GSEApy: a comprehensive package for performing gene set enrichment analysis in Python

Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics (Oxford, England) Ročník 39; číslo 1
Hlavní autori: Fang, Zhuoqing, Liu, Xinyuan, Peltz, Gary
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 01.01.2023
Oxford Publishing Limited (England)
Predmet:
ISSN:1367-4811, 1367-4803, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. Results We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. Availability and implementation The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. Results We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. Availability and implementation The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary information Supplementary data are available at Bioinformatics online.
Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary data are available at Bioinformatics online.
Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets.MOTIVATIONGene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets.We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis.RESULTSWe present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis.The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/.AVAILABILITY AND IMPLEMENTATIONThe new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. Results We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. Availability and implementation The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary information Supplementary data are available at Bioinformatics online.
Author Peltz, Gary
Liu, Xinyuan
Fang, Zhuoqing
Author_xml – sequence: 1
  givenname: Zhuoqing
  orcidid: 0000-0002-7418-1313
  surname: Fang
  fullname: Fang, Zhuoqing
– sequence: 2
  givenname: Xinyuan
  orcidid: 0000-0002-9754-0593
  surname: Liu
  fullname: Liu, Xinyuan
– sequence: 3
  givenname: Gary
  orcidid: 0000-0001-6191-7697
  surname: Peltz
  fullname: Peltz, Gary
  email: gpeltz@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36426870$$D View this record in MEDLINE/PubMed
BookMark eNqNUVtrFDEUDlKxF_0LJeCLL2tzJslkRkQopbaFgoL2OSTZM7upM8mYzBT235tlt9L2RZ9O4Hy3k--YHIQYkJBTYB-BtfzM-uhDF9NgJu_ymZ2MU1K9IkfAa7UQDcDBk_chOc75njEmmazfkENei6puFDsid1c_Ls_HzSdqqIvDmHCNIfsHpKNxv8wKafGgI6atlQ8rusKANONEMSTv1gOGiZpg-k32mfpAv2-mdQxvyevO9Bnf7ecJuft6-fPienH77erm4vx24UQjpoVQSnSqYmZprVjyBg3WphWOgenAguqscqIF6BAaY63jTEADfFlVtmKIFT8hX3a642wHXLqSJplej8kPJm10NF4_3wS_1qv4oNuGSVmLIvBhL5Di7xnzpAefHfa9CRjnrCslmASQbV2g719A7-OcyulZc-BcVpzJpqBOnyb6G-Xxxwvg8w7gUsw5Yaedn0qJcRvQ9xqY3hasnxes9wUXev2C_ujwTyLsiHEe_5fzB-NpxZk
CitedBy_id crossref_primary_10_1016_j_jbiotec_2025_01_010
crossref_primary_10_1093_biolre_ioae136
crossref_primary_10_3389_fimmu_2023_1279245
crossref_primary_10_1038_s41419_024_07160_0
crossref_primary_10_1038_s41467_024_53830_0
crossref_primary_10_1093_bioinformatics_btae434
crossref_primary_10_1186_s12859_024_05873_9
crossref_primary_10_1016_j_canlet_2025_217855
crossref_primary_10_1038_s41467_025_60494_x
crossref_primary_10_1242_dev_202593
crossref_primary_10_3389_fimmu_2024_1428773
crossref_primary_10_1186_s12967_024_06007_8
crossref_primary_10_1038_s41551_025_01466_w
crossref_primary_10_3389_fgene_2023_1256991
crossref_primary_10_1038_s41467_024_54182_5
crossref_primary_10_1038_s41467_025_56535_0
crossref_primary_10_1016_j_actbio_2024_12_007
crossref_primary_10_1016_j_mcn_2025_104014
crossref_primary_10_1038_s41523_024_00709_4
crossref_primary_10_3390_plants14152422
crossref_primary_10_1002_glia_24638
crossref_primary_10_1111_ejh_14426
crossref_primary_10_1016_j_molmet_2023_101768
crossref_primary_10_1016_j_immuni_2024_05_021
crossref_primary_10_1038_s41467_024_50150_1
crossref_primary_10_1016_j_taap_2025_117530
crossref_primary_10_1093_bioadv_vbaf196
crossref_primary_10_1093_nar_gkaf791
crossref_primary_10_1016_j_immuni_2024_08_002
crossref_primary_10_1038_s41592_024_02266_x
crossref_primary_10_1128_msystems_01395_24
crossref_primary_10_3389_fimmu_2025_1572823
crossref_primary_10_1016_j_xgen_2025_100842
crossref_primary_10_1038_s41590_023_01654_3
crossref_primary_10_1093_nar_gkae346
crossref_primary_10_1186_s11658_025_00758_y
crossref_primary_10_1021_acs_jproteome_4c00632
crossref_primary_10_1016_j_medj_2023_12_001
crossref_primary_10_1101_gr_280235_124
crossref_primary_10_1101_gr_279955_124
crossref_primary_10_3389_fimmu_2024_1507218
crossref_primary_10_1038_s43587_025_00857_7
crossref_primary_10_1128_jvi_01055_24
crossref_primary_10_1038_s41467_024_50875_z
crossref_primary_10_1038_s41587_025_02777_8
crossref_primary_10_1016_j_humgen_2024_201300
crossref_primary_10_1016_j_cell_2025_03_013
crossref_primary_10_3390_ijms24098130
crossref_primary_10_1016_j_biopsych_2025_01_028
crossref_primary_10_1038_s41467_024_53333_y
crossref_primary_10_1111_cas_16436
crossref_primary_10_1038_s41467_023_40611_4
crossref_primary_10_1158_2159_8290_CD_24_1383
crossref_primary_10_3390_ijms25115929
crossref_primary_10_1016_j_annonc_2023_12_011
crossref_primary_10_1016_j_celrep_2025_116089
crossref_primary_10_1093_gigascience_giaf065
crossref_primary_10_1186_s12284_024_00753_5
crossref_primary_10_3390_ijms26073185
crossref_primary_10_1038_s41698_024_00606_w
crossref_primary_10_1016_j_biortech_2025_133102
crossref_primary_10_3389_fphar_2025_1605162
crossref_primary_10_1126_science_adr8785
crossref_primary_10_1186_s13059_024_03180_3
crossref_primary_10_3389_fimmu_2024_1500696
crossref_primary_10_1186_s12967_025_06423_4
crossref_primary_10_1038_s41467_025_61222_1
crossref_primary_10_3390_ijms242015134
crossref_primary_10_1038_s41564_025_02034_3
crossref_primary_10_1038_s42003_023_04834_x
crossref_primary_10_1038_s41588_023_01523_7
crossref_primary_10_1161_HYPERTENSIONAHA_124_24490
crossref_primary_10_1084_jem_20242174
crossref_primary_10_1016_j_mcpro_2025_101034
crossref_primary_10_1186_s13046_024_03270_x
crossref_primary_10_1016_j_bioactmat_2025_07_047
crossref_primary_10_1007_s44007_025_00149_x
crossref_primary_10_1038_s41589_023_01376_5
crossref_primary_10_1002_adfm_202311139
crossref_primary_10_1016_j_envpol_2023_122359
crossref_primary_10_1016_j_stem_2025_06_006
crossref_primary_10_1371_journal_pcbi_1011630
crossref_primary_10_2147_CMAR_S445248
crossref_primary_10_1016_j_biopha_2023_114904
crossref_primary_10_1126_sciadv_ado1164
crossref_primary_10_1371_journal_pcbi_1011079
crossref_primary_10_1002_advs_202509090
crossref_primary_10_1007_s42485_025_00192_w
crossref_primary_10_1038_s41467_024_54364_1
crossref_primary_10_34133_research_0545
crossref_primary_10_1007_s00204_025_04089_x
crossref_primary_10_1016_j_jaci_2025_05_022
crossref_primary_10_1186_s13073_025_01498_6
crossref_primary_10_4049_jimmunol_2300513
crossref_primary_10_1038_s41467_024_51426_2
crossref_primary_10_1038_s41421_023_00605_4
crossref_primary_10_1002_adhm_202403446
crossref_primary_10_1126_sciadv_adr7174
crossref_primary_10_1016_j_jpha_2024_101065
crossref_primary_10_1093_bib_bbad075
crossref_primary_10_1007_s11306_025_02335_y
crossref_primary_10_1038_s41586_024_08172_8
crossref_primary_10_3389_fimmu_2025_1547949
crossref_primary_10_1038_s41467_025_57047_7
crossref_primary_10_3390_cancers16061173
crossref_primary_10_1038_s41591_024_03418_4
crossref_primary_10_1093_bioinformatics_btaf210
crossref_primary_10_1038_s41467_024_48366_2
crossref_primary_10_1161_CIRCRESAHA_124_325656
crossref_primary_10_1186_s12864_024_10730_3
crossref_primary_10_1038_s41586_025_09522_w
crossref_primary_10_1007_s12013_024_01478_4
crossref_primary_10_1093_nar_gkad960
crossref_primary_10_3389_fcell_2023_1236243
crossref_primary_10_1158_1535_7163_MCT_24_0744
crossref_primary_10_1016_j_jid_2025_05_004
crossref_primary_10_1038_s41375_025_02706_3
crossref_primary_10_1038_s41467_023_43373_1
crossref_primary_10_1038_s41746_024_01317_z
crossref_primary_10_1093_nar_gkad966
crossref_primary_10_3390_ijms252212322
crossref_primary_10_1093_bib_bbad500
crossref_primary_10_1016_j_cell_2023_08_041
crossref_primary_10_7717_peerj_16351
crossref_primary_10_1038_s41467_024_50194_3
crossref_primary_10_1002_advs_202503539
crossref_primary_10_1016_j_compbiolchem_2024_108260
crossref_primary_10_1016_j_cell_2024_12_023
crossref_primary_10_1016_j_isci_2025_112808
crossref_primary_10_1038_s41467_024_54973_w
crossref_primary_10_1083_jcb_202403083
crossref_primary_10_1186_s13059_025_03608_4
crossref_primary_10_1093_bioadv_vbae065
crossref_primary_10_1038_s42003_024_06409_w
crossref_primary_10_1016_j_neuron_2025_04_017
crossref_primary_10_1136_jitc_2023_008628
crossref_primary_10_1016_j_isci_2024_110116
crossref_primary_10_1038_s41586_023_06110_8
crossref_primary_10_1371_journal_pcbi_1013351
crossref_primary_10_1016_j_crmeth_2023_100581
crossref_primary_10_1186_s13059_025_03550_5
crossref_primary_10_3390_ijms24119282
crossref_primary_10_1038_s41467_025_63990_2
crossref_primary_10_1101_gr_280014_124
crossref_primary_10_3390_biomedicines13051218
crossref_primary_10_1002_imt2_115
crossref_primary_10_1016_j_stem_2025_01_012
crossref_primary_10_1158_2159_8290_CD_23_0216
crossref_primary_10_3389_fimmu_2025_1644983
crossref_primary_10_1158_0008_5472_CAN_25_0269
crossref_primary_10_1371_journal_pone_0305816
crossref_primary_10_1126_sciadv_adu2151
crossref_primary_10_1038_s41467_024_52176_x
crossref_primary_10_1093_braincomms_fcaf184
crossref_primary_10_1126_science_adl6173
crossref_primary_10_1016_j_stem_2024_08_006
crossref_primary_10_1038_s43588_025_00809_6
crossref_primary_10_3389_fmolb_2023_1228640
crossref_primary_10_1038_s43018_024_00740_1
crossref_primary_10_1002_path_6406
crossref_primary_10_1093_bib_bbaf020
crossref_primary_10_1038_s41467_023_41602_1
crossref_primary_10_1080_19768354_2023_2287085
crossref_primary_10_1186_s12014_025_09556_2
crossref_primary_10_1038_s42256_023_00734_1
crossref_primary_10_1002_advs_202413457
crossref_primary_10_1126_sciadv_adn8631
crossref_primary_10_1038_s41586_024_08100_w
crossref_primary_10_1038_s42003_024_06044_5
crossref_primary_10_1016_j_xcrm_2025_102210
crossref_primary_10_1016_j_cell_2025_03_041
crossref_primary_10_3389_fimmu_2024_1431303
crossref_primary_10_1186_s13059_025_03530_9
crossref_primary_10_1073_pnas_2515564122
crossref_primary_10_1016_j_xcrm_2025_102316
crossref_primary_10_1016_j_celrep_2024_114328
crossref_primary_10_1038_s41591_023_02643_7
crossref_primary_10_1126_sciadv_adu1521
crossref_primary_10_1038_s41467_024_55325_4
crossref_primary_10_1002_1873_3468_70162
crossref_primary_10_1016_j_modpat_2025_100866
crossref_primary_10_1038_s41416_024_02668_w
crossref_primary_10_1038_s41467_024_55724_7
crossref_primary_10_1038_s41587_023_02109_8
crossref_primary_10_1038_s41591_025_03899_x
crossref_primary_10_1038_s44161_024_00538_5
crossref_primary_10_1016_j_biopsych_2024_12_022
crossref_primary_10_1186_s13059_025_03697_1
crossref_primary_10_1016_j_cels_2025_101346
crossref_primary_10_1038_s41467_025_62048_7
crossref_primary_10_1177_13872877251335891
crossref_primary_10_1038_s41467_025_58481_3
crossref_primary_10_1038_s41467_024_54728_7
crossref_primary_10_1186_s40246_023_00503_6
crossref_primary_10_7554_eLife_97144
crossref_primary_10_1038_s44319_025_00496_4
crossref_primary_10_3390_antiox14060744
crossref_primary_10_1186_s13059_025_03588_5
crossref_primary_10_3390_biology13110848
crossref_primary_10_1038_s43587_024_00798_7
crossref_primary_10_1038_s41467_023_43077_6
crossref_primary_10_1038_s41467_025_61022_7
crossref_primary_10_1016_j_celrep_2025_116217
crossref_primary_10_1016_j_procs_2024_10_236
crossref_primary_10_1016_j_celrep_2025_115922
crossref_primary_10_7554_eLife_104423_3
crossref_primary_10_1038_s42003_024_07171_9
crossref_primary_10_3390_receptors2020009
crossref_primary_10_1016_j_ijbiomac_2025_146774
crossref_primary_10_1136_jitc_2023_006766
crossref_primary_10_1038_s41467_024_50608_2
crossref_primary_10_1083_jcb_202409123
crossref_primary_10_1038_s42003_024_06273_8
crossref_primary_10_3389_fimmu_2025_1530214
crossref_primary_10_1002_advs_202403572
crossref_primary_10_1186_s13058_024_01836_3
crossref_primary_10_1186_s12885_024_12331_5
crossref_primary_10_1016_j_isci_2025_113382
crossref_primary_10_3390_ijms26052162
crossref_primary_10_1016_j_heliyon_2025_e43854
crossref_primary_10_3389_fgene_2025_1560841
crossref_primary_10_1016_j_jad_2025_03_003
crossref_primary_10_1038_s41598_024_84711_7
crossref_primary_10_1126_science_adq2004
crossref_primary_10_1038_s41598_024_83090_3
crossref_primary_10_1038_s42003_025_08533_7
crossref_primary_10_1016_j_csbj_2024_11_009
crossref_primary_10_1038_s41586_024_08150_0
crossref_primary_10_1016_j_immuni_2024_03_018
crossref_primary_10_1109_TCBB_2024_3442669
crossref_primary_10_1038_s41420_025_02405_z
crossref_primary_10_1038_s41467_024_55691_z
crossref_primary_10_1016_j_xpro_2025_103932
crossref_primary_10_1038_s41523_023_00582_7
crossref_primary_10_1016_j_artmed_2024_102840
crossref_primary_10_1038_s41592_024_02530_0
crossref_primary_10_1093_bib_bbae255
crossref_primary_10_1038_s42003_024_06454_5
crossref_primary_10_1038_s41588_025_02182_6
crossref_primary_10_1093_bioinformatics_btaf158
crossref_primary_10_1016_j_molcel_2025_03_004
crossref_primary_10_1038_s41416_023_02402_y
crossref_primary_10_1007_s11227_024_06127_4
crossref_primary_10_1038_s41592_024_02201_0
crossref_primary_10_1186_s13072_025_00579_5
crossref_primary_10_3389_fonc_2024_1348299
crossref_primary_10_1002_ijc_35134
crossref_primary_10_7554_eLife_104423
crossref_primary_10_1016_j_cels_2025_101318
crossref_primary_10_1038_s41588_024_01790_y
crossref_primary_10_1002_smtd_202401272
crossref_primary_10_1038_s41588_024_01906_4
crossref_primary_10_1038_s41467_024_49513_5
crossref_primary_10_1002_cncr_35454
crossref_primary_10_1016_j_celrep_2024_114433
crossref_primary_10_1016_j_cels_2025_101396
crossref_primary_10_1038_s41540_024_00442_5
crossref_primary_10_1038_s41551_024_01287_3
crossref_primary_10_3390_biology14091280
crossref_primary_10_1038_s41467_025_61125_1
crossref_primary_10_1038_s41586_024_08334_8
crossref_primary_10_1128_msystems_01075_24
crossref_primary_10_3390_genes14112012
crossref_primary_10_3389_fimmu_2025_1597417
crossref_primary_10_1038_s41591_024_02995_8
crossref_primary_10_1073_pnas_2317418121
crossref_primary_10_1038_s41598_024_67835_8
crossref_primary_10_1016_j_stem_2023_04_007
crossref_primary_10_1038_s41467_024_51566_5
crossref_primary_10_1093_nar_gkaf865
crossref_primary_10_1111_acel_13870
crossref_primary_10_1038_s41592_024_02463_8
crossref_primary_10_3390_ijms24086926
crossref_primary_10_1038_s41596_023_00892_x
crossref_primary_10_3390_biology13070492
crossref_primary_10_1016_j_celrep_2025_116147
crossref_primary_10_1038_s41698_025_00992_9
crossref_primary_10_1016_j_cels_2025_101266
crossref_primary_10_1038_s41467_025_62988_0
crossref_primary_10_1038_s41564_025_02078_5
crossref_primary_10_1038_s41591_024_03249_3
crossref_primary_10_1177_03946320251324821
crossref_primary_10_3389_fgene_2023_1270185
crossref_primary_10_1016_j_immuni_2025_02_012
crossref_primary_10_1038_s41587_023_01940_3
crossref_primary_10_1016_j_immuni_2025_02_011
crossref_primary_10_3389_fimmu_2025_1521038
crossref_primary_10_1016_j_jpha_2025_101297
crossref_primary_10_1093_nargab_lqaf068
crossref_primary_10_1186_s12859_024_05886_4
crossref_primary_10_1134_S0006297924100079
crossref_primary_10_1186_s13293_024_00652_w
crossref_primary_10_1038_s41591_024_02972_1
crossref_primary_10_1038_s41592_024_02501_5
crossref_primary_10_1016_j_crmeth_2025_101181
crossref_primary_10_1038_s41467_024_51859_9
crossref_primary_10_1038_s41590_024_01789_x
crossref_primary_10_1371_journal_pcbi_1012742
crossref_primary_10_1038_s41467_025_58665_x
crossref_primary_10_1111_acel_14056
crossref_primary_10_1093_nar_gkaf630
crossref_primary_10_1111_pbi_14570
crossref_primary_10_1016_j_xgen_2025_100881
crossref_primary_10_1016_j_isci_2024_109184
crossref_primary_10_1016_j_xgen_2025_100891
crossref_primary_10_1038_s41467_025_62528_w
crossref_primary_10_1093_bib_bbad490
crossref_primary_10_1093_hmg_ddaf016
crossref_primary_10_1002_advs_202506176
crossref_primary_10_1038_s41592_024_02378_4
crossref_primary_10_1084_jem_20242007
crossref_primary_10_3390_app132011399
crossref_primary_10_1038_s43587_024_00645_9
crossref_primary_10_1093_molbev_msae200
crossref_primary_10_1038_s41467_024_50774_3
crossref_primary_10_1158_0008_5472_CAN_24_0690
crossref_primary_10_15252_embj_2023113898
crossref_primary_10_1038_s41598_024_63399_9
crossref_primary_10_1073_pnas_2406842121
crossref_primary_10_1016_j_isci_2025_113061
crossref_primary_10_1126_scitranslmed_adh0908
crossref_primary_10_7554_eLife_97144_3
crossref_primary_10_1016_j_immuni_2025_01_006
crossref_primary_10_1038_s41587_025_02649_1
crossref_primary_10_1038_s41586_023_06819_6
crossref_primary_10_1111_febs_17402
crossref_primary_10_1016_j_cell_2024_10_046
crossref_primary_10_1126_scitranslmed_adr0942
crossref_primary_10_1155_2024_1834636
crossref_primary_10_1016_j_celrep_2024_114586
crossref_primary_10_1212_NXI_0000000000200407
crossref_primary_10_31083_FBL41221
crossref_primary_10_1089_omi_2024_0201
crossref_primary_10_1186_s12931_025_03120_0
crossref_primary_10_1002_qub2_78
crossref_primary_10_1093_bib_bbae574
crossref_primary_10_1016_j_cell_2025_05_038
crossref_primary_10_1038_s41586_024_08285_0
crossref_primary_10_3389_frai_2025_1528562
crossref_primary_10_1038_s41467_024_51411_9
crossref_primary_10_1016_j_csbj_2025_06_010
crossref_primary_10_1084_jem_20230707
crossref_primary_10_3390_biomedicines11102805
crossref_primary_10_3390_ijms25094636
crossref_primary_10_1038_s41467_025_58089_7
crossref_primary_10_1371_journal_pone_0309455
crossref_primary_10_3390_ijms242417169
crossref_primary_10_1002_alz_14543
crossref_primary_10_1016_j_celrep_2025_116276
crossref_primary_10_1038_s42003_025_07459_4
crossref_primary_10_1038_s41467_025_60831_0
crossref_primary_10_1097_j_pain_0000000000003743
crossref_primary_10_1186_s13059_024_03380_x
crossref_primary_10_1016_j_tranon_2025_102283
crossref_primary_10_1038_s41586_024_07663_y
crossref_primary_10_1038_s41598_023_41847_2
crossref_primary_10_1186_s12885_024_13074_z
crossref_primary_10_1186_s12906_023_04233_z
crossref_primary_10_1038_s41588_024_01989_z
crossref_primary_10_3390_biomedicines11123298
Cites_doi 10.1016/j.stem.2011.02.020
10.1186/1471-2105-14-128
10.2147/OTT.S198998
10.1093/nar/gkw377
10.1073/pnas.0506580102
10.1186/s13059-017-1382-0
10.4161/cc.26417
10.1101/gr.271874.120
10.1038/s41576-018-0088-9
10.1093/bioinformatics/btac076
10.1038/nbt.4042
10.1002/cpz1.90
10.1038/s41467-021-26410-9
10.1093/bioinformatics/btm369
10.1172/JCI128212
10.1038/nature08460
10.1093/bioinformatics/bti525
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btac757
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC9805564
36426870
10_1093_bioinformatics_btac757
10.1093/bioinformatics/btac757
Genre Journal Article
Research Support, N.I.H., Extramural
Report
GrantInformation_xml – fundername: National Institute of Health
– fundername: National Institute for Drug Addiction
  grantid: 5U01DA04439902
– fundername: ;
– fundername: ;
  grantid: 5U01DA04439902
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c484t-4774f720adbb4d38eae6a94c01af1b17fb7c4911fe18abbc3041813d22b20ee23
IEDL.DBID TOX
ISICitedReferencesCount 436
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001025519200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:37:55 EDT 2025
Fri Jul 11 15:39:58 EDT 2025
Mon Oct 06 17:43:03 EDT 2025
Wed Feb 19 02:25:35 EST 2025
Sat Nov 29 03:49:25 EST 2025
Tue Nov 18 22:22:52 EST 2025
Wed Apr 02 07:03:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-4774f720adbb4d38eae6a94c01af1b17fb7c4911fe18abbc3041813d22b20ee23
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9754-0593
0000-0001-6191-7697
0000-0002-7418-1313
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btac757
PMID 36426870
PQID 3133523058
PQPubID 36124
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9805564
proquest_miscellaneous_2740511596
proquest_journals_3133523058
pubmed_primary_36426870
crossref_citationtrail_10_1093_bioinformatics_btac757
crossref_primary_10_1093_bioinformatics_btac757
oup_primary_10_1093_bioinformatics_btac757
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Lakkis (2023010107541886800_btac757-B13) 2021
Durinck (2023010107541886800_btac757-B4) 2005; 21
Labrecque (2023010107541886800_btac757-B11) 2019
Merlos-Suarez (2023010107541886800_btac757-B14) 2011; 8
Xie (2023010107541886800_btac757-B20) 2021; 1
Corominas-Faja (2023010107541886800_btac757-B3) 2013; 12
Kiselev (2023010107541886800_btac757-B8) 2019; 20
Kuleshov (2023010107541886800_btac757-B10) 2016; 44
Verstockt (2023010107541886800_btac757-B17) 2019
Barbie (2023010107541886800_btac757-B1) 2009; 462
Guan (2023010107541886800_btac757-B6) 2021; 12
Wolf (2023010107541886800_btac757-B19) 2018; 19
Lachmann (2023010107541886800_btac757-B12) 2022; 38
Subramanian (2023010107541886800_btac757-B16) 2005; 102
Subramanian (2023010107541886800_btac757-B15) 2007; 23
Kang (2023010107541886800_btac757-B7) 2018; 36
Chen (2023010107541886800_btac757-B2) 2013; 14
Wang (2023010107541886800_btac757-B18) 2019; 12
Korotkevich (2023010107541886800_btac757-B9) 2021
References_xml – volume: 8
  start-page: 511
  year: 2011
  ident: 2023010107541886800_btac757-B14
  article-title: The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.02.020
– volume: 14
  start-page: 128
  year: 2013
  ident: 2023010107541886800_btac757-B2
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-128
– volume: 12
  start-page: 5979
  year: 2019
  ident: 2023010107541886800_btac757-B18
  article-title: Identification of seven-gene signature for prediction of lung squamous cell carcinoma
  publication-title: Onco. Targets Ther
  doi: 10.2147/OTT.S198998
– volume: 44
  start-page: W90
  year: 2016
  ident: 2023010107541886800_btac757-B10
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw377
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2023010107541886800_btac757-B16
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 19
  start-page: 15
  year: 2018
  ident: 2023010107541886800_btac757-B19
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 12
  start-page: 3390
  year: 2013
  ident: 2023010107541886800_btac757-B3
  article-title: Stem cell-like ALDH(bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin
  publication-title: Cell Cycle
  doi: 10.4161/cc.26417
– start-page: 1753
  year: 2021
  ident: 2023010107541886800_btac757-B13
  article-title: A joint deep learning model enables simultaneous batch effect correction, denoising and clustering in single-cell transcriptomics
  publication-title: Genome Res.
  doi: 10.1101/gr.271874.120
– volume: 20
  start-page: 273
  year: 2019
  ident: 2023010107541886800_btac757-B8
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat. Rev. Genet
  doi: 10.1038/s41576-018-0088-9
– volume: 38
  start-page: 2356
  year: 2022
  ident: 2023010107541886800_btac757-B12
  article-title: blitzGSEA: efficient computation of gene set enrichment analysis through gamma distribution approximation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac076
– volume: 36
  start-page: 89
  year: 2018
  ident: 2023010107541886800_btac757-B7
  article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.4042
– volume: 1
  start-page: e90
  year: 2021
  ident: 2023010107541886800_btac757-B20
  article-title: Gene set knowledge discovery with Enrichr
  publication-title: Curr. Protoc
  doi: 10.1002/cpz1.90
– volume: 12
  start-page: 6138
  year: 2021
  ident: 2023010107541886800_btac757-B6
  article-title: A human multi-lineage hepatic organoid model for liver fibrosis
  publication-title: Nat. Commun
  doi: 10.1038/s41467-021-26410-9
– volume: 23
  start-page: 3251
  year: 2007
  ident: 2023010107541886800_btac757-B15
  article-title: GSEA-P: a desktop application for gene set enrichment analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm369
– year: 2019
  ident: 2023010107541886800_btac757-B11
  article-title: Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI128212
– volume: 462
  start-page: 108
  year: 2009
  ident: 2023010107541886800_btac757-B1
  article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
  publication-title: Nature
  doi: 10.1038/nature08460
– year: 2021
  ident: 2023010107541886800_btac757-B9
– volume: 21
  start-page: 3439
  year: 2005
  ident: 2023010107541886800_btac757-B4
  article-title: BioMart and bioconductor: a powerful link between biological databases and microarray data analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti525
– start-page: 1142
  year: 2019
  ident: 2023010107541886800_btac757-B17
  article-title: Expression levels of 4 genes in Colon tissue might be used to predict which patients will enter endoscopic remission after vedolizumab therapy for inflammatory bowel diseases
  publication-title: Clin. Gastroenterol. Hepatol
SSID ssj0005056
Score 2.7399774
Snippet Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently...
Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to...
Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Application programming interface
Applications Note
Availability
Bioinformatics
Datasets
Documentation
Enrichment
Gene expression
Gene set enrichment analysis
Software
Source code
Web services
Title GSEApy: a comprehensive package for performing gene set enrichment analysis in Python
URI https://www.ncbi.nlm.nih.gov/pubmed/36426870
https://www.proquest.com/docview/3133523058
https://www.proquest.com/docview/2740511596
https://pubmed.ncbi.nlm.nih.gov/PMC9805564
Volume 39
WOSCitedRecordID wos001025519200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-y0MFe1rXbOrdZ0KBPAxNbkm25b6W061MbWAt5M_oyMS1OSNxC_vuebCeNA2PdnvVlS6f70t3vAE5NziOmmPITF1uB9pf0ZaQDXwaSmkjHJjW8LjaR3NyIySQd9yBc58LsPuGnbKSKWQsi6oCLR6qSOolc_ngYCUfZd7eT16AOlOfrPOA_Du2IoE5a25Z2uRskuSV1rvb_43s_wcdWxSTnDU0cQM-Wh_C-KTq5-gz3v35fns9XZ0QSF0--sNMmhp2g9fyA3IXgpGTe5BOgXCNIYZYsbUWQ0go9dd5EIlsoE1KUZLxy8ANf4P7q8u7i2m-LK_iaC175HPW-PKGBNEpxw4SVNpYp10Eo81CFSa4SzZET5jYUUinNAo7KADOUKhpYS9lX6Jez0n4DkjNrRMxFnFPNI0uV0Kk00grGcRoReBCt9zvTLfK4K4DxmDUv4CzrblnWbpkHo824eYO98dcRP_E439x5sD71rL24y4yFLgkNmaDw4MemGa-ce0eRpZ09LTM05JGVoR4Ye3DUEMlmSYb2XIw80IOkQz6bDg7Ou9tSFtMa1jsVDtiIH__LP5zAB4paV-MTGkC_WjzZ77Cnn6tiuRjCu2QihrWbYVjfkxeLrx2z
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GSEApy%3A+a+comprehensive+package+for+performing+gene+set+enrichment+analysis+in+Python&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Fang%2C+Zhuoqing&rft.au=Liu%2C+Xinyuan&rft.au=Peltz%2C+Gary&rft.date=2023-01-01&rft.eissn=1367-4811&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac757&rft_id=info%3Apmid%2F36426870&rft.externalDocID=36426870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon