An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity
Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and batter...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 21; číslo 12; s. 4153 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
17.06.2021
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases. |
|---|---|
| AbstractList | Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases. Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases.Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and store the data. This scenario brings about the need for effective data compression algorithms to make the data manageable among tiny and battery-powered devices and, more importantly, shareable across the network. Additionally, considering that, very often, wireless communications (e.g., low-power wide-area networks) are adopted to connect field devices, user payload compression can also provide benefits derived from better spectrum usage, which in turn can result in advantages for high-density application scenarios. As a result of this increase in the number of connected devices, a new concept has emerged, called TinyML. It enables the use of machine learning on tiny, computationally restrained devices. This allows intelligent devices to analyze and interpret data locally and in real time. Therefore, this work presents a new data compression solution (algorithm) for the IoT that leverages the TinyML perspective. The new approach is called the Tiny Anomaly Compressor (TAC) and is based on data eccentricity. TAC does not require previously established mathematical models or any assumptions about the underlying data distribution. In order to test the effectiveness of the proposed solution and validate it, a comparative analysis was performed on two real-world datasets with two other algorithms from the literature (namely Swing Door Trending (SDT) and the Discrete Cosine Transform (DCT)). It was found that the TAC algorithm showed promising results, achieving a maximum compression rate of 98.33%. Additionally, it also surpassed the two other models regarding the compression error and peak signal-to-noise ratio in all cases. |
| Author | Sisinni, Emiliano Ferrari, Paolo Silva, Marianne Andrade, Pedro Signoretti, Gabriel Silva, Ivanovitch |
| AuthorAffiliation | 1 UFRN-PPgEEC, Postgraduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; gabrielsig@ufrn.edu.br (G.S.); pedro.meira.055@ufrn.edu.br (P.A.) 2 UNIBS-DIE, Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; emiliano.sisinni@unibs.it (E.S.); paolo.ferrari@unibs.it (P.F.) |
| AuthorAffiliation_xml | – name: 2 UNIBS-DIE, Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; emiliano.sisinni@unibs.it (E.S.); paolo.ferrari@unibs.it (P.F.) – name: 1 UFRN-PPgEEC, Postgraduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; gabrielsig@ufrn.edu.br (G.S.); pedro.meira.055@ufrn.edu.br (P.A.) |
| Author_xml | – sequence: 1 givenname: Gabriel orcidid: 0000-0002-8839-0255 surname: Signoretti fullname: Signoretti, Gabriel – sequence: 2 givenname: Marianne orcidid: 0000-0002-8277-7571 surname: Silva fullname: Silva, Marianne – sequence: 3 givenname: Pedro orcidid: 0000-0002-7729-9085 surname: Andrade fullname: Andrade, Pedro – sequence: 4 givenname: Ivanovitch orcidid: 0000-0002-0116-6489 surname: Silva fullname: Silva, Ivanovitch – sequence: 5 givenname: Emiliano orcidid: 0000-0001-5012-443X surname: Sisinni fullname: Sisinni, Emiliano – sequence: 6 givenname: Paolo orcidid: 0000-0002-6349-4410 surname: Ferrari fullname: Ferrari, Paolo |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43057$$DView record from Swedish Publication Index (Mittuniversitetet) |
| BookMark | eNptkk2P0zAQQC20iP2AA__AEhc4hLVn7Ca9IJVugUpFXCrEzXIcp-sqsYudFPXf421XK7riZMt-8zyemWty4YO3hLzl7CPilN0m4BwEl_iCXHEBoqgA2MU_-0tyndKWMUDE6hW5RAFMIGNX5NfM08U-dHvnN3Tt_OH7is5Dv4s2JRc8nXWbEN1w39M2RLoMa7rwexeD760fEv2sk21o5u70oOnCmHwanXHD4TV52eou2TeP6w1Zf1ms59-K1Y-vy_lsVRhRiaGQ0DYoNDNTgaWZNCBRQmOrxsqqBo2TsoaaN6bRAjlMICNTYdoSWs1NafCGLE_aJuit2kXX63hQQTt1PAhxo3QcnOmsMtoCllJMjBFCS1m1-UVRt7XGlklbZ1dxcqU_djfWZ7Y793N2tPVu9CrXTpaZ_3TiM9zb5vh33Z2Fnd94d682Ya8qQIkwzYL3j4IYfo82DdmejO067W0YkwKZa8QYVlVG3z1Dt2GMPlf2gZJ8yhFYpj6cKBNDStG2T8lwph5GRT2NSmZvn7G5bXrITc-5uu4_EX8Bf5jA4g |
| CitedBy_id | crossref_primary_10_3390_electronics10222878 crossref_primary_10_1049_smc2_12072 crossref_primary_10_1007_s11276_024_03833_y crossref_primary_10_1007_s11042_023_16740_9 crossref_primary_10_1016_j_iot_2023_100806 crossref_primary_10_1016_j_jksuci_2021_11_019 crossref_primary_10_1109_JIOT_2022_3228795 crossref_primary_10_1142_S0219455424501463 crossref_primary_10_3390_s23052407 crossref_primary_10_3390_s22103838 crossref_primary_10_1016_j_compeleceng_2024_109812 crossref_primary_10_1016_j_eswa_2022_119016 crossref_primary_10_3390_s24010224 crossref_primary_10_1109_ACCESS_2022_3207200 crossref_primary_10_1109_JIOT_2024_3361452 crossref_primary_10_1109_JSEN_2024_3458917 crossref_primary_10_32604_cmc_2023_041196 crossref_primary_10_1109_JIOT_2024_3360444 crossref_primary_10_3390_mi13060851 crossref_primary_10_1145_3591356 crossref_primary_10_3390_fi14120363 crossref_primary_10_3390_su151813779 crossref_primary_10_1109_TCE_2024_3477628 crossref_primary_10_3390_fi16020042 crossref_primary_10_3390_fi17060257 crossref_primary_10_1007_s42979_024_03319_w crossref_primary_10_1109_TII_2022_3155162 crossref_primary_10_1007_s00607_025_01490_3 crossref_primary_10_3390_s21217190 crossref_primary_10_1016_j_softx_2024_101747 crossref_primary_10_1007_s10462_024_10748_9 crossref_primary_10_3390_smartcities4030056 crossref_primary_10_7717_peerj_cs_2211 crossref_primary_10_3390_s24227273 crossref_primary_10_1155_2022_4670523 crossref_primary_10_3390_su16020708 |
| Cites_doi | 10.1109/SII.2019.8700465 10.1109/JIOT.2014.2306328 10.1007/s00034-009-9130-7 10.1109/LADC48089.2019.8995679 10.1186/s13638-021-01895-6 10.1109/WiMOB.2019.8923430 10.1109/BigData.2018.8621867 10.1109/ETFA.2008.4638468 10.1016/j.dcan.2017.10.002 10.1109/LWC.2016.2647247 10.1109/IOTM.001.2000179 10.3390/s21041031 10.5753/sbesc_estendido.2019.8650 10.1051/itmconf/20171101009 10.1109/MetroInd4.0IoT48571.2020.9138270 10.1109/TPAMI.2013.50 10.1109/COMST.2017.2745201 10.1007/978-3-030-02384-3 10.1016/j.compag.2018.08.045 10.1109/ISCC.2018.8538554 10.1109/DSN-S50200.2020.00044 10.23919/AEIT.2018.8577329 10.1007/s11222-017-9746-6 10.1016/j.ins.2016.05.012 10.1109/CBI.2018.10048 10.1109/ICTAACS48474.2019.8988119 10.1109/ICDE48307.2020.00119 10.3390/s18103298 10.1109/JIOT.2020.2976702 10.1109/IJCNN.2015.7280712 10.1109/ICOIN.2018.8343232 10.1109/SAS.2019.8706017 10.1109/EAIS.2016.7502508 10.1109/IJCNN.2015.7280438 10.1016/j.future.2019.02.005 10.1109/FUZZ-IEEE.2018.8491507 10.1109/COMST.2018.2849509 10.1109/JIOT.2018.2805263 10.1145/3314221.3314597 10.3390/electronics10040367 10.1109/EALS.2014.7009497 10.5753/sbesc_estendido.2019.8646 10.23919/MIPRO.2019.8756995 10.3390/s18030923 10.1109/MCOM.2019.1800394 10.1109/ICTCS.2019.8923112 10.1002/int.20330 10.1109/TIM.2019.2911733 10.1016/j.procs.2015.07.274 10.1016/S0167-8655(03)00098-9 10.1080/00031305.1988.10475539 10.1109/ETFA.2010.5641011 10.1109/IJCNN.2016.7727498 10.1080/01621459.1931.10503148 10.1080/00031305.1984.10483182 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AOWAS DG5 DOA |
| DOI | 10.3390/s21124153 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Mittuniversitetet DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_cae237546cc44a558f37c4bfba3f05eb oai_DiVA_org_miun_43057 PMC8235329 10_3390_s21124153 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTPV AOWAS DG5 IPNFZ RIG |
| ID | FETCH-LOGICAL-c484t-52fd34a0c9437c6d25352de8de58b2a367b2b1dcda431262c6d94cf72fa1c7c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666354300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:06:06 EDT 2025 Tue Nov 04 15:57:48 EST 2025 Tue Nov 04 02:03:03 EST 2025 Thu Sep 04 16:46:07 EDT 2025 Tue Oct 07 07:18:40 EDT 2025 Tue Nov 18 21:51:34 EST 2025 Sat Nov 29 07:13:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c484t-52fd34a0c9437c6d25352de8de58b2a367b2b1dcda431262c6d94cf72fa1c7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0116-6489 0000-0001-5012-443X 0000-0002-6349-4410 0000-0002-7729-9085 0000-0002-8839-0255 0000-0002-8277-7571 |
| OpenAccessLink | https://doaj.org/article/cae237546cc44a558f37c4bfba3f05eb |
| PMID | 34204300 |
| PQID | 2545191320 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cae237546cc44a558f37c4bfba3f05eb swepub_primary_oai_DiVA_org_miun_43057 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8235329 proquest_miscellaneous_2548400388 proquest_journals_2545191320 crossref_primary_10_3390_s21124153 crossref_citationtrail_10_3390_s21124153 |
| PublicationCentury | 2000 |
| PublicationDate | 20210617 |
| PublicationDateYYYYMMDD | 2021-06-17 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210617 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Hand (ref_63) 2018; 28 ref_14 ref_58 ref_13 ref_12 ref_11 ref_55 ref_10 ref_53 Zanella (ref_2) 2014; 1 ref_51 ref_18 ref_17 ref_16 ref_15 ref_60 Xu (ref_64) 2009; 24 Mahdavinejad (ref_31) 2018; 4 Moon (ref_41) 2018; 154 Zhang (ref_6) 2021; 2021 ref_23 ref_22 Wang (ref_29) 2020; 7 ref_21 Angelov (ref_48) 2014; 8 Ferger (ref_65) 1931; 26 ref_27 Xu (ref_44) 2017; 11 Kangin (ref_54) 2015; 53 Sisinni (ref_19) 2019; 16 Mao (ref_26) 2017; 19 Mikhaylov (ref_25) 2019; 57 Azar (ref_9) 2019; 96 ref_36 ref_35 Rinaldi (ref_59) 2019; 68 Porambage (ref_24) 2018; 20 ref_33 ref_32 ref_30 ref_39 Tsai (ref_62) 2003; 24 ref_38 ref_37 Premsankar (ref_28) 2018; 5 Saw (ref_56) 1984; 38 Georgiou (ref_20) 2017; 6 ref_47 ref_46 ref_45 Balanda (ref_57) 1988; 42 ref_43 ref_42 Kangin (ref_52) 2016; 366 Bengio (ref_34) 2013; 35 ref_40 ref_1 Yoo (ref_61) 2009; 28 ref_3 ref_49 ref_8 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_14 doi: 10.1109/SII.2019.8700465 – volume: 1 start-page: 22 year: 2014 ident: ref_2 article-title: Internet of things for smart cities publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2306328 – volume: 28 start-page: 819 year: 2009 ident: ref_61 article-title: Fast normalized cross-correlation publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-009-9130-7 – ident: ref_12 doi: 10.1109/LADC48089.2019.8995679 – volume: 2021 start-page: 17 year: 2021 ident: ref_6 article-title: A new task offloading algorithm in edge computing publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-021-01895-6 – ident: ref_21 doi: 10.1109/WiMOB.2019.8923430 – ident: ref_46 doi: 10.1109/BigData.2018.8621867 – ident: ref_42 doi: 10.1109/ETFA.2008.4638468 – volume: 4 start-page: 161 year: 2018 ident: ref_31 article-title: Machine learning for internet of things data analysis: A survey publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2017.10.002 – volume: 6 start-page: 162 year: 2017 ident: ref_20 article-title: Low power wide area network analysis: Can LoRa scale? publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2016.2647247 – ident: ref_16 – ident: ref_4 doi: 10.1109/IOTM.001.2000179 – ident: ref_32 doi: 10.3390/s21041031 – ident: ref_11 doi: 10.5753/sbesc_estendido.2019.8650 – ident: ref_23 – volume: 11 start-page: 01009 year: 2017 ident: ref_44 article-title: The Research and Improvement of SDT Algorithm for Historical Data in SCADA publication-title: ITM Web Conf. doi: 10.1051/itmconf/20171101009 – ident: ref_38 doi: 10.1109/MetroInd4.0IoT48571.2020.9138270 – volume: 35 start-page: 1798 year: 2013 ident: ref_34 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 19 start-page: 2322 year: 2017 ident: ref_26 article-title: A Survey on Mobile Edge Computing: The Communication Perspective publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2745201 – volume: 8 start-page: 29 year: 2014 ident: ref_48 article-title: Outside the Box: An Alternative Data Analytics Framework publication-title: J. Autom. Mob. Robot. Intell. Syst. – ident: ref_36 doi: 10.1007/978-3-030-02384-3 – volume: 154 start-page: 304 year: 2018 ident: ref_41 article-title: Evaluating fidelity of lossy compression on spatiotemporal data from an IoT enabled smart farm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.045 – ident: ref_3 doi: 10.1109/ISCC.2018.8538554 – ident: ref_35 doi: 10.1109/DSN-S50200.2020.00044 – ident: ref_58 doi: 10.23919/AEIT.2018.8577329 – volume: 28 start-page: 539 year: 2018 ident: ref_63 article-title: A note on using the F-measure for evaluating record linkage algorithms publication-title: Stat. Comput. doi: 10.1007/s11222-017-9746-6 – ident: ref_17 – ident: ref_45 – volume: 366 start-page: 1 year: 2016 ident: ref_52 article-title: Autonomously evolving classifier TEDAClass publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.05.012 – ident: ref_1 doi: 10.1109/CBI.2018.10048 – ident: ref_7 – ident: ref_10 doi: 10.1109/ICTAACS48474.2019.8988119 – ident: ref_39 doi: 10.1109/ICDE48307.2020.00119 – ident: ref_5 doi: 10.3390/s18103298 – volume: 7 start-page: 4403 year: 2020 ident: ref_29 article-title: FANN-on-MCU: An open-source toolkit for energy-efficient neural network inference at the edge of the Internet of Things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2976702 – ident: ref_49 doi: 10.1109/IJCNN.2015.7280712 – ident: ref_47 doi: 10.1109/ICOIN.2018.8343232 – ident: ref_27 doi: 10.1109/SAS.2019.8706017 – ident: ref_50 doi: 10.1109/EAIS.2016.7502508 – ident: ref_53 doi: 10.1109/IJCNN.2015.7280438 – volume: 96 start-page: 168 year: 2019 ident: ref_9 article-title: An energy efficient IoT data compression approach for edge machine learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.005 – ident: ref_55 doi: 10.1109/FUZZ-IEEE.2018.8491507 – volume: 20 start-page: 2961 year: 2018 ident: ref_24 article-title: Survey on multi-access edge computing for internet of things realization publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2849509 – volume: 5 start-page: 1275 year: 2018 ident: ref_28 article-title: Edge Computing for the Internet of Things: A Case Study publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2805263 – ident: ref_33 doi: 10.1145/3314221.3314597 – ident: ref_8 doi: 10.3390/electronics10040367 – ident: ref_37 doi: 10.1109/EALS.2014.7009497 – ident: ref_18 doi: 10.5753/sbesc_estendido.2019.8646 – ident: ref_30 doi: 10.23919/MIPRO.2019.8756995 – ident: ref_13 doi: 10.3390/s18030923 – volume: 57 start-page: 100 year: 2019 ident: ref_25 article-title: Energy Efficiency of Multi-Radio Massive Machine-Type Communication (MR-MMTC): Applications, Challenges, and Solutions publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800394 – ident: ref_40 doi: 10.1109/ICTCS.2019.8923112 – volume: 24 start-page: 152 year: 2009 ident: ref_64 article-title: Fuzzy harmonic mean operators publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20330 – volume: 68 start-page: 3831 year: 2019 ident: ref_59 article-title: A Testing Framework for the Monitoring and Performance Analysis of Distributed Energy Systems publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2911733 – volume: 53 start-page: 9 year: 2015 ident: ref_54 article-title: Evolving classifier TEDAClass for big data publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.274 – volume: 24 start-page: 2525 year: 2003 ident: ref_62 article-title: The evaluation of normalized cross correlations for defect detection publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(03)00098-9 – volume: 42 start-page: 111 year: 1988 ident: ref_57 article-title: Kurtosis: A critical review publication-title: Am. Stat. doi: 10.1080/00031305.1988.10475539 – volume: 16 start-page: 1 year: 2019 ident: ref_19 article-title: A LoRaWAN range extender for Industrial IoT publication-title: IEEE Trans. Ind. Inform. – ident: ref_22 doi: 10.1109/ETFA.2010.5641011 – ident: ref_15 – ident: ref_51 doi: 10.1109/IJCNN.2016.7727498 – ident: ref_43 – ident: ref_60 – volume: 26 start-page: 36 year: 1931 ident: ref_65 article-title: The nature and use of the harmonic mean publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1931.10503148 – volume: 38 start-page: 130 year: 1984 ident: ref_56 article-title: Chebyshev Inequality with Estimated Mean and Variance publication-title: Am. Stat. doi: 10.1080/00031305.1984.10483182 |
| SSID | ssj0023338 |
| Score | 2.5105023 |
| Snippet | Currently, the applications of the Internet of Things (IoT) generate a large amount of sensor data at a very high pace, making it a challenge to collect and... |
| SourceID | doaj swepub pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4153 |
| SubjectTerms | algorithm Algorithms Battery powered devices comparative effectiveness Compression algorithms Cost control Data analysis Data compression Data compression algorithms discrete cosine transform Discrete Cosine Transform(DCT) Discrete cosine transforms Eccentricity Evolving algorithm High-density applications Image coding Internet of thing (IOT) Internet of Things Low power electronics LPWAN Machine learning Online data compression Peak signal to noise ratio Sensors signal noise ratio Signal to noise ratio TinyML Wide area networks Wireless communications |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAH3hUpBRmEEJeoG9uJkxPa0q1AKhWHFdpb5PjRRmqTsptF6r9nxsluG4S4cE0mka15eD57_A3Ae5fpxFNRe-JdFUvlfFwZbmJrc-HTnLLocFH4RJ2e5otF8X3YcFsNZZWbmBgCtW0N7ZEfIJDBZIMu_H66-hlT1yg6XR1aaNyFe9Q2m-xcLW4Al0D81bMJCYT2BysEO7RgidEaFKj6R_nln9WRIw7RsO4cP_7fET-BR0PGyaa9iTyFO655Bg9v8RA-h8W0YTOMU7S5wOZ1c_3thFGg6GtkGza9OMMfd-eXDFNc9rWds9mt-3HsEFdCy1DuSHeazUyYUm0wv38B8-PZ_POXeGi5EBuZyw5hqbdC6okppFAms5zYX6zLrUvzimuRqYpXiTVWY-LBM44ihTReca8To4zYhZ2mbdxLYFZrbw0vFM8xxcmKymsvlSGCs8ROrI7g40YHpRnoyKkrxkWJsITUVW7VFcG7rehVz8HxN6FDUuRWgGizw4N2eVYOXlga7Tj1_M2MkVKnae5xlrLylRZ-kroqgv2NKsvBl1fljR4jeLt9jV5IRyu6ce06yCBSJmadCNTIfEYDGr9p6vPA551zkQpeRPChN7TRJ0f1j2mYw2W9bkoiaFN7_x7lK3jAqfCGGiypfdjplmv3Gu6bX129Wr4JHvIbrm4fFA priority: 102 providerName: ProQuest |
| Title | An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity |
| URI | https://www.proquest.com/docview/2545191320 https://www.proquest.com/docview/2548400388 https://pubmed.ncbi.nlm.nih.gov/PMC8235329 https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43057 https://doaj.org/article/cae237546cc44a558f37c4bfba3f05eb |
| Volume | 21 |
| WOSCitedRecordID | wos000666354300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKcILJVBCHGptrGdODm2bFastK0qVKFyihw_diPtpmjbInHhtzPjpFWDkLhw8cGZSPZ4xp4vGX8D8N6lOvaU1B57Vw2lcn5YGW6G1mbCJxlF0eGi8IWazbLlMp8flPqinLCWHrhV3InRjlOZ1tQYKXWSZF4oIytfaeFHiato9x2pfAemOqglEHm1PEICQf3JGmEOHVWid_oEkv5eZPlnXmSPPTScOGeP4VEXKrJxO8QncMc1T-HhAYHgM1iOG1bgBkNfBdiibn5OLxh5eJvc2rDx9eUK0f_VDcPYlJ2vFqw4uNjGJniEWYZyp3qjWWHCiGqDgflzWJwVi0-fh12thKGRmdwgnvRWSD0yuUT9pJYTbYt1mXVJVnEtUlXxKrbGaowYeMpRJJfGK-51bJQRL-CoWTXuJTCrtbeG54pnGJukeeW1l8oQM1lsR1ZH8HGnwtJ0POJUzuK6RDxB2i732o7g3V70e0ue8TehCa3DXoD4rkMHWkHZWUH5LyuI4Hi3imXnhOsSsS_Gp3RHPIK3-8foPvRPRDdutQ0yCHGJEicC1Vv93oD6T5r6KhBxZ1wkgucRfGjtpPfKaf11HOZwU2-bkpjV1Kv_MdXX8IBTXg3VT1LHcLS53bo3cN_82NTr2wHcVUsV2mwA9ybFbP5lEFwD2-mvAvvm59P5t99G3xit |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceCMMBRYEiIvVZHfttQ8IpSRVo6YRhwjlZq330Vpq7ZIHqD-K_8iMnaQ1Qtx64GqPLa_9eWa-3dlvAN65WHc9FbV3vctDqZwPc8NNaG0ifJRQFl1vFB6p8TiZTtOvW_BrvReGyirXPrF21LYyNEe-i0QGkw3a8Pv5_HtIXaNodXXdQqOBxaG7-ImUbf5p2Mfv-57z_cHky0G46ioQGpnIBTIvb4XUHZNKoUxsOQmcWJdYFyU51yJWOc-71liNsZXHHE1SabziXneNMgJvewNuohtXxPXU9JLfCaR7jXiREGlnd47ciuKjaIW8ujNAK539sxizJVlah7n9-__ZC3oA91b5NOs1P8BD2HLlI7h7RWXxMUx7JRugF6apEzYpyoujESM32FQAl6x3eozjWJycMUzg2bCasMGV3X9sD-O8ZWjX1wvNBqZ-g4VB9vIEJtcxsqewXValewbMau2tQQzwBBO4OM299lIZkm_r2o7VAXxcf_LMrMTWqefHaYaki9CRbdARwNuN6XmjMPI3oz3CzcaARMHrA9XsOFv5mMxox6mjcWyMlDqKEo-jlLnPtfCdyOUB7KyRk6081Ty7hE0Abzan0cfQwpEuXbWsbRJJa8hJAKqF1tYDtc-UxUmtVp5wEQmeBvChwXXrkn7xrVeP4axYlhnJz6nn_37K13D7YHI0ykbD8eELuMOpxIhaSakd2F7Mlu4l3DI_FsV89qr-ORlk14z137WtfBk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDiF44BsRGGAQoL1EbW0ndh4Q6mgrqnVVHyo0niLHH1ukLR39AO1P47_Dl6RlQYi3PfAaX6LY_vl8Z9_9DuCtjVXXYVB719ks5MK6MNNUh8ZI5iKJVnSZKDwWk4k8Pk6mO_BzkwuDYZUbnVgqajPXeEbe9o6MNzYw4bft6rCIaX_48eJbiBWk8KZ1U06jgsihvfzh3bflh1Hfz_U7SoeD2afPYV1hINRc8pX3wpxhXHV0wpnQsaFIdmKsNDaSGVUsFhnNukYb5fdZGlMvknDtBHWqq4Vm_rM3YNdb5Jy2YHc6Opp-3Xp7zDt_FZURY0mnvfSeFu6WrLEBlnUCGsbtn6GZDQLTctMb3vuPh-s-3K0tbdKrlsYD2LHFQ7hzhX_xERz3CjLw-hkPVcgsLy6PxgQVZBUbXJDe2Ynvx-r0nHjTnozmMzK4khdIDrwFYIiX66uVIgNdjmauvV_zGGbX0bMn0CrmhX0KxCjljKaJoNKbdnGSOeW40Ejs1jUdowLY30x_qmsadqwGcpZ6dwyRkm6REsCbrehFxT3yN6EDxNBWAOnCywfzxUlaa59UK0ux1nGsNecqiqTzveSZyxRznchmAextUJTWOmyZ_oZQAK-3zV774JWSKux8XcpIjrfLMgDRQG7jh5otRX5a8phLyiJGkwDeVxhvvNLPv_TKPpzn6yJFYjrx7N9_-QpueYin49Hk8Dncphh7hDWmxB60Vou1fQE39fdVvly8rFcqgfSawf4LQzyGaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolving+tinyml+compression+algorithm+for+iot+environments+based+on+data+eccentricity&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Signoretti%2C+G.&rft.au=Silva%2C+M.&rft.au=Andrade%2C+P.&rft.au=Silva%2C+I.&rft.date=2021-06-17&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft_id=info:doi/10.3390%2Fs21124153&rft.externalDocID=oai_DiVA_org_miun_43057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |