An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity

Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and batter...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 21; číslo 12; s. 4153
Hlavní autori: Signoretti, Gabriel, Silva, Marianne, Andrade, Pedro, Silva, Ivanovitch, Sisinni, Emiliano, Ferrari, Paolo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 17.06.2021
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases.
AbstractList Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases.
Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases.Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases.
Author Sisinni, Emiliano
Ferrari, Paolo
Silva, Marianne
Andrade, Pedro
Signoretti, Gabriel
Silva, Ivanovitch
AuthorAffiliation 1 UFRN-PPgEEC, Postgraduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; gabrielsig@ufrn.edu.br (G.S.); pedro.meira.055@ufrn.edu.br (P.A.)
2 UNIBS-DIE, Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; emiliano.sisinni@unibs.it (E.S.); paolo.ferrari@unibs.it (P.F.)
AuthorAffiliation_xml – name: 2 UNIBS-DIE, Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; emiliano.sisinni@unibs.it (E.S.); paolo.ferrari@unibs.it (P.F.)
– name: 1 UFRN-PPgEEC, Postgraduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; gabrielsig@ufrn.edu.br (G.S.); pedro.meira.055@ufrn.edu.br (P.A.)
Author_xml – sequence: 1
  givenname: Gabriel
  orcidid: 0000-0002-8839-0255
  surname: Signoretti
  fullname: Signoretti, Gabriel
– sequence: 2
  givenname: Marianne
  orcidid: 0000-0002-8277-7571
  surname: Silva
  fullname: Silva, Marianne
– sequence: 3
  givenname: Pedro
  orcidid: 0000-0002-7729-9085
  surname: Andrade
  fullname: Andrade, Pedro
– sequence: 4
  givenname: Ivanovitch
  orcidid: 0000-0002-0116-6489
  surname: Silva
  fullname: Silva, Ivanovitch
– sequence: 5
  givenname: Emiliano
  orcidid: 0000-0001-5012-443X
  surname: Sisinni
  fullname: Sisinni, Emiliano
– sequence: 6
  givenname: Paolo
  orcidid: 0000-0002-6349-4410
  surname: Ferrari
  fullname: Ferrari, Paolo
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43057$$DView record from Swedish Publication Index (Mittuniversitetet)
BookMark eNptkk2P0zAQQC20iP2AA__AEhc4hLVn7Ca9IJVugUpFXCrEzXIcp-sqsYudFPXf421XK7riZMt-8zyemWty4YO3hLzl7CPilN0m4BwEl_iCXHEBoqgA2MU_-0tyndKWMUDE6hW5RAFMIGNX5NfM08U-dHvnN3Tt_OH7is5Dv4s2JRc8nXWbEN1w39M2RLoMa7rwexeD760fEv2sk21o5u70oOnCmHwanXHD4TV52eou2TeP6w1Zf1ms59-K1Y-vy_lsVRhRiaGQ0DYoNDNTgaWZNCBRQmOrxsqqBo2TsoaaN6bRAjlMICNTYdoSWs1NafCGLE_aJuit2kXX63hQQTt1PAhxo3QcnOmsMtoCllJMjBFCS1m1-UVRt7XGlklbZ1dxcqU_djfWZ7Y793N2tPVu9CrXTpaZ_3TiM9zb5vh33Z2Fnd94d682Ya8qQIkwzYL3j4IYfo82DdmejO067W0YkwKZa8QYVlVG3z1Dt2GMPlf2gZJ8yhFYpj6cKBNDStG2T8lwph5GRT2NSmZvn7G5bXrITc-5uu4_EX8Bf5jA4g
CitedBy_id crossref_primary_10_3390_electronics10222878
crossref_primary_10_1049_smc2_12072
crossref_primary_10_1007_s11276_024_03833_y
crossref_primary_10_1007_s11042_023_16740_9
crossref_primary_10_1016_j_iot_2023_100806
crossref_primary_10_1016_j_jksuci_2021_11_019
crossref_primary_10_1109_JIOT_2022_3228795
crossref_primary_10_1142_S0219455424501463
crossref_primary_10_3390_s23052407
crossref_primary_10_3390_s22103838
crossref_primary_10_1016_j_compeleceng_2024_109812
crossref_primary_10_1016_j_eswa_2022_119016
crossref_primary_10_3390_s24010224
crossref_primary_10_1109_ACCESS_2022_3207200
crossref_primary_10_1109_JIOT_2024_3361452
crossref_primary_10_1109_JSEN_2024_3458917
crossref_primary_10_32604_cmc_2023_041196
crossref_primary_10_1109_JIOT_2024_3360444
crossref_primary_10_3390_mi13060851
crossref_primary_10_1145_3591356
crossref_primary_10_3390_fi14120363
crossref_primary_10_3390_su151813779
crossref_primary_10_1109_TCE_2024_3477628
crossref_primary_10_3390_fi16020042
crossref_primary_10_3390_fi17060257
crossref_primary_10_1007_s42979_024_03319_w
crossref_primary_10_1109_TII_2022_3155162
crossref_primary_10_1007_s00607_025_01490_3
crossref_primary_10_3390_s21217190
crossref_primary_10_1016_j_softx_2024_101747
crossref_primary_10_1007_s10462_024_10748_9
crossref_primary_10_3390_smartcities4030056
crossref_primary_10_7717_peerj_cs_2211
crossref_primary_10_3390_s24227273
crossref_primary_10_1155_2022_4670523
crossref_primary_10_3390_su16020708
Cites_doi 10.1109/SII.2019.8700465
10.1109/JIOT.2014.2306328
10.1007/s00034-009-9130-7
10.1109/LADC48089.2019.8995679
10.1186/s13638-021-01895-6
10.1109/WiMOB.2019.8923430
10.1109/BigData.2018.8621867
10.1109/ETFA.2008.4638468
10.1016/j.dcan.2017.10.002
10.1109/LWC.2016.2647247
10.1109/IOTM.001.2000179
10.3390/s21041031
10.5753/sbesc_estendido.2019.8650
10.1051/itmconf/20171101009
10.1109/MetroInd4.0IoT48571.2020.9138270
10.1109/TPAMI.2013.50
10.1109/COMST.2017.2745201
10.1007/978-3-030-02384-3
10.1016/j.compag.2018.08.045
10.1109/ISCC.2018.8538554
10.1109/DSN-S50200.2020.00044
10.23919/AEIT.2018.8577329
10.1007/s11222-017-9746-6
10.1016/j.ins.2016.05.012
10.1109/CBI.2018.10048
10.1109/ICTAACS48474.2019.8988119
10.1109/ICDE48307.2020.00119
10.3390/s18103298
10.1109/JIOT.2020.2976702
10.1109/IJCNN.2015.7280712
10.1109/ICOIN.2018.8343232
10.1109/SAS.2019.8706017
10.1109/EAIS.2016.7502508
10.1109/IJCNN.2015.7280438
10.1016/j.future.2019.02.005
10.1109/FUZZ-IEEE.2018.8491507
10.1109/COMST.2018.2849509
10.1109/JIOT.2018.2805263
10.1145/3314221.3314597
10.3390/electronics10040367
10.1109/EALS.2014.7009497
10.5753/sbesc_estendido.2019.8646
10.23919/MIPRO.2019.8756995
10.3390/s18030923
10.1109/MCOM.2019.1800394
10.1109/ICTCS.2019.8923112
10.1002/int.20330
10.1109/TIM.2019.2911733
10.1016/j.procs.2015.07.274
10.1016/S0167-8655(03)00098-9
10.1080/00031305.1988.10475539
10.1109/ETFA.2010.5641011
10.1109/IJCNN.2016.7727498
10.1080/01621459.1931.10503148
10.1080/00031305.1984.10483182
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AOWAS
DG5
DOA
DOI 10.3390/s21124153
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Mittuniversitetet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cae237546cc44a558f37c4bfba3f05eb
oai_DiVA_org_miun_43057
PMC8235329
10_3390_s21124153
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTPV
AOWAS
DG5
IPNFZ
RIG
ID FETCH-LOGICAL-c484t-52fd34a0c9437c6d25352de8de58b2a367b2b1dcda431262c6d94cf72fa1c7c3
IEDL.DBID DOA
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666354300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:06:06 EDT 2025
Tue Nov 04 15:57:48 EST 2025
Tue Nov 04 02:03:03 EST 2025
Thu Sep 04 16:46:07 EDT 2025
Tue Oct 07 07:18:40 EDT 2025
Tue Nov 18 21:51:34 EST 2025
Sat Nov 29 07:13:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-52fd34a0c9437c6d25352de8de58b2a367b2b1dcda431262c6d94cf72fa1c7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0116-6489
0000-0001-5012-443X
0000-0002-6349-4410
0000-0002-7729-9085
0000-0002-8839-0255
0000-0002-8277-7571
OpenAccessLink https://doaj.org/article/cae237546cc44a558f37c4bfba3f05eb
PMID 34204300
PQID 2545191320
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_cae237546cc44a558f37c4bfba3f05eb
swepub_primary_oai_DiVA_org_miun_43057
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235329
proquest_miscellaneous_2548400388
proquest_journals_2545191320
crossref_primary_10_3390_s21124153
crossref_citationtrail_10_3390_s21124153
PublicationCentury 2000
PublicationDate 20210617
PublicationDateYYYYMMDD 2021-06-17
PublicationDate_xml – month: 6
  year: 2021
  text: 20210617
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Hand (ref_63) 2018; 28
ref_14
ref_58
ref_13
ref_12
ref_11
ref_55
ref_10
ref_53
Zanella (ref_2) 2014; 1
ref_51
ref_18
ref_17
ref_16
ref_15
ref_60
Xu (ref_64) 2009; 24
Mahdavinejad (ref_31) 2018; 4
Moon (ref_41) 2018; 154
Zhang (ref_6) 2021; 2021
ref_23
ref_22
Wang (ref_29) 2020; 7
ref_21
Angelov (ref_48) 2014; 8
Ferger (ref_65) 1931; 26
ref_27
Xu (ref_44) 2017; 11
Kangin (ref_54) 2015; 53
Sisinni (ref_19) 2019; 16
Mao (ref_26) 2017; 19
Mikhaylov (ref_25) 2019; 57
Azar (ref_9) 2019; 96
ref_36
ref_35
Rinaldi (ref_59) 2019; 68
Porambage (ref_24) 2018; 20
ref_33
ref_32
ref_30
ref_39
Tsai (ref_62) 2003; 24
ref_38
ref_37
Premsankar (ref_28) 2018; 5
Saw (ref_56) 1984; 38
Georgiou (ref_20) 2017; 6
ref_47
ref_46
ref_45
Balanda (ref_57) 1988; 42
ref_43
ref_42
Kangin (ref_52) 2016; 366
Bengio (ref_34) 2013; 35
ref_40
ref_1
Yoo (ref_61) 2009; 28
ref_3
ref_49
ref_8
ref_5
ref_4
ref_7
References_xml – ident: ref_14
  doi: 10.1109/SII.2019.8700465
– volume: 1
  start-page: 22
  year: 2014
  ident: ref_2
  article-title: Internet of things for smart cities
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2306328
– volume: 28
  start-page: 819
  year: 2009
  ident: ref_61
  article-title: Fast normalized cross-correlation
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-009-9130-7
– ident: ref_12
  doi: 10.1109/LADC48089.2019.8995679
– volume: 2021
  start-page: 17
  year: 2021
  ident: ref_6
  article-title: A new task offloading algorithm in edge computing
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-021-01895-6
– ident: ref_21
  doi: 10.1109/WiMOB.2019.8923430
– ident: ref_46
  doi: 10.1109/BigData.2018.8621867
– ident: ref_42
  doi: 10.1109/ETFA.2008.4638468
– volume: 4
  start-page: 161
  year: 2018
  ident: ref_31
  article-title: Machine learning for internet of things data analysis: A survey
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2017.10.002
– volume: 6
  start-page: 162
  year: 2017
  ident: ref_20
  article-title: Low power wide area network analysis: Can LoRa scale?
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2016.2647247
– ident: ref_16
– ident: ref_4
  doi: 10.1109/IOTM.001.2000179
– ident: ref_32
  doi: 10.3390/s21041031
– ident: ref_11
  doi: 10.5753/sbesc_estendido.2019.8650
– ident: ref_23
– volume: 11
  start-page: 01009
  year: 2017
  ident: ref_44
  article-title: The Research and Improvement of SDT Algorithm for Historical Data in SCADA
  publication-title: ITM Web Conf.
  doi: 10.1051/itmconf/20171101009
– ident: ref_38
  doi: 10.1109/MetroInd4.0IoT48571.2020.9138270
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_34
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 19
  start-page: 2322
  year: 2017
  ident: ref_26
  article-title: A Survey on Mobile Edge Computing: The Communication Perspective
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2745201
– volume: 8
  start-page: 29
  year: 2014
  ident: ref_48
  article-title: Outside the Box: An Alternative Data Analytics Framework
  publication-title: J. Autom. Mob. Robot. Intell. Syst.
– ident: ref_36
  doi: 10.1007/978-3-030-02384-3
– volume: 154
  start-page: 304
  year: 2018
  ident: ref_41
  article-title: Evaluating fidelity of lossy compression on spatiotemporal data from an IoT enabled smart farm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.045
– ident: ref_3
  doi: 10.1109/ISCC.2018.8538554
– ident: ref_35
  doi: 10.1109/DSN-S50200.2020.00044
– ident: ref_58
  doi: 10.23919/AEIT.2018.8577329
– volume: 28
  start-page: 539
  year: 2018
  ident: ref_63
  article-title: A note on using the F-measure for evaluating record linkage algorithms
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-017-9746-6
– ident: ref_17
– ident: ref_45
– volume: 366
  start-page: 1
  year: 2016
  ident: ref_52
  article-title: Autonomously evolving classifier TEDAClass
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.05.012
– ident: ref_1
  doi: 10.1109/CBI.2018.10048
– ident: ref_7
– ident: ref_10
  doi: 10.1109/ICTAACS48474.2019.8988119
– ident: ref_39
  doi: 10.1109/ICDE48307.2020.00119
– ident: ref_5
  doi: 10.3390/s18103298
– volume: 7
  start-page: 4403
  year: 2020
  ident: ref_29
  article-title: FANN-on-MCU: An open-source toolkit for energy-efficient neural network inference at the edge of the Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2976702
– ident: ref_49
  doi: 10.1109/IJCNN.2015.7280712
– ident: ref_47
  doi: 10.1109/ICOIN.2018.8343232
– ident: ref_27
  doi: 10.1109/SAS.2019.8706017
– ident: ref_50
  doi: 10.1109/EAIS.2016.7502508
– ident: ref_53
  doi: 10.1109/IJCNN.2015.7280438
– volume: 96
  start-page: 168
  year: 2019
  ident: ref_9
  article-title: An energy efficient IoT data compression approach for edge machine learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.005
– ident: ref_55
  doi: 10.1109/FUZZ-IEEE.2018.8491507
– volume: 20
  start-page: 2961
  year: 2018
  ident: ref_24
  article-title: Survey on multi-access edge computing for internet of things realization
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2849509
– volume: 5
  start-page: 1275
  year: 2018
  ident: ref_28
  article-title: Edge Computing for the Internet of Things: A Case Study
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2805263
– ident: ref_33
  doi: 10.1145/3314221.3314597
– ident: ref_8
  doi: 10.3390/electronics10040367
– ident: ref_37
  doi: 10.1109/EALS.2014.7009497
– ident: ref_18
  doi: 10.5753/sbesc_estendido.2019.8646
– ident: ref_30
  doi: 10.23919/MIPRO.2019.8756995
– ident: ref_13
  doi: 10.3390/s18030923
– volume: 57
  start-page: 100
  year: 2019
  ident: ref_25
  article-title: Energy Efficiency of Multi-Radio Massive Machine-Type Communication (MR-MMTC): Applications, Challenges, and Solutions
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1800394
– ident: ref_40
  doi: 10.1109/ICTCS.2019.8923112
– volume: 24
  start-page: 152
  year: 2009
  ident: ref_64
  article-title: Fuzzy harmonic mean operators
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20330
– volume: 68
  start-page: 3831
  year: 2019
  ident: ref_59
  article-title: A Testing Framework for the Monitoring and Performance Analysis of Distributed Energy Systems
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2911733
– volume: 53
  start-page: 9
  year: 2015
  ident: ref_54
  article-title: Evolving classifier TEDAClass for big data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.274
– volume: 24
  start-page: 2525
  year: 2003
  ident: ref_62
  article-title: The evaluation of normalized cross correlations for defect detection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00098-9
– volume: 42
  start-page: 111
  year: 1988
  ident: ref_57
  article-title: Kurtosis: A critical review
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1988.10475539
– volume: 16
  start-page: 1
  year: 2019
  ident: ref_19
  article-title: A LoRaWAN range extender for Industrial IoT
  publication-title: IEEE Trans. Ind. Inform.
– ident: ref_22
  doi: 10.1109/ETFA.2010.5641011
– ident: ref_15
– ident: ref_51
  doi: 10.1109/IJCNN.2016.7727498
– ident: ref_43
– ident: ref_60
– volume: 26
  start-page: 36
  year: 1931
  ident: ref_65
  article-title: The nature and use of the harmonic mean
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1931.10503148
– volume: 38
  start-page: 130
  year: 1984
  ident: ref_56
  article-title: Chebyshev Inequality with Estimated Mean and Variance
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1984.10483182
SSID ssj0023338
Score 2.5105023
Snippet Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4153
SubjectTerms algorithm
Algorithms
Battery powered devices
comparative effectiveness
Compression algorithms
Cost control
Data analysis
Data compression
Data compression algorithms
discrete cosine transform
Discrete Cosine Transform(DCT)
Discrete cosine transforms
Eccentricity
Evolving algorithm
High-density applications
Image coding
Internet of thing (IOT)
Internet of Things
Low power electronics
LPWAN
Machine learning
Online data compression
Peak signal to noise ratio
Sensors
signal noise ratio
Signal to noise ratio
TinyML
Wide area networks
Wireless communications
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3hUpBRmEEJeoG9uJkxPa0q1AKhWHFdpb5PjRRmqTsptF6r9nxsluG4S4cE0mka15eD57_A3Ae5fpxFNRe-JdFUvlfFwZbmJrc-HTnLLocFH4RJ2e5otF8X3YcFsNZZWbmBgCtW0N7ZEfIJDBZIMu_H66-hlT1yg6XR1aaNyFe9Q2m-xcLW4Al0D81bMJCYT2BysEO7RgidEaFKj6R_nln9WRIw7RsO4cP_7fET-BR0PGyaa9iTyFO655Bg9v8RA-h8W0YTOMU7S5wOZ1c_3thFGg6GtkGza9OMMfd-eXDFNc9rWds9mt-3HsEFdCy1DuSHeazUyYUm0wv38B8-PZ_POXeGi5EBuZyw5hqbdC6okppFAms5zYX6zLrUvzimuRqYpXiTVWY-LBM44ihTReca8To4zYhZ2mbdxLYFZrbw0vFM8xxcmKymsvlSGCs8ROrI7g40YHpRnoyKkrxkWJsITUVW7VFcG7rehVz8HxN6FDUuRWgGizw4N2eVYOXlga7Tj1_M2MkVKnae5xlrLylRZ-kroqgv2NKsvBl1fljR4jeLt9jV5IRyu6ce06yCBSJmadCNTIfEYDGr9p6vPA551zkQpeRPChN7TRJ0f1j2mYw2W9bkoiaFN7_x7lK3jAqfCGGiypfdjplmv3Gu6bX129Wr4JHvIbrm4fFA
  priority: 102
  providerName: ProQuest
Title An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity
URI https://www.proquest.com/docview/2545191320
https://www.proquest.com/docview/2548400388
https://pubmed.ncbi.nlm.nih.gov/PMC8235329
https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43057
https://doaj.org/article/cae237546cc44a558f37c4bfba3f05eb
Volume 21
WOSCitedRecordID wos000666354300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKcILJVBCHGptrGdODm2bFastK0qVKFyihw_diPtpmjbInHhtzPjpFWDkLhw8cGZSPZ4xp4vGX8D8N6lOvaU1B57Vw2lcn5YGW6G1mbCJxlF0eGi8IWazbLlMp8flPqinLCWHrhV3InRjlOZ1tQYKXWSZF4oIytfaeFHiato9x2pfAemOqglEHm1PEICQf3JGmEOHVWid_oEkv5eZPlnXmSPPTScOGeP4VEXKrJxO8QncMc1T-HhAYHgM1iOG1bgBkNfBdiibn5OLxh5eJvc2rDx9eUK0f_VDcPYlJ2vFqw4uNjGJniEWYZyp3qjWWHCiGqDgflzWJwVi0-fh12thKGRmdwgnvRWSD0yuUT9pJYTbYt1mXVJVnEtUlXxKrbGaowYeMpRJJfGK-51bJQRL-CoWTXuJTCrtbeG54pnGJukeeW1l8oQM1lsR1ZH8HGnwtJ0POJUzuK6RDxB2i732o7g3V70e0ue8TehCa3DXoD4rkMHWkHZWUH5LyuI4Hi3imXnhOsSsS_Gp3RHPIK3-8foPvRPRDdutQ0yCHGJEicC1Vv93oD6T5r6KhBxZ1wkgucRfGjtpPfKaf11HOZwU2-bkpjV1Kv_MdXX8IBTXg3VT1LHcLS53bo3cN_82NTr2wHcVUsV2mwA9ybFbP5lEFwD2-mvAvvm59P5t99G3xit
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceCMMBRYEiIvVZHfttQ8IpSRVo6YRhwjlZq330Vpq7ZIHqD-K_8iMnaQ1Qtx64GqPLa_9eWa-3dlvAN65WHc9FbV3vctDqZwPc8NNaG0ifJRQFl1vFB6p8TiZTtOvW_BrvReGyirXPrF21LYyNEe-i0QGkw3a8Pv5_HtIXaNodXXdQqOBxaG7-ImUbf5p2Mfv-57z_cHky0G46ioQGpnIBTIvb4XUHZNKoUxsOQmcWJdYFyU51yJWOc-71liNsZXHHE1SabziXneNMgJvewNuohtXxPXU9JLfCaR7jXiREGlnd47ciuKjaIW8ujNAK539sxizJVlah7n9-__ZC3oA91b5NOs1P8BD2HLlI7h7RWXxMUx7JRugF6apEzYpyoujESM32FQAl6x3eozjWJycMUzg2bCasMGV3X9sD-O8ZWjX1wvNBqZ-g4VB9vIEJtcxsqewXValewbMau2tQQzwBBO4OM299lIZkm_r2o7VAXxcf_LMrMTWqefHaYaki9CRbdARwNuN6XmjMPI3oz3CzcaARMHrA9XsOFv5mMxox6mjcWyMlDqKEo-jlLnPtfCdyOUB7KyRk6081Ty7hE0Abzan0cfQwpEuXbWsbRJJa8hJAKqF1tYDtc-UxUmtVp5wEQmeBvChwXXrkn7xrVeP4axYlhnJz6nn_37K13D7YHI0ykbD8eELuMOpxIhaSakd2F7Mlu4l3DI_FsV89qr-ORlk14z137WtfBk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDiF44BsRGGAQoL1EbW0ndh4Q6mgrqnVVHyo0niLHH1ukLR39AO1P47_Dl6RlQYi3PfAaX6LY_vl8Z9_9DuCtjVXXYVB719ks5MK6MNNUh8ZI5iKJVnSZKDwWk4k8Pk6mO_BzkwuDYZUbnVgqajPXeEbe9o6MNzYw4bft6rCIaX_48eJbiBWk8KZ1U06jgsihvfzh3bflh1Hfz_U7SoeD2afPYV1hINRc8pX3wpxhXHV0wpnQsaFIdmKsNDaSGVUsFhnNukYb5fdZGlMvknDtBHWqq4Vm_rM3YNdb5Jy2YHc6Opp-3Xp7zDt_FZURY0mnvfSeFu6WrLEBlnUCGsbtn6GZDQLTctMb3vuPh-s-3K0tbdKrlsYD2LHFQ7hzhX_xERz3CjLw-hkPVcgsLy6PxgQVZBUbXJDe2Ynvx-r0nHjTnozmMzK4khdIDrwFYIiX66uVIgNdjmauvV_zGGbX0bMn0CrmhX0KxCjljKaJoNKbdnGSOeW40Ejs1jUdowLY30x_qmsadqwGcpZ6dwyRkm6REsCbrehFxT3yN6EDxNBWAOnCywfzxUlaa59UK0ux1nGsNecqiqTzveSZyxRznchmAextUJTWOmyZ_oZQAK-3zV774JWSKux8XcpIjrfLMgDRQG7jh5otRX5a8phLyiJGkwDeVxhvvNLPv_TKPpzn6yJFYjrx7N9_-QpueYin49Hk8Dncphh7hDWmxB60Vou1fQE39fdVvly8rFcqgfSawf4LQzyGaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolving+tinyml+compression+algorithm+for+iot+environments+based+on+data+eccentricity&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Signoretti%2C+G.&rft.au=Silva%2C+M.&rft.au=Andrade%2C+P.&rft.au=Silva%2C+I.&rft.date=2021-06-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft_id=info:doi/10.3390%2Fs21124153&rft.externalDocID=oai_DiVA_org_miun_43057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon