: 10.1016/j.pecs.2017.05.004 – volume: 139 start-page: 110710 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0045 article-title: Soot formation during biomass gasification: a critical review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110710 – volume: 112 start-page: 662 year: 2013 ident: 10.1016/j.fuel.2021.121240_b0125 article-title: The influence of partial oxidation mechanisms on tar destruction in two stage biomass gasification publication-title: Fuel doi: 10.1016/j.fuel.2012.09.048 – volume: 159 start-page: 255 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0175 article-title: Nanostructure transition of young soot aggregates to mature soot aggregates in diluted diffusion flames publication-title: Carbon doi: 10.1016/j.carbon.2019.12.043 – volume: 29 start-page: 1119 issue: 5 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0225 article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism publication-title: Adv Powder Technol doi: 10.1016/j.apt.2018.02.002 – ident: 10.1016/j.fuel.2021.121240_b0305 – volume: 37 start-page: 2883 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0230 article-title: Prediction of soot formation characteristics in a pulverized-coal combustion field by large eddy simulations with the TDP model publication-title: Proc Combust Inst doi: 10.1016/j.proci.2018.08.019 – volume: 234 start-page: 199 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0165 article-title: Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition publication-title: Fuel doi: 10.1016/j.fuel.2018.07.022 – volume: 171 start-page: 468 year: 2016 ident: 10.1016/j.fuel.2021.121240_b0190 article-title: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.127 – volume: 93 start-page: 60 year: 2016 ident: 10.1016/j.fuel.2021.121240_b0120 article-title: Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.06.015 – volume: 189 start-page: 240 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0185 article-title: Particle formation during pressurized entrained flow gasification of wood powder: effects of process conditions on chemical composition, nanostructure, and reactivity publication-title: Combust Flame doi: 10.1016/j.combustflame.2017.10.025 – volume: 205 start-page: 154 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0140 article-title: On the early stages of soot formation: molecular structure elucidation by high-resolution atomic force microscopy publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.03.042 – volume: 116 start-page: 109426 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0030 article-title: Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109426 – volume: 199 start-page: 106252 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0020 article-title: Recent progress in the development of catalysts for steam reforming of biomass tar model reaction publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2019.106252 – volume: 321 start-page: 458 year: 2017 ident: 10.1016/j.fuel.2021.121240_b0110 article-title: A computational framework for the pyrolysis of anisotropic biomass particles publication-title: Chem Eng J doi: 10.1016/j.cej.2017.03.113 – volume: 141 start-page: 751 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0065 article-title: Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature publication-title: Renew Energy doi: 10.1016/j.renene.2019.04.033 – ident: 10.1016/j.fuel.2021.121240_b0315 – volume: 32 start-page: 9399 issue: 9 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0265 article-title: New pyrolysis model for biomass particles in a thermally thick regime publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b01261 – volume: 22 start-page: 5314 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0350 article-title: On the mechanism of soot nucleation publication-title: PCCP doi: 10.1039/D0CP00116C – volume: 121 start-page: 380 year: 2017 ident: 10.1016/j.fuel.2021.121240_b0340 article-title: Formation of incipient soot particles from polycyclic aromatic hydrocarbons: a ReaxFF molecular dynamics study publication-title: Carbon doi: 10.1016/j.carbon.2017.06.009 – volume: 274 start-page: 115360 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0015 article-title: The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115360 – volume: 31 start-page: 5104 issue: 5 year: 2017 ident: 10.1016/j.fuel.2021.121240_b0055 article-title: Reduction of tar and soot formation from entrained-flow gasification of woody biomass by alkali impregnation publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b03480 – volume: 213 start-page: 106645 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0075 article-title: Understanding the enhanced production of poly-aromatic hydrocarbons during the pyrolysis of lignocellulosic biomass components under pressurized entrained-flow conditions publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2020.106645 – volume: 29 start-page: 6544 issue: 10 year: 2015 ident: 10.1016/j.fuel.2021.121240_b0105 article-title: Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01753 – volume: 12 start-page: 745 issue: 4 year: 1998 ident: 10.1016/j.fuel.2021.121240_b0200 article-title: Modeling soot derived from pulverized coal publication-title: Energy Fuels doi: 10.1021/ef9702207 – volume: 24 start-page: 15 issue: 1 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0255 article-title: Reduction of a detailed soot model for simulations of pyrolysing solid fuels publication-title: Combust Theory Modell doi: 10.1080/13647830.2019.1656823 – volume: 109 start-page: 172 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0285 article-title: An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.12.030 – volume: 42 start-page: 13070 issue: 18 year: 2017 ident: 10.1016/j.fuel.2021.121240_b0130 article-title: Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.018 – volume: 116 start-page: 486 issue: 4 year: 1999 ident: 10.1016/j.fuel.2021.121240_b0145 article-title: Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames publication-title: Combust Flame doi: 10.1016/S0010-2180(98)00056-X – volume: 265 start-page: 116699 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0160 article-title: Experimental analysis of the evolution of soot structure during CO2 gasification publication-title: Fuel doi: 10.1016/j.fuel.2019.116699 – volume: 265 start-page: 116991 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0325 article-title: Differences in soot produced from rapid pyrolysis of xylan, cellulose and lignin under pulverized-fuel conditions publication-title: Fuel doi: 10.1016/j.fuel.2019.116991 – volume: 111 start-page: 1 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0005 article-title: Improved power provision from biomass: a retrospective on the impacts of German energy policy publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.01.010 – volume: 28 start-page: 5184 issue: 8 year: 2014 ident: 10.1016/j.fuel.2021.121240_b0310 article-title: Eulerian-Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor publication-title: Energy Fuel doi: 10.1021/ef5010557 – volume: 130 start-page: 105377 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0270 article-title: The evolution and formation of tar species in a downdraft gasifier: numerical modelling and experimental validation publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.105377 – volume: 69 start-page: 95 year: 2013 ident: 10.1016/j.fuel.2021.121240_b0040 article-title: Performance of entrained flow and fluidised bed biomass gasifiers on different scales publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.02.001 – volume: 22 start-page: 2826 issue: 4 year: 2008 ident: 10.1016/j.fuel.2021.121240_b0260 article-title: Comprehensive study of biomass particle combustion publication-title: Energy Fuels doi: 10.1021/ef800006z – volume: 152 start-page: 105690 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0170 article-title: Impact of the competition between aggregation and surface growth on the morphology of soot particles formed in an ethylene laminar premixed flame publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2020.105690 – ident: 10.1016/j.fuel.2021.121240_b0300 – year: 2017 ident: 10.1016/j.fuel.2021.121240_b0295 – year: 2002 ident: 10.1016/j.fuel.2021.121240_b0095 article-title: Secondary reactions of tar during thermochemical biomass conversion publication-title: Ph.D. thesis. Swiss Federal Institute of Technology – volume: 103 start-page: 565 issue: 3 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0150 article-title: Modelling of soot aerosol dynamics in turbulent flow publication-title: Flow Turbul Combust doi: 10.1007/s10494-019-00054-8 – volume: 22 start-page: 4292 issue: 6 year: 2008 ident: 10.1016/j.fuel.2021.121240_b0100 article-title: Chemical kinetics of biomass pyrolysis publication-title: Energy Fuels doi: 10.1021/ef800551t – volume: 77 start-page: 225 issue: 4 year: 1998 ident: 10.1016/j.fuel.2021.121240_b0050 article-title: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study publication-title: Fuel doi: 10.1016/S0016-2361(97)00201-9 – volume: 30 start-page: 1397 year: 2005 ident: 10.1016/j.fuel.2021.121240_b0235 article-title: Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame publication-title: Proc Combust Inst doi: 10.1016/j.proci.2004.08.088 – start-page: 165 year: 1994 ident: 10.1016/j.fuel.2021.121240_b0240 article-title: Detailed mechanism and modeling of soot particle formation – volume: 29 start-page: 4168 issue: 7 year: 2015 ident: 10.1016/j.fuel.2021.121240_b0060 article-title: Product distribution during co-pyrolysis of bituminous coal and lignocellulosic biomass major components in a drop-tube furnace publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b00374 – volume: 000 start-page: 1 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0155 article-title: Mechanistic insights into effect of feeding rate on soot formation during rapid pyrolysis of biomass model components in a drop-tube furnace at high temperature publication-title: Proc Combust Inst – volume: 417 start-page: 127923 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0115 article-title: High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127923 – year: 2018 ident: 10.1016/j.fuel.2021.121240_b0245 – volume: 144 start-page: 105888 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0025 article-title: Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2020.105888 – year: 2016 ident: 10.1016/j.fuel.2021.121240_b0135 – volume: 27 start-page: 2693 issue: 5 year: 2013 ident: 10.1016/j.fuel.2021.121240_b0080 article-title: Model for biomass gasification including tar formation and evolution publication-title: Energy Fuels doi: 10.1021/ef4004297 – volume: 134 start-page: 110380 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0215 article-title: Modelling soot formation during biomass gasification publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110380 – volume: 353 start-page: 110 year: 2019 ident: 10.1016/j.fuel.2021.121240_b0290 article-title: Modeling of combustion for thermally thick biomass particles publication-title: Powder Technol doi: 10.1016/j.powtec.2019.05.011 – volume: 216 start-page: 111 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0180 article-title: The structural evolution and fragmentation of coal-derived soot and carbon black during high-temperature air oxidation publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.11.045 – volume: 32 start-page: 3499 issue: 3 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0070 article-title: Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b03558 – volume: 213 start-page: 112808 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0275 article-title: Analysis of the Imbert downdraft gasifier using a species-transport CFD model including tar-cracking reactions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112808 – volume: 257 start-page: 113897 year: 2020 ident: 10.1016/j.fuel.2021.121240_b0320 article-title: Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113897 – volume: 211 start-page: 712 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0010 article-title: Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching publication-title: Fuel doi: 10.1016/j.fuel.2017.09.103 – volume: 138 start-page: 110493 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0035 article-title: Flow pattern and behavior of 40 kWth pulverized torrefied biomass flames under atmospheric and oxy-fuel conditions publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110493 – volume: 196 start-page: 265 year: 2018 ident: 10.1016/j.fuel.2021.121240_b0205 article-title: Modeling soot formation from solid complex fuels publication-title: Combust Flame doi: 10.1016/j.combustflame.2018.06.020 – volume: 182 start-page: 1050 year: 2010 ident: 10.1016/j.fuel.2021.121240_b0250 article-title: Development of a practical soot modeling approach and its application to low-temperature diesel combustion publication-title: Combust Sci Tech doi: 10.1080/00102200903548124 – volume: 41 start-page: 107 year: 2012 ident: 10.1016/j.fuel.2021.121240_b0280 article-title: Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.02.016 – volume: 207 start-page: 71 year: 2017 ident: 10.1016/j.fuel.2021.121240_b0355 article-title: Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling publication-title: Fuel doi: 10.1016/j.fuel.2017.06.068 – volume: 36 start-page: 444 year: 2010 ident: 10.1016/j.fuel.2021.121240_b0085 article-title: Modeling of biomass gasification in fluidized bed publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2009.12.002 – volume: 214 start-page: 106723 year: 2021 ident: 10.1016/j.fuel.2021.121240_b0195 article-title: A review of the effects of alkali and alkaline earth metal species on biomass gasification publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2021.106723 |
| SSID | ssj0007854 |
| Score | 2.4294384 |
| Snippet | •Reactor-scale soot modeling for biomass high-temperature gasification is established.•Simplified tar model is developed for cellulose, hemicellulose and... Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification... |
| SourceID | swepub proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121240 |
| SubjectTerms | Air pollution Air temperature Algorithms Biomass Biomass gasification Cellulose Computational fluid dynamics Computational fluid dynamics modeling Computer applications Contamination current Dust Eulerian-Lagrangian Fluid dynamics Gasification Hemicellulose High temperature High-temperature gasification High-temperature pyrolysis Hydrodynamics Lignin Mass transfer Mathematical models Multiphase flow Operating temperature Optimization Pyrolysis Pyrolysis and gasification Reactors Soot Soot formation Soot formations Soot generations Tar Tube furnaces Two-equation model |
| Title | A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass |
| URI | https://dx.doi.org/10.1016/j.fuel.2021.121240 https://www.proquest.com/docview/2575539194 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-54696 https://research.chalmers.se/publication/524652 |
| Volume | 303 |
| WOSCitedRecordID | wos000687474400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID5FYSA_TLxUmeoktuPHsg8BqgrSuqpvluPEW8vWlKSbxt_BP8y5drJsGhU88BJVaeI4d7-cL5e73yG0y7VO04yoIDaCB3EuSJBETAWGJSw1_Vzkawa-yZCPRsl0Kr51Or_qWpirc75YJNfXYvlfVQ37QNm2dPYf1N0MCjvgNygdtqB22P6V4gc98ANtKD6oQP55b__owPW7sX5hVRSrm4LFukjRchYHlqTKMyz3lj_LwnGV2Lj6qapsQlHjXNqSfeUTN-oOn5cwvo042C7bLl--iTDs-wKQsSqa9J-Zw8kNNI_n9pP9R5aeFxd1VL9x949Xpfv3wq2Ui3L2vR2uCImv22tiaE0dzaRtlgkLLAuMW5ScJU54FHDimIRrUx31o5axJfcuAS4aMd8zcON7dgaWQCN0nFC3-bZHX-XRyXAox4fT8Yflj8C2IrOf7H1flgdoO-RUgPHcHnw-nH5pFnieUEfu7Wfta7Fc2uDdy_7J32m_z7Q5atd-zfgpeuJfSPDAAekZ6uSL5-hxi6byBZoN8C1IYYAUXkMKFwZbSOEGUthBCt-FFG4ghQFSuA0pO4iH1Et0cnQ43v8U-BYdgY6TeBXAywCPNTPwtKeGGA43bEBxTGXg5qSMpjRO05yFioLFAgHpfq4U5zQXtG_6xESv0NaiWOSvEVaZ4eA4CKqMjjUME2ZJSPpZSHWYikR3EakFKbXnr7dtVM5lnag4l1b40gpfOuF3Ua85Z-nYWzYeTWv9SO9_Or9SArY2nrdTK1N6Q1BJWAopjQQRcRftOgU3U7CU7gezyUAW5aksZ5LGTLAuGt5zmKf8OpP6bN1PqZJVLlmYhUaRSILQlYyzlEkR60yCWEkG4gYvPH-zeVJv0aObp3MHba3Ky_wdeqivVrOqfO8R_xv3Mtc_ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reactor-scale+CFD+model+of+soot+formation+during+high-temperature+pyrolysis+and+gasification+of+biomass&rft.jtitle=Fuel+%28Guildford%29&rft.au=Chen%2C+Tao&rft.au=Li%2C+Tian&rft.au=Sj%C3%B6blom%2C+Jonas&rft.au=Str%C3%B6m%2C+Henrik&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=303&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuel.2021.121240&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |