Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway
Background Circular RNAs are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. In the current study, we evaluate the function of a novel circRNA derived from the β-catenin gene locus, circβ-catenin. Results Circβ-catenin is predominantly localized in the cytoplas...
Gespeichert in:
| Veröffentlicht in: | Genome Biology Jg. 20; H. 1; S. 84 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
26.04.2019
Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1474-760X, 1474-7596, 1474-760X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Background
Circular RNAs are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. In the current study, we evaluate the function of a novel circRNA derived from the β-catenin gene locus, circβ-catenin.
Results
Circβ-catenin is predominantly localized in the cytoplasm and displays resistance to RNase-R treatment. We find that circβ-catenin is highly expressed in liver cancer tissues when compared to adjacent normal tissues. Silencing of circβ-catenin significantly suppresses malignant phenotypes in vitro and in vivo, and knockdown of this circRNA reduces the protein level of β-catenin without affecting its mRNA level. We show that circβ-catenin affects a wide spectrum of Wnt pathway-related genes, and furthermore, circβ-catenin produces a novel 370-amino acid β-catenin isoform that uses the start codon as the linear β-catenin mRNA transcript and translation is terminated at a new stop codon created by circularization. We find that this novel isoform can stabilize full-length β-catenin by antagonizing GSK3β-induced β-catenin phosphorylation and degradation, leading to activation of the Wnt pathway.
Conclusions
Our findings illustrate a non-canonical function of circRNA in modulating liver cancer cell growth through the Wnt pathway, which can provide novel mechanistic insights into the underlying mechanisms of hepatocellular carcinoma. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1474-760X 1474-7596 1474-760X |
| DOI: | 10.1186/s13059-019-1685-4 |