GSEApy: a comprehensive package for performing gene set enrichment analysis in Python
Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-...
Uložené v:
| Vydané v: | Bioinformatics (Oxford, England) Ročník 39; číslo 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
01.01.2023
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1367-4811, 1367-4803, 1367-4811 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Motivation
Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets.
Results
We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis.
Availability and implementation
The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/.
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| AbstractList | Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. Results We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. Availability and implementation The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary information Supplementary data are available at Bioinformatics online. Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary data are available at Bioinformatics online. Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets.MOTIVATIONGene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets.We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis.RESULTSWe present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis.The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/.AVAILABILITY AND IMPLEMENTATIONThe new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Abstract Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to perform GSEA have a limited ability to analyze large datasets, which is particularly problematic for the analysis of single-cell data. To overcome this limitation, we developed a GSEA package in Python (GSEApy), which could efficiently analyze large single-cell datasets. Results We present a package (GSEApy) that performs GSEA in either the command line or Python environment. GSEApy uses a Rust implementation to enable it to calculate the same enrichment statistic as GSEA for a collection of pathways. The Rust implementation of GSEApy is 3-fold faster than the Numpy version of GSEApy (v0.10.8) and uses >4-fold less memory. GSEApy also provides an interface between Python and Enrichr web services, as well as for BioMart. The Enrichr application programming interface enables GSEApy to perform over-representation analysis for an input gene list. Furthermore, GSEApy consists of several tools, each designed to facilitate a particular type of enrichment analysis. Availability and implementation The new GSEApy with Rust extension is deposited in PyPI: https://pypi.org/project/gseapy/. The GSEApy source code is freely available at https://github.com/zqfang/GSEApy. Also, the documentation website is available at https://gseapy.rtfd.io/. Supplementary information Supplementary data are available at Bioinformatics online. |
| Author | Peltz, Gary Liu, Xinyuan Fang, Zhuoqing |
| Author_xml | – sequence: 1 givenname: Zhuoqing orcidid: 0000-0002-7418-1313 surname: Fang fullname: Fang, Zhuoqing – sequence: 2 givenname: Xinyuan orcidid: 0000-0002-9754-0593 surname: Liu fullname: Liu, Xinyuan – sequence: 3 givenname: Gary orcidid: 0000-0001-6191-7697 surname: Peltz fullname: Peltz, Gary email: gpeltz@stanford.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36426870$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUVtrFDEUDlKxF_0LJeCLL2tzJslkRkQopbaFgoL2OSTZM7upM8mYzBT235tlt9L2RZ9O4Hy3k--YHIQYkJBTYB-BtfzM-uhDF9NgJu_ymZ2MU1K9IkfAa7UQDcDBk_chOc75njEmmazfkENei6puFDsid1c_Ls_HzSdqqIvDmHCNIfsHpKNxv8wKafGgI6atlQ8rusKANONEMSTv1gOGiZpg-k32mfpAv2-mdQxvyevO9Bnf7ecJuft6-fPienH77erm4vx24UQjpoVQSnSqYmZprVjyBg3WphWOgenAguqscqIF6BAaY63jTEADfFlVtmKIFT8hX3a642wHXLqSJplej8kPJm10NF4_3wS_1qv4oNuGSVmLIvBhL5Di7xnzpAefHfa9CRjnrCslmASQbV2g719A7-OcyulZc-BcVpzJpqBOnyb6G-Xxxwvg8w7gUsw5Yaedn0qJcRvQ9xqY3hasnxes9wUXev2C_ujwTyLsiHEe_5fzB-NpxZk |
| CitedBy_id | crossref_primary_10_1016_j_jbiotec_2025_01_010 crossref_primary_10_1093_biolre_ioae136 crossref_primary_10_3389_fimmu_2023_1279245 crossref_primary_10_1038_s41419_024_07160_0 crossref_primary_10_1038_s41467_024_53830_0 crossref_primary_10_1093_bioinformatics_btae434 crossref_primary_10_1186_s12859_024_05873_9 crossref_primary_10_1016_j_canlet_2025_217855 crossref_primary_10_1038_s41467_025_60494_x crossref_primary_10_1242_dev_202593 crossref_primary_10_3389_fimmu_2024_1428773 crossref_primary_10_1186_s12967_024_06007_8 crossref_primary_10_1038_s41551_025_01466_w crossref_primary_10_3389_fgene_2023_1256991 crossref_primary_10_1038_s41467_024_54182_5 crossref_primary_10_1038_s41467_025_56535_0 crossref_primary_10_1016_j_actbio_2024_12_007 crossref_primary_10_1016_j_mcn_2025_104014 crossref_primary_10_1038_s41523_024_00709_4 crossref_primary_10_3390_plants14152422 crossref_primary_10_1002_glia_24638 crossref_primary_10_1111_ejh_14426 crossref_primary_10_1016_j_molmet_2023_101768 crossref_primary_10_1016_j_immuni_2024_05_021 crossref_primary_10_1038_s41467_024_50150_1 crossref_primary_10_1016_j_taap_2025_117530 crossref_primary_10_1093_bioadv_vbaf196 crossref_primary_10_1093_nar_gkaf791 crossref_primary_10_1016_j_immuni_2024_08_002 crossref_primary_10_1038_s41592_024_02266_x crossref_primary_10_1128_msystems_01395_24 crossref_primary_10_3389_fimmu_2025_1572823 crossref_primary_10_1016_j_xgen_2025_100842 crossref_primary_10_1038_s41590_023_01654_3 crossref_primary_10_1093_nar_gkae346 crossref_primary_10_1186_s11658_025_00758_y crossref_primary_10_1021_acs_jproteome_4c00632 crossref_primary_10_1016_j_medj_2023_12_001 crossref_primary_10_1101_gr_280235_124 crossref_primary_10_1101_gr_279955_124 crossref_primary_10_3389_fimmu_2024_1507218 crossref_primary_10_1038_s43587_025_00857_7 crossref_primary_10_1128_jvi_01055_24 crossref_primary_10_1038_s41467_024_50875_z crossref_primary_10_1038_s41587_025_02777_8 crossref_primary_10_1016_j_humgen_2024_201300 crossref_primary_10_1016_j_cell_2025_03_013 crossref_primary_10_3390_ijms24098130 crossref_primary_10_1016_j_biopsych_2025_01_028 crossref_primary_10_1038_s41467_024_53333_y crossref_primary_10_1111_cas_16436 crossref_primary_10_1038_s41467_023_40611_4 crossref_primary_10_1158_2159_8290_CD_24_1383 crossref_primary_10_3390_ijms25115929 crossref_primary_10_1016_j_annonc_2023_12_011 crossref_primary_10_1016_j_celrep_2025_116089 crossref_primary_10_1093_gigascience_giaf065 crossref_primary_10_1186_s12284_024_00753_5 crossref_primary_10_3390_ijms26073185 crossref_primary_10_1038_s41698_024_00606_w crossref_primary_10_1016_j_biortech_2025_133102 crossref_primary_10_3389_fphar_2025_1605162 crossref_primary_10_1126_science_adr8785 crossref_primary_10_1186_s13059_024_03180_3 crossref_primary_10_3389_fimmu_2024_1500696 crossref_primary_10_1186_s12967_025_06423_4 crossref_primary_10_1038_s41467_025_61222_1 crossref_primary_10_3390_ijms242015134 crossref_primary_10_1038_s41564_025_02034_3 crossref_primary_10_1038_s42003_023_04834_x crossref_primary_10_1038_s41588_023_01523_7 crossref_primary_10_1161_HYPERTENSIONAHA_124_24490 crossref_primary_10_1084_jem_20242174 crossref_primary_10_1016_j_mcpro_2025_101034 crossref_primary_10_1186_s13046_024_03270_x crossref_primary_10_1016_j_bioactmat_2025_07_047 crossref_primary_10_1007_s44007_025_00149_x crossref_primary_10_1038_s41589_023_01376_5 crossref_primary_10_1002_adfm_202311139 crossref_primary_10_1016_j_envpol_2023_122359 crossref_primary_10_1016_j_stem_2025_06_006 crossref_primary_10_1371_journal_pcbi_1011630 crossref_primary_10_2147_CMAR_S445248 crossref_primary_10_1016_j_biopha_2023_114904 crossref_primary_10_1126_sciadv_ado1164 crossref_primary_10_1371_journal_pcbi_1011079 crossref_primary_10_1002_advs_202509090 crossref_primary_10_1007_s42485_025_00192_w crossref_primary_10_1038_s41467_024_54364_1 crossref_primary_10_34133_research_0545 crossref_primary_10_1007_s00204_025_04089_x crossref_primary_10_1016_j_jaci_2025_05_022 crossref_primary_10_1186_s13073_025_01498_6 crossref_primary_10_4049_jimmunol_2300513 crossref_primary_10_1038_s41467_024_51426_2 crossref_primary_10_1038_s41421_023_00605_4 crossref_primary_10_1002_adhm_202403446 crossref_primary_10_1126_sciadv_adr7174 crossref_primary_10_1016_j_jpha_2024_101065 crossref_primary_10_1093_bib_bbad075 crossref_primary_10_1007_s11306_025_02335_y crossref_primary_10_1038_s41586_024_08172_8 crossref_primary_10_3389_fimmu_2025_1547949 crossref_primary_10_1038_s41467_025_57047_7 crossref_primary_10_3390_cancers16061173 crossref_primary_10_1038_s41591_024_03418_4 crossref_primary_10_1093_bioinformatics_btaf210 crossref_primary_10_1038_s41467_024_48366_2 crossref_primary_10_1161_CIRCRESAHA_124_325656 crossref_primary_10_1186_s12864_024_10730_3 crossref_primary_10_1038_s41586_025_09522_w crossref_primary_10_1007_s12013_024_01478_4 crossref_primary_10_1093_nar_gkad960 crossref_primary_10_3389_fcell_2023_1236243 crossref_primary_10_1158_1535_7163_MCT_24_0744 crossref_primary_10_1016_j_jid_2025_05_004 crossref_primary_10_1038_s41375_025_02706_3 crossref_primary_10_1038_s41467_023_43373_1 crossref_primary_10_1038_s41746_024_01317_z crossref_primary_10_1093_nar_gkad966 crossref_primary_10_3390_ijms252212322 crossref_primary_10_1093_bib_bbad500 crossref_primary_10_1016_j_cell_2023_08_041 crossref_primary_10_7717_peerj_16351 crossref_primary_10_1038_s41467_024_50194_3 crossref_primary_10_1002_advs_202503539 crossref_primary_10_1016_j_compbiolchem_2024_108260 crossref_primary_10_1016_j_cell_2024_12_023 crossref_primary_10_1016_j_isci_2025_112808 crossref_primary_10_1038_s41467_024_54973_w crossref_primary_10_1083_jcb_202403083 crossref_primary_10_1186_s13059_025_03608_4 crossref_primary_10_1093_bioadv_vbae065 crossref_primary_10_1038_s42003_024_06409_w crossref_primary_10_1016_j_neuron_2025_04_017 crossref_primary_10_1136_jitc_2023_008628 crossref_primary_10_1016_j_isci_2024_110116 crossref_primary_10_1038_s41586_023_06110_8 crossref_primary_10_1371_journal_pcbi_1013351 crossref_primary_10_1016_j_crmeth_2023_100581 crossref_primary_10_1186_s13059_025_03550_5 crossref_primary_10_3390_ijms24119282 crossref_primary_10_1038_s41467_025_63990_2 crossref_primary_10_1101_gr_280014_124 crossref_primary_10_3390_biomedicines13051218 crossref_primary_10_1002_imt2_115 crossref_primary_10_1016_j_stem_2025_01_012 crossref_primary_10_1158_2159_8290_CD_23_0216 crossref_primary_10_3389_fimmu_2025_1644983 crossref_primary_10_1158_0008_5472_CAN_25_0269 crossref_primary_10_1371_journal_pone_0305816 crossref_primary_10_1126_sciadv_adu2151 crossref_primary_10_1038_s41467_024_52176_x crossref_primary_10_1093_braincomms_fcaf184 crossref_primary_10_1126_science_adl6173 crossref_primary_10_1016_j_stem_2024_08_006 crossref_primary_10_1038_s43588_025_00809_6 crossref_primary_10_3389_fmolb_2023_1228640 crossref_primary_10_1038_s43018_024_00740_1 crossref_primary_10_1002_path_6406 crossref_primary_10_1093_bib_bbaf020 crossref_primary_10_1038_s41467_023_41602_1 crossref_primary_10_1080_19768354_2023_2287085 crossref_primary_10_1186_s12014_025_09556_2 crossref_primary_10_1038_s42256_023_00734_1 crossref_primary_10_1002_advs_202413457 crossref_primary_10_1126_sciadv_adn8631 crossref_primary_10_1038_s41586_024_08100_w crossref_primary_10_1038_s42003_024_06044_5 crossref_primary_10_1016_j_xcrm_2025_102210 crossref_primary_10_1016_j_cell_2025_03_041 crossref_primary_10_3389_fimmu_2024_1431303 crossref_primary_10_1186_s13059_025_03530_9 crossref_primary_10_1073_pnas_2515564122 crossref_primary_10_1016_j_xcrm_2025_102316 crossref_primary_10_1016_j_celrep_2024_114328 crossref_primary_10_1038_s41591_023_02643_7 crossref_primary_10_1126_sciadv_adu1521 crossref_primary_10_1038_s41467_024_55325_4 crossref_primary_10_1002_1873_3468_70162 crossref_primary_10_1016_j_modpat_2025_100866 crossref_primary_10_1038_s41416_024_02668_w crossref_primary_10_1038_s41467_024_55724_7 crossref_primary_10_1038_s41587_023_02109_8 crossref_primary_10_1038_s41591_025_03899_x crossref_primary_10_1038_s44161_024_00538_5 crossref_primary_10_1016_j_biopsych_2024_12_022 crossref_primary_10_1186_s13059_025_03697_1 crossref_primary_10_1016_j_cels_2025_101346 crossref_primary_10_1038_s41467_025_62048_7 crossref_primary_10_1177_13872877251335891 crossref_primary_10_1038_s41467_025_58481_3 crossref_primary_10_1038_s41467_024_54728_7 crossref_primary_10_1186_s40246_023_00503_6 crossref_primary_10_7554_eLife_97144 crossref_primary_10_1038_s44319_025_00496_4 crossref_primary_10_3390_antiox14060744 crossref_primary_10_1186_s13059_025_03588_5 crossref_primary_10_3390_biology13110848 crossref_primary_10_1038_s43587_024_00798_7 crossref_primary_10_1038_s41467_023_43077_6 crossref_primary_10_1038_s41467_025_61022_7 crossref_primary_10_1016_j_celrep_2025_116217 crossref_primary_10_1016_j_procs_2024_10_236 crossref_primary_10_1016_j_celrep_2025_115922 crossref_primary_10_7554_eLife_104423_3 crossref_primary_10_1038_s42003_024_07171_9 crossref_primary_10_3390_receptors2020009 crossref_primary_10_1016_j_ijbiomac_2025_146774 crossref_primary_10_1136_jitc_2023_006766 crossref_primary_10_1038_s41467_024_50608_2 crossref_primary_10_1083_jcb_202409123 crossref_primary_10_1038_s42003_024_06273_8 crossref_primary_10_3389_fimmu_2025_1530214 crossref_primary_10_1002_advs_202403572 crossref_primary_10_1186_s13058_024_01836_3 crossref_primary_10_1186_s12885_024_12331_5 crossref_primary_10_1016_j_isci_2025_113382 crossref_primary_10_3390_ijms26052162 crossref_primary_10_1016_j_heliyon_2025_e43854 crossref_primary_10_3389_fgene_2025_1560841 crossref_primary_10_1016_j_jad_2025_03_003 crossref_primary_10_1038_s41598_024_84711_7 crossref_primary_10_1126_science_adq2004 crossref_primary_10_1038_s41598_024_83090_3 crossref_primary_10_1038_s42003_025_08533_7 crossref_primary_10_1016_j_csbj_2024_11_009 crossref_primary_10_1038_s41586_024_08150_0 crossref_primary_10_1016_j_immuni_2024_03_018 crossref_primary_10_1109_TCBB_2024_3442669 crossref_primary_10_1038_s41420_025_02405_z crossref_primary_10_1038_s41467_024_55691_z crossref_primary_10_1016_j_xpro_2025_103932 crossref_primary_10_1038_s41523_023_00582_7 crossref_primary_10_1016_j_artmed_2024_102840 crossref_primary_10_1038_s41592_024_02530_0 crossref_primary_10_1093_bib_bbae255 crossref_primary_10_1038_s42003_024_06454_5 crossref_primary_10_1038_s41588_025_02182_6 crossref_primary_10_1093_bioinformatics_btaf158 crossref_primary_10_1016_j_molcel_2025_03_004 crossref_primary_10_1038_s41416_023_02402_y crossref_primary_10_1007_s11227_024_06127_4 crossref_primary_10_1038_s41592_024_02201_0 crossref_primary_10_1186_s13072_025_00579_5 crossref_primary_10_3389_fonc_2024_1348299 crossref_primary_10_1002_ijc_35134 crossref_primary_10_7554_eLife_104423 crossref_primary_10_1016_j_cels_2025_101318 crossref_primary_10_1038_s41588_024_01790_y crossref_primary_10_1002_smtd_202401272 crossref_primary_10_1038_s41588_024_01906_4 crossref_primary_10_1038_s41467_024_49513_5 crossref_primary_10_1002_cncr_35454 crossref_primary_10_1016_j_celrep_2024_114433 crossref_primary_10_1016_j_cels_2025_101396 crossref_primary_10_1038_s41540_024_00442_5 crossref_primary_10_1038_s41551_024_01287_3 crossref_primary_10_3390_biology14091280 crossref_primary_10_1038_s41467_025_61125_1 crossref_primary_10_1038_s41586_024_08334_8 crossref_primary_10_1128_msystems_01075_24 crossref_primary_10_3390_genes14112012 crossref_primary_10_3389_fimmu_2025_1597417 crossref_primary_10_1038_s41591_024_02995_8 crossref_primary_10_1073_pnas_2317418121 crossref_primary_10_1038_s41598_024_67835_8 crossref_primary_10_1016_j_stem_2023_04_007 crossref_primary_10_1038_s41467_024_51566_5 crossref_primary_10_1093_nar_gkaf865 crossref_primary_10_1111_acel_13870 crossref_primary_10_1038_s41592_024_02463_8 crossref_primary_10_3390_ijms24086926 crossref_primary_10_1038_s41596_023_00892_x crossref_primary_10_3390_biology13070492 crossref_primary_10_1016_j_celrep_2025_116147 crossref_primary_10_1038_s41698_025_00992_9 crossref_primary_10_1016_j_cels_2025_101266 crossref_primary_10_1038_s41467_025_62988_0 crossref_primary_10_1038_s41564_025_02078_5 crossref_primary_10_1038_s41591_024_03249_3 crossref_primary_10_1177_03946320251324821 crossref_primary_10_3389_fgene_2023_1270185 crossref_primary_10_1016_j_immuni_2025_02_012 crossref_primary_10_1038_s41587_023_01940_3 crossref_primary_10_1016_j_immuni_2025_02_011 crossref_primary_10_3389_fimmu_2025_1521038 crossref_primary_10_1016_j_jpha_2025_101297 crossref_primary_10_1093_nargab_lqaf068 crossref_primary_10_1186_s12859_024_05886_4 crossref_primary_10_1134_S0006297924100079 crossref_primary_10_1186_s13293_024_00652_w crossref_primary_10_1038_s41591_024_02972_1 crossref_primary_10_1038_s41592_024_02501_5 crossref_primary_10_1016_j_crmeth_2025_101181 crossref_primary_10_1038_s41467_024_51859_9 crossref_primary_10_1038_s41590_024_01789_x crossref_primary_10_1371_journal_pcbi_1012742 crossref_primary_10_1038_s41467_025_58665_x crossref_primary_10_1111_acel_14056 crossref_primary_10_1093_nar_gkaf630 crossref_primary_10_1111_pbi_14570 crossref_primary_10_1016_j_xgen_2025_100881 crossref_primary_10_1016_j_isci_2024_109184 crossref_primary_10_1016_j_xgen_2025_100891 crossref_primary_10_1038_s41467_025_62528_w crossref_primary_10_1093_bib_bbad490 crossref_primary_10_1093_hmg_ddaf016 crossref_primary_10_1002_advs_202506176 crossref_primary_10_1038_s41592_024_02378_4 crossref_primary_10_1084_jem_20242007 crossref_primary_10_3390_app132011399 crossref_primary_10_1038_s43587_024_00645_9 crossref_primary_10_1093_molbev_msae200 crossref_primary_10_1038_s41467_024_50774_3 crossref_primary_10_1158_0008_5472_CAN_24_0690 crossref_primary_10_15252_embj_2023113898 crossref_primary_10_1038_s41598_024_63399_9 crossref_primary_10_1073_pnas_2406842121 crossref_primary_10_1016_j_isci_2025_113061 crossref_primary_10_1126_scitranslmed_adh0908 crossref_primary_10_7554_eLife_97144_3 crossref_primary_10_1016_j_immuni_2025_01_006 crossref_primary_10_1038_s41587_025_02649_1 crossref_primary_10_1038_s41586_023_06819_6 crossref_primary_10_1111_febs_17402 crossref_primary_10_1016_j_cell_2024_10_046 crossref_primary_10_1126_scitranslmed_adr0942 crossref_primary_10_1155_2024_1834636 crossref_primary_10_1016_j_celrep_2024_114586 crossref_primary_10_1212_NXI_0000000000200407 crossref_primary_10_31083_FBL41221 crossref_primary_10_1089_omi_2024_0201 crossref_primary_10_1186_s12931_025_03120_0 crossref_primary_10_1002_qub2_78 crossref_primary_10_1093_bib_bbae574 crossref_primary_10_1016_j_cell_2025_05_038 crossref_primary_10_1038_s41586_024_08285_0 crossref_primary_10_3389_frai_2025_1528562 crossref_primary_10_1038_s41467_024_51411_9 crossref_primary_10_1016_j_csbj_2025_06_010 crossref_primary_10_1084_jem_20230707 crossref_primary_10_3390_biomedicines11102805 crossref_primary_10_3390_ijms25094636 crossref_primary_10_1038_s41467_025_58089_7 crossref_primary_10_1371_journal_pone_0309455 crossref_primary_10_3390_ijms242417169 crossref_primary_10_1002_alz_14543 crossref_primary_10_1016_j_celrep_2025_116276 crossref_primary_10_1038_s42003_025_07459_4 crossref_primary_10_1038_s41467_025_60831_0 crossref_primary_10_1097_j_pain_0000000000003743 crossref_primary_10_1186_s13059_024_03380_x crossref_primary_10_1016_j_tranon_2025_102283 crossref_primary_10_1038_s41586_024_07663_y crossref_primary_10_1038_s41598_023_41847_2 crossref_primary_10_1186_s12885_024_13074_z crossref_primary_10_1186_s12906_023_04233_z crossref_primary_10_1038_s41588_024_01989_z crossref_primary_10_3390_biomedicines11123298 |
| Cites_doi | 10.1016/j.stem.2011.02.020 10.1186/1471-2105-14-128 10.2147/OTT.S198998 10.1093/nar/gkw377 10.1073/pnas.0506580102 10.1186/s13059-017-1382-0 10.4161/cc.26417 10.1101/gr.271874.120 10.1038/s41576-018-0088-9 10.1093/bioinformatics/btac076 10.1038/nbt.4042 10.1002/cpz1.90 10.1038/s41467-021-26410-9 10.1093/bioinformatics/btm369 10.1172/JCI128212 10.1038/nature08460 10.1093/bioinformatics/bti525 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1093/bioinformatics/btac757 |
| DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| ExternalDocumentID | PMC9805564 36426870 10_1093_bioinformatics_btac757 10.1093/bioinformatics/btac757 |
| Genre | Journal Article Research Support, N.I.H., Extramural Report |
| GrantInformation_xml | – fundername: National Institute of Health – fundername: National Institute for Drug Addiction grantid: 5U01DA04439902 – fundername: ; – fundername: ; grantid: 5U01DA04439902 |
| GroupedDBID | --- -E4 -~X .-4 .2P .DC .GJ .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEFU ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AI. AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN AQDSO ARIXL ASPBG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNI RNS ROL RPM RUSNO RW1 RXO RZF RZO SV3 TEORI TJP TLC TOX TR2 VH1 W8F WOQ X7H YAYTL YKOAZ YXANX ZGI ZKX ~91 ~KM AAYXX CITATION ROX ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c484t-4774f720adbb4d38eae6a94c01af1b17fb7c4911fe18abbc3041813d22b20ee23 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 436 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001025519200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4811 1367-4803 |
| IngestDate | Thu Aug 21 18:37:55 EDT 2025 Fri Jul 11 15:39:58 EDT 2025 Mon Oct 06 17:43:03 EDT 2025 Wed Feb 19 02:25:35 EST 2025 Sat Nov 29 03:49:25 EST 2025 Tue Nov 18 22:22:52 EST 2025 Wed Apr 02 07:03:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c484t-4774f720adbb4d38eae6a94c01af1b17fb7c4911fe18abbc3041813d22b20ee23 |
| Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9754-0593 0000-0001-6191-7697 0000-0002-7418-1313 |
| OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btac757 |
| PMID | 36426870 |
| PQID | 3133523058 |
| PQPubID | 36124 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9805564 proquest_miscellaneous_2740511596 proquest_journals_3133523058 pubmed_primary_36426870 crossref_citationtrail_10_1093_bioinformatics_btac757 crossref_primary_10_1093_bioinformatics_btac757 oup_primary_10_1093_bioinformatics_btac757 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2023 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Lakkis (2023010107541886800_btac757-B13) 2021 Durinck (2023010107541886800_btac757-B4) 2005; 21 Labrecque (2023010107541886800_btac757-B11) 2019 Merlos-Suarez (2023010107541886800_btac757-B14) 2011; 8 Xie (2023010107541886800_btac757-B20) 2021; 1 Corominas-Faja (2023010107541886800_btac757-B3) 2013; 12 Kiselev (2023010107541886800_btac757-B8) 2019; 20 Kuleshov (2023010107541886800_btac757-B10) 2016; 44 Verstockt (2023010107541886800_btac757-B17) 2019 Barbie (2023010107541886800_btac757-B1) 2009; 462 Guan (2023010107541886800_btac757-B6) 2021; 12 Wolf (2023010107541886800_btac757-B19) 2018; 19 Lachmann (2023010107541886800_btac757-B12) 2022; 38 Subramanian (2023010107541886800_btac757-B16) 2005; 102 Subramanian (2023010107541886800_btac757-B15) 2007; 23 Kang (2023010107541886800_btac757-B7) 2018; 36 Chen (2023010107541886800_btac757-B2) 2013; 14 Wang (2023010107541886800_btac757-B18) 2019; 12 Korotkevich (2023010107541886800_btac757-B9) 2021 |
| References_xml | – volume: 8 start-page: 511 year: 2011 ident: 2023010107541886800_btac757-B14 article-title: The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.02.020 – volume: 14 start-page: 128 year: 2013 ident: 2023010107541886800_btac757-B2 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-128 – volume: 12 start-page: 5979 year: 2019 ident: 2023010107541886800_btac757-B18 article-title: Identification of seven-gene signature for prediction of lung squamous cell carcinoma publication-title: Onco. Targets Ther doi: 10.2147/OTT.S198998 – volume: 44 start-page: W90 year: 2016 ident: 2023010107541886800_btac757-B10 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw377 – volume: 102 start-page: 15545 year: 2005 ident: 2023010107541886800_btac757-B16 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 19 start-page: 15 year: 2018 ident: 2023010107541886800_btac757-B19 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 12 start-page: 3390 year: 2013 ident: 2023010107541886800_btac757-B3 article-title: Stem cell-like ALDH(bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin publication-title: Cell Cycle doi: 10.4161/cc.26417 – start-page: 1753 year: 2021 ident: 2023010107541886800_btac757-B13 article-title: A joint deep learning model enables simultaneous batch effect correction, denoising and clustering in single-cell transcriptomics publication-title: Genome Res. doi: 10.1101/gr.271874.120 – volume: 20 start-page: 273 year: 2019 ident: 2023010107541886800_btac757-B8 article-title: Challenges in unsupervised clustering of single-cell RNA-seq data publication-title: Nat. Rev. Genet doi: 10.1038/s41576-018-0088-9 – volume: 38 start-page: 2356 year: 2022 ident: 2023010107541886800_btac757-B12 article-title: blitzGSEA: efficient computation of gene set enrichment analysis through gamma distribution approximation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac076 – volume: 36 start-page: 89 year: 2018 ident: 2023010107541886800_btac757-B7 article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation publication-title: Nat. Biotechnol doi: 10.1038/nbt.4042 – volume: 1 start-page: e90 year: 2021 ident: 2023010107541886800_btac757-B20 article-title: Gene set knowledge discovery with Enrichr publication-title: Curr. Protoc doi: 10.1002/cpz1.90 – volume: 12 start-page: 6138 year: 2021 ident: 2023010107541886800_btac757-B6 article-title: A human multi-lineage hepatic organoid model for liver fibrosis publication-title: Nat. Commun doi: 10.1038/s41467-021-26410-9 – volume: 23 start-page: 3251 year: 2007 ident: 2023010107541886800_btac757-B15 article-title: GSEA-P: a desktop application for gene set enrichment analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm369 – year: 2019 ident: 2023010107541886800_btac757-B11 article-title: Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer publication-title: J. Clin. Invest doi: 10.1172/JCI128212 – volume: 462 start-page: 108 year: 2009 ident: 2023010107541886800_btac757-B1 article-title: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 publication-title: Nature doi: 10.1038/nature08460 – year: 2021 ident: 2023010107541886800_btac757-B9 – volume: 21 start-page: 3439 year: 2005 ident: 2023010107541886800_btac757-B4 article-title: BioMart and bioconductor: a powerful link between biological databases and microarray data analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti525 – start-page: 1142 year: 2019 ident: 2023010107541886800_btac757-B17 article-title: Expression levels of 4 genes in Colon tissue might be used to predict which patients will enter endoscopic remission after vedolizumab therapy for inflammatory bowel diseases publication-title: Clin. Gastroenterol. Hepatol |
| SSID | ssj0005056 |
| Score | 2.7399774 |
| Snippet | Abstract
Motivation
Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently... Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools used to... Motivation Gene set enrichment analysis (GSEA) is a commonly used algorithm for characterizing gene expression changes. However, the currently available tools... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Algorithms Application programming interface Applications Note Availability Bioinformatics Datasets Documentation Enrichment Gene expression Gene set enrichment analysis Software Source code Web services |
| Title | GSEApy: a comprehensive package for performing gene set enrichment analysis in Python |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36426870 https://www.proquest.com/docview/3133523058 https://www.proquest.com/docview/2740511596 https://pubmed.ncbi.nlm.nih.gov/PMC9805564 |
| Volume | 39 |
| WOSCitedRecordID | wos001025519200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access (Activated by CARLI) customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-y0MFe1rXbOrdZ0KBPAxNbkm25b6W061MbWAt5M_oyMS1OSNxC_vuebCeNA2PdnvVlS6f70t3vAE5NziOmmPITF1uB9pf0ZaQDXwaSmkjHJjW8LjaR3NyIySQd9yBc58LsPuGnbKSKWQsi6oCLR6qSOolc_ngYCUfZd7eT16AOlOfrPOA_Du2IoE5a25Z2uRskuSV1rvb_43s_wcdWxSTnDU0cQM-Wh_C-KTq5-gz3v35fns9XZ0QSF0--sNMmhp2g9fyA3IXgpGTe5BOgXCNIYZYsbUWQ0go9dd5EIlsoE1KUZLxy8ANf4P7q8u7i2m-LK_iaC175HPW-PKGBNEpxw4SVNpYp10Eo81CFSa4SzZET5jYUUinNAo7KADOUKhpYS9lX6Jez0n4DkjNrRMxFnFPNI0uV0Kk00grGcRoReBCt9zvTLfK4K4DxmDUv4CzrblnWbpkHo824eYO98dcRP_E439x5sD71rL24y4yFLgkNmaDw4MemGa-ce0eRpZ09LTM05JGVoR4Ye3DUEMlmSYb2XIw80IOkQz6bDg7Ou9tSFtMa1jsVDtiIH__LP5zAB4paV-MTGkC_WjzZ77Cnn6tiuRjCu2QihrWbYVjfkxeLrx2z |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GSEApy%3A+a+comprehensive+package+for+performing+gene+set+enrichment+analysis+in+Python&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Fang%2C+Zhuoqing&rft.au=Liu%2C+Xinyuan&rft.au=Peltz%2C+Gary&rft.date=2023-01-01&rft.eissn=1367-4811&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac757&rft_id=info%3Apmid%2F36426870&rft.externalDocID=36426870 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon |