Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation
Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement e...
Uloženo v:
| Vydáno v: | Methods in ecology and evolution Ročník 8; číslo 1; s. 22 - 27 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
John Wiley & Sons, Inc
01.01.2017
|
| Témata: | |
| ISSN: | 2041-210X, 2041-210X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches.
Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours.
In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck).
By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion. |
|---|---|
| AbstractList | Summary
Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches.
Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours.
In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck).
By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches. Here, we introduce an r implementation of PhyloPars , a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck). By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches.Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours.In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck).By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion. 1. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation-based approaches. 2. Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear-time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. 3. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early-Burst, multivariate Ornstein-Uhlenbeck). 4. By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within-species variation and deviations from Brownian motion. Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation-based approaches. Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear-time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early-Burst, multivariate Ornstein-Uhlenbeck). By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within-species variation and deviations from Brownian motion. |
| Author | Goolsby, Eric W. Bruggeman, Jorn Fitzjohn, Richard Ané, Cécile |
| Author_xml | – sequence: 1 givenname: Eric W. surname: Goolsby fullname: Goolsby, Eric W. email: eric.goolsby.evolution@gmail.com organization: University of Georgia – sequence: 2 givenname: Jorn surname: Bruggeman fullname: Bruggeman, Jorn organization: Plymouth Marine Laboratory, Prospect Place, The Hoe – sequence: 3 givenname: Cécile surname: Ané fullname: Ané, Cécile organization: University of Wisconsin‐Madison – sequence: 4 givenname: Richard surname: Fitzjohn fullname: Fitzjohn, Richard |
| BookMark | eNqFkc9O3DAQxq2KStAtZ66WuHBZ8J_YcbghtNBKVJWqInGzhsRmjRI72F5We-MR-ox9kno3VYU40LnY8ny_mfF8n9CeD94gdETJKS1xxkhF54ySu1PKJGUf0MG_l71X9310mNIjKcFVQ1h1gPyPcbnpwwgxnWMLKeNh1Wf3DNFBNniXfDDeZNfiNgxFByVr8GDyMnQJ2xDx4FJy_gF3kAGD7_Da5aXzv19-pdG0ziQ8lXPBf0YfLfTJHP49Z-j2avHz8sv85vv118uLm3lbqYrNm87SrqmtgYZLVZc_SdEJou5r0zSWqLbrGqqoYNYqIkkFUkIFwGXFoCbins_QyVR3jOFpZVLWZcjW9D14E1ZJUyUVZ0SURczQ8RvpY1hFX6bTjNeCMMLr6j0VVUI1QnFOi-psUrUxpBSN1WN0A8SNpkRvjdJbK_TWCr0zqhDiDdG6vFtVjuD6dzg5cWvXm83_2uhviwWfwD9gaqix |
| CitedBy_id | crossref_primary_10_1111_ele_12542 crossref_primary_10_1093_pnasnexus_pgaf261 crossref_primary_10_3389_fevo_2018_00219 crossref_primary_10_1007_s10336_023_02051_1 crossref_primary_10_1038_s41559_021_01411_5 crossref_primary_10_1098_rspb_2025_0574 crossref_primary_10_1111_1365_2745_70146 crossref_primary_10_1038_s41477_022_01299_4 crossref_primary_10_1038_s41559_023_02007_x crossref_primary_10_1111_cobi_14291 crossref_primary_10_1093_sysbio_syaf034 crossref_primary_10_1093_sysbio_syy089 crossref_primary_10_1126_science_abm7525 crossref_primary_10_1016_j_scitotenv_2023_165959 crossref_primary_10_1111_ecog_05973 crossref_primary_10_1111_jeb_14234 crossref_primary_10_1073_pnas_2204336119 crossref_primary_10_1002_evl3_146 crossref_primary_10_1111_geb_70076 crossref_primary_10_1002_jmv_28461 crossref_primary_10_1371_journal_pone_0261613 crossref_primary_10_1111_ddi_12452 crossref_primary_10_1038_s41586_023_06371_3 crossref_primary_10_1016_j_ecoinf_2025_103295 crossref_primary_10_1242_jeb_243295 crossref_primary_10_1111_nph_16522 crossref_primary_10_1007_s10531_024_02849_2 crossref_primary_10_1086_703112 crossref_primary_10_1016_j_cub_2023_03_014 crossref_primary_10_1038_s43705_023_00281_1 crossref_primary_10_1093_sysbio_syaa010 crossref_primary_10_1111_ele_14299 crossref_primary_10_1016_j_cortex_2019_04_011 crossref_primary_10_1093_icb_icaa074 crossref_primary_10_1086_706195 crossref_primary_10_1038_s41564_021_00980_2 crossref_primary_10_1038_s41586_020_2903_7 crossref_primary_10_1038_s41597_024_04181_4 crossref_primary_10_1038_s41586_025_08777_7 crossref_primary_10_1093_icb_icx048 crossref_primary_10_1038_s41467_025_59273_5 crossref_primary_10_1086_706238 crossref_primary_10_1111_jeb_14172 crossref_primary_10_7554_eLife_80859 crossref_primary_10_1002_ajb2_1540 crossref_primary_10_1093_sysbio_syab090 crossref_primary_10_1038_s41467_025_61036_1 crossref_primary_10_1002_ece3_1947 crossref_primary_10_1111_2041_210X_14304 crossref_primary_10_1371_journal_pbio_2006962 crossref_primary_10_1016_j_pld_2024_06_004 crossref_primary_10_1016_j_cub_2024_06_077 crossref_primary_10_1007_s11258_023_01314_4 crossref_primary_10_1007_s10021_020_00556_x crossref_primary_10_1093_evolut_qpad185 crossref_primary_10_1111_syen_12415 crossref_primary_10_1038_s41467_023_41812_7 crossref_primary_10_1111_1755_0998_13350 crossref_primary_10_1111_geb_13369 crossref_primary_10_1093_sysbio_syy033 crossref_primary_10_1073_pnas_2424908122 crossref_primary_10_1038_s41477_024_01790_0 crossref_primary_10_1093_iob_obab014 crossref_primary_10_1016_j_jenvman_2023_118374 crossref_primary_10_1038_s41467_022_35665_9 crossref_primary_10_7717_peerj_7476 crossref_primary_10_1038_s41598_021_98616_2 crossref_primary_10_1111_ecog_07520 crossref_primary_10_1007_s40415_024_01059_y crossref_primary_10_1086_708273 crossref_primary_10_1186_s12864_020_6746_2 crossref_primary_10_1038_s41597_025_05234_y crossref_primary_10_3897_neobiota_91_115675 crossref_primary_10_1111_jbi_70016 crossref_primary_10_1111_2041_210X_70044 crossref_primary_10_1038_s43247_025_02288_z crossref_primary_10_1111_1749_4877_12315 crossref_primary_10_1111_btp_12949 crossref_primary_10_1038_s42003_023_04882_3 crossref_primary_10_1111_1462_2920_15843 crossref_primary_10_1093_sysbio_syaa102 crossref_primary_10_1098_rspb_2024_2824 crossref_primary_10_1002_ppp3_10551 crossref_primary_10_1016_j_landurbplan_2020_103877 crossref_primary_10_1177_1176934320901721 crossref_primary_10_1111_brv_70001 crossref_primary_10_1186_s12862_020_01642_3 crossref_primary_10_1093_sysbio_syad053 crossref_primary_10_1111_oik_10521 crossref_primary_10_1093_sysbio_syy045 crossref_primary_10_1038_s42003_023_05553_z crossref_primary_10_1016_j_pecon_2020_12_006 crossref_primary_10_1002_ajpa_24891 crossref_primary_10_1111_2041_210X_12826 crossref_primary_10_1126_science_adu8988 crossref_primary_10_1007_s00239_020_09967_9 crossref_primary_10_1111_1755_0998_12919 crossref_primary_10_1016_j_ecolmodel_2022_110122 crossref_primary_10_1016_j_landurbplan_2019_103730 crossref_primary_10_1111_nph_14956 crossref_primary_10_1002_ece3_10930 crossref_primary_10_1098_rsbl_2025_0374 crossref_primary_10_7554_eLife_49544 crossref_primary_10_1002_ecs2_2638 crossref_primary_10_1126_science_aaz3658 crossref_primary_10_1038_s41467_021_22792_y crossref_primary_10_1093_cz_zoae025 crossref_primary_10_1371_journal_pbio_3002658 crossref_primary_10_1093_sysbio_syac079 crossref_primary_10_1111_mec_14334 crossref_primary_10_1146_annurev_ecolsys_012221_111742 crossref_primary_10_1111_geb_70049 crossref_primary_10_1111_ecog_05885 crossref_primary_10_1111_jeb_13515 crossref_primary_10_1093_evolut_qpaf113 crossref_primary_10_1002_ajb2_16093 crossref_primary_10_1111_oik_10629 crossref_primary_10_1111_geb_13185 crossref_primary_10_1038_s41467_019_09721_w crossref_primary_10_1111_geb_12923 crossref_primary_10_1016_j_tpb_2019_11_005 crossref_primary_10_1016_j_biocon_2023_109929 crossref_primary_10_1111_cobi_14076 crossref_primary_10_1007_s11692_021_09534_0 crossref_primary_10_1093_molbev_msac027 crossref_primary_10_1093_molbev_msac269 crossref_primary_10_1093_ornithology_ukae015 crossref_primary_10_1016_j_anbehav_2018_01_012 crossref_primary_10_1086_704774 crossref_primary_10_1002_zoo_21427 crossref_primary_10_1126_science_adh2449 crossref_primary_10_15252_msb_202311613 crossref_primary_10_1093_biolinnean_blab122 crossref_primary_10_1073_pnas_1915769117 crossref_primary_10_1126_science_ado1629 crossref_primary_10_1098_rsos_170899 crossref_primary_10_1002_ece3_2837 crossref_primary_10_1111_evo_14220 crossref_primary_10_1073_pnas_2418632121 crossref_primary_10_1111_2041_210X_13136 crossref_primary_10_1111_fwb_13499 crossref_primary_10_1016_j_cub_2019_04_005 crossref_primary_10_1038_s41597_020_00788_5 crossref_primary_10_1093_cz_zoab059 crossref_primary_10_1038_s41559_025_02663_1 crossref_primary_10_3389_fgene_2018_00081 crossref_primary_10_1111_cla_12506 crossref_primary_10_1080_01621459_2020_1799812 crossref_primary_10_1111_ele_13662 crossref_primary_10_1017_S0959270922000065 crossref_primary_10_1017_pab_2024_35 crossref_primary_10_1111_ecog_03480 crossref_primary_10_1126_science_aav4632 crossref_primary_10_1093_conphys_coz110 crossref_primary_10_1111_nph_16666 crossref_primary_10_1093_biolinnean_blz140 crossref_primary_10_1111_gcb_15663 crossref_primary_10_1111_evo_13824 crossref_primary_10_1111_gcb_15385 |
| Cites_doi | 10.1093/sysbio/syu005 10.1111/j.2517-6161.1977.tb01600.x 10.1086/380570 10.1086/426002 10.1038/44766 10.1111/2041-210X.12136 10.1111/j.2041-210X.2012.00234.x 10.1111/j.1558-5646.1997.tb01457.x 10.1111/evo.12463 10.1093/nar/gkp370 10.1111/j.1558-5646.2010.01025.x 10.3732/ajb.1000481 10.1111/2041-210X.12420 10.1086/286013 10.1093/sysbio/syu030 10.1080/10635150701313830 10.1111/evo.12743 10.1111/1365-2745.12260 10.1093/sysbio/syr122 10.1111/j.1420-9101.2009.01915.x 10.1016/j.jtbi.2012.08.005 10.1111/j.2041-210X.2012.00220.x 10.1111/j.1463-6409.1997.tb00423.x 10.1086/284325 10.1007/BF00140873 10.1086/587525 |
| ContentType | Journal Article |
| Copyright | 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society Copyright © 2017 British Ecological Society |
| Copyright_xml | – notice: 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society – notice: Copyright © 2017 British Ecological Society |
| DBID | AAYXX CITATION 7QG 7SN 8FD C1K FR3 P64 RC3 |
| DOI | 10.1111/2041-210X.12612 |
| DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
| DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Genetics Abstracts Genetics Abstracts Genetics Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 2041-210X |
| EndPage | 27 |
| ExternalDocumentID | 4302824961 10_1111_2041_210X_12612 MEE312612 |
| Genre | technicalNote |
| GrantInformation_xml | – fundername: NERC National Capability in Marine Modelling |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 4.4 4P2 50Y 5DZ 702 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAZKR ABCUV ABLJU ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AEUYN AFBPY AFKRA AFPKN AFRAH AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BFHJK BHPHI BMXJE BRXPI CAG CCPQU COF DCZOG DPXWK EBD EBS EDH EJD F1Z G-S GODZA GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 SUPJJ V8K WBKPD WOHZO WYJ ZZTAW ~S- AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY BANNL CITATION PHGZM PHGZT PQGLB WIN 7QG 7SN 8FD C1K FR3 P64 RC3 |
| ID | FETCH-LOGICAL-c4842-9df1d97fea9368712665d508b7e99f08cdd918152ff80604a66a4aa3642a705b3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393305300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-210X |
| IngestDate | Tue Oct 07 09:18:04 EDT 2025 Mon Jul 28 13:51:17 EDT 2025 Wed Aug 13 11:37:22 EDT 2025 Tue Nov 18 21:01:43 EST 2025 Sat Nov 29 05:20:27 EST 2025 Wed Jan 22 16:52:29 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4842-9df1d97fea9368712665d508b7e99f08cdd918152ff80604a66a4aa3642a705b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/2041-210X.12612 |
| PQID | 1858958331 |
| PQPubID | 1016379 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1868320500 proquest_journals_2375020374 proquest_journals_1858958331 crossref_primary_10_1111_2041_210X_12612 crossref_citationtrail_10_1111_2041_210X_12612 wiley_primary_10_1111_2041_210X_12612_MEE312612 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Methods in ecology and evolution |
| PublicationYear | 2017 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2012; 61 2004; 164 2015; 6 2014b; 68 2004; 163 1997; 26 1985; 125 2011; 98 1996; 243 2014; 63 1999; 401 2007; 56 2010; 23 2015; 69 2010; 64 1997; 149 1997; 51 2014; 5 2012; 3 1977; 39 1973; 25 2015 2014a; 63 2012; 314 2009; 37 1996; 6 2008; 171 2014; 102 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Arbuckle J.L. (e_1_2_8_4_1) 1996; 243 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Felsenstein J. (e_1_2_8_12_1) 1973; 25 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_30_1 Cressie N. (e_1_2_8_9_1) 2015 |
| References_xml | – volume: 69 start-page: 2425 year: 2015 end-page: 2440 article-title: A new phylogenetic test for comparing multiple high‐dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae) publication-title: Evolution – volume: 314 start-page: 204 year: 2012 end-page: 215 article-title: A phylogenetic comparative method for studying multivariate adaptation publication-title: Journal of Theoretical Biology – volume: 37 start-page: W179 year: 2009 end-page: W184 article-title: PhyloPars: estimation of missing parameter values using phylogeny publication-title: Nucleic Acids Research – volume: 164 start-page: 683 year: 2004 end-page: 695 article-title: Phylogenetic comparative analysis: a modeling approach for adaptive evolution publication-title: The American Naturalist – volume: 64 start-page: 2385 year: 2010 end-page: 2396 article-title: Early bursts of body size and shape evolution are rare in comparative data publication-title: Evolution – volume: 171 start-page: 713 year: 2008 end-page: 725 article-title: Comparative methods with sampling error and within‐species variation: contrasts revisited and revised publication-title: The American Naturalist – volume: 51 start-page: 1341 year: 1997 end-page: 1351 article-title: Stabilizing selection and the comparative analysis of adaptation publication-title: Evolution – volume: 25 start-page: 471 year: 1973 end-page: 492 article-title: Maximum‐likelihood estimation of evolutionary trees from continuous characters publication-title: American Journal of Human Genetics – volume: 3 start-page: 940 year: 2012 end-page: 947 article-title: Fast likelihood calculations for comparative analyses publication-title: Methods in Ecology and Evolution – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 125 start-page: 1 year: 1985 end-page: 15 article-title: Phylogenies and the comparative method publication-title: The American Naturalist – volume: 149 start-page: 646 year: 1997 end-page: 667 article-title: Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data publication-title: The American Naturalist – volume: 98 start-page: 404 year: 2011 end-page: 414 article-title: Understanding angiosperm diversification using small and large phylogenetic trees publication-title: American Journal of Botany – volume: 23 start-page: 494 year: 2010 end-page: 508 article-title: General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters publication-title: Journal of Evolutionary Biology – volume: 401 start-page: 877 year: 1999 end-page: 884 article-title: Inferring the historical patterns of biological evolution publication-title: Nature – volume: 61 start-page: 413 year: 2012 end-page: 425 article-title: Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies publication-title: Systematic Biology – volume: 68 start-page: 2675 year: 2014b end-page: 2688 article-title: A method for assessing phylogenetic least squares models for shape and other high‐dimensional multivariate data publication-title: Evolution – volume: 63 start-page: 685 year: 2014a end-page: 697 article-title: A generalized K statistic for estimating phylogenetic signal from shape and other high‐dimensional multivariate data publication-title: Systematic Biology – volume: 243 start-page: 277 year: 1996 article-title: Full information estimation in the presence of incomplete data publication-title: Advanced Structural Equation Modeling: Issues and Techniques – volume: 3 start-page: 1084 year: 2012 end-page: 1092 article-title: Diversitree: comparative phylogenetic analyses of diversification in R publication-title: Methods in Ecology and Evolution – volume: 102 start-page: 1266 year: 2014 end-page: 1272 article-title: How much of the world is woody? publication-title: Journal of Ecology – volume: 26 start-page: 331 year: 1997 end-page: 348 article-title: Inferring evolutionary processes from phylogenies publication-title: Zoologica Scripta – volume: 6 start-page: 1311 year: 2015 end-page: 1319 article-title: : an R package for fitting multivariate evolutionary models to morphometric data publication-title: Methods in Ecology and Evolution – volume: 5 start-page: 9 year: 2014 end-page: 15 article-title: Functional trait metrics are sensitive to the completeness of the species' trait data? publication-title: Methods in Ecology and Evolution – volume: 163 start-page: 84 year: 2004 end-page: 96 article-title: The phylogenetic mixed model publication-title: The American Naturalist – volume: 56 start-page: 252 year: 2007 end-page: 270 article-title: Within‐species variation and measurement error in phylogenetic comparative methods publication-title: Systematic Biology – volume: 63 start-page: 397 year: 2014 end-page: 408 article-title: A linear‐time algorithm for Gaussian and non‐Gaussian trait evolution models publication-title: Systematic Biology – volume: 6 start-page: 289 year: 1996 end-page: 296 article-title: Unconstrained parametrizations for variance‐covariance matrices publication-title: Statistics and Computing – year: 2015 – volume-title: Statistics for Spatial Data year: 2015 ident: e_1_2_8_9_1 – ident: e_1_2_8_22_1 doi: 10.1093/sysbio/syu005 – ident: e_1_2_8_10_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_8_23_1 doi: 10.1086/380570 – ident: e_1_2_8_7_1 doi: 10.1086/426002 – ident: e_1_2_8_27_1 doi: 10.1038/44766 – ident: e_1_2_8_28_1 doi: 10.1111/2041-210X.12136 – ident: e_1_2_8_15_1 doi: 10.1111/j.2041-210X.2012.00234.x – ident: e_1_2_8_19_1 doi: 10.1111/j.1558-5646.1997.tb01457.x – ident: e_1_2_8_3_1 doi: 10.1111/evo.12463 – ident: e_1_2_8_6_1 doi: 10.1093/nar/gkp370 – volume: 25 start-page: 471 year: 1973 ident: e_1_2_8_12_1 article-title: Maximum‐likelihood estimation of evolutionary trees from continuous characters publication-title: American Journal of Human Genetics – ident: e_1_2_8_21_1 doi: 10.1111/j.1558-5646.2010.01025.x – ident: e_1_2_8_30_1 doi: 10.3732/ajb.1000481 – ident: e_1_2_8_8_1 doi: 10.1111/2041-210X.12420 – ident: e_1_2_8_25_1 doi: 10.1086/286013 – ident: e_1_2_8_2_1 doi: 10.1093/sysbio/syu030 – ident: e_1_2_8_24_1 doi: 10.1080/10635150701313830 – ident: e_1_2_8_11_1 doi: 10.1111/evo.12743 – ident: e_1_2_8_16_1 doi: 10.1111/1365-2745.12260 – ident: e_1_2_8_20_1 doi: 10.1093/sysbio/syr122 – ident: e_1_2_8_18_1 doi: 10.1111/j.1420-9101.2009.01915.x – ident: e_1_2_8_5_1 doi: 10.1016/j.jtbi.2012.08.005 – ident: e_1_2_8_17_1 doi: 10.1111/j.2041-210X.2012.00220.x – ident: e_1_2_8_26_1 doi: 10.1111/j.1463-6409.1997.tb00423.x – volume: 243 start-page: 277 year: 1996 ident: e_1_2_8_4_1 article-title: Full information estimation in the presence of incomplete data publication-title: Advanced Structural Equation Modeling: Issues and Techniques – ident: e_1_2_8_13_1 doi: 10.1086/284325 – ident: e_1_2_8_29_1 doi: 10.1007/BF00140873 – ident: e_1_2_8_14_1 doi: 10.1086/587525 |
| SSID | ssj0000389024 |
| Score | 2.5380025 |
| Snippet | Summary
Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of... Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa... Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of... 1. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Brownian motion Comparative studies Computational efficiency Computer applications Covariance fast methods linear‐time algorithm Missing data Multivariate analysis multivariate Ornstein‐Uhlenbeck Parameter estimation phylogenetic comparative method phylogenetic generalized least squares phylogenetic imputation Phylogenetics Phylogeny Researchers Species |
| Title | Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12612 https://www.proquest.com/docview/1858958331 https://www.proquest.com/docview/2375020374 https://www.proquest.com/docview/1868320500 |
| Volume | 8 |
| WOSCitedRecordID | wos000393305300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: WIN dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7SJYVe2iZt6abboEAPvTiVZdmWcgvFIYFkCSWlezOyJUEgOGW9Weil9BHyjH2SzsheZ1saSiE3g34QI83om7HmG4B3SSydcRVaP-2zSCrrIi0qFxknNKIDl8s67PRpPp2q2Uyf968JKRem44cYAm6kGcFek4Kbql1TcsFlHKHDMtuPiQYLrXAsY6ph8OVkOkRZiD6Oh8q2Q_ee34ee8_wxxe9X0x3eXEet4do5evYAC34OT3vMyQ67Q7IFG67ZhsdF4Kv-9gKaTyjqK3Se5-0B86ZdsPDKcIleNAJRFhrxmFG2I6vvyMJZV3y6ZQh7GZ4WCjowenDKTGMZxXcvm58_bimVE71x1k2Hp-AlfD4qLj4eR30ZhqiWSopIWx9bnXtndJKhf4VXemoR11W509pzVVurESekwntFVDwmy4w0JkHPxuQ8rZJXMGquG_camOXaq1ylhhsrE66MqxEQykrmudfOx2PYX-1AWfcc5VQq46pc-SokxJKEWAYhjuH9MOBrR89xf9fJakvLXk_bEtGK0pR4Fv-1WSQIqARR9Ixhb2hGkdJfFdO46xuaIkOryFPOx_Ah7P-_VlKeFUUSvnb-e8QbeCIIWIQg0ARGi_mNewub9XJx2c534dHZ92I3qMAvZ88DBw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEC5cddGLj13F8RnBw15a-5HpTryJjCiOcxDFuTXpTgKCtDI9Ct78Cf5Gf4lV6Z52FGURvDXkQahUJV9Vp74C2IkCbpTJ8PSTNva40MaTYWY8ZUKJ6MAkPHc73U16PdHvy_FcmIofogm4kWW485oMnALSY1Ye-jzw0GPp7wbEg_ULpjjCDSrfcHXSa-IsRCDnu9q2Tf-a4Yce9HyY4_3l9IY4x3Gru3iO5n9iyQswV8NOdlDpySJMmOIP_O44yurHv1Cco7Rv0H8elPvMqnLI3EPDB3SkEYsy14iaRgmPLH_jC2dV_emSIfJlqDAUd2D05pSpQjMK8V4XL0_PlM2JDjmrpkNFWILLo87F4bFXV2Lwci546EltAy0Ta5SMYnSx8FZva4R2WWKktL7ItZYIFdqhtYLYeFQcK65UhM6NSvx2Fi3DZHFbmBVg2pdWJKKtfKV55AtlcsSEPONJYqWxQQt2R1uQ5jVNOVXLuElH7goJMSUhpk6ILfjXDLirGDq-7ro-2tO0NtUyRcAiJOWeBZ82hxFiqpBYelqw3TSjSOnHiirM7T1NEePB6KPytWDPKcD_VpKedTqR-1r99ogtmDm-OOum3ZPe6RrMhoQzXExoHSaHg3uzAdP5w_C6HGw6S3gFhu8F9A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7y04Rc0jZt6KbbVIUecvFWtmVb6i00uzQkXUpJYW9GtiRYWJyw3gR66yP0GfMkmZG9zja0hEJvBv0gRjPSN2PNNwDv41BYbQs8_ZRLAyGNDVRU2EDbSCE6sJko_U6fZ-OxnEzUai5Mww_RBdzIMvx5TQZur4xbsfKIizBAj2UyCIkHax02RYpeOWWVnI67OAsRyHFf27br3zL80IOeB3P8fjndI85V3OovntHT_7HkZ7Dbwk523OjJc1iz1R5sDT1l9Y8XUH1Dac_Qf57XH5nT9YL5h4Y36EgjFmW-ETWNEh5Zec8Xzpr60zVD5MtQYSjuwOjNKdOVYRTinVa3P39RNic65KyZDhXhJXwfDS8-fQ7aSgxBKaSIAmVcaFTmrFZxii4W3uqJQWhXZFYpx2VpjEKokETOSWLj0WmqhdYxOjc640kR78NGdVnZV8AMV05mMtFcGxFzqW2JmFAUIsucsi7swWC5BXnZ0pRTtYxZvnRXSIg5CTH3QuzBUTfgqmHo-HvX_nJP89ZU6xwBi1SUexb-sTmKEVNFxNLTg3ddM4qUfqzoyl5e0xQpHow84bwHH7wCPLaS_MtwGPuvg38e8Ra2v56M8vPT8dlr2IkIZviQUB82FvNr-waelDeLaT0_9IZwByJMBXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rphylopars%3A+fast+multivariate+phylogenetic+comparative+methods+for+missing+data+and+within%E2%80%90species+variation&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Goolsby%2C+Eric+W&rft.au=Bruggeman%2C+Jorn&rft.au=An%C3%A9%2C+C%C3%A9cile&rft.date=2017-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=8&rft.issue=1&rft.spage=22&rft.epage=27&rft_id=info:doi/10.1111%2F2041-210X.12612&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |