Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation

Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methods in ecology and evolution Ročník 8; číslo 1; s. 22 - 27
Hlavní autoři: Goolsby, Eric W., Bruggeman, Jorn, Ané, Cécile, Fitzjohn, Richard
Médium: Journal Article
Jazyk:angličtina
Vydáno: London John Wiley & Sons, Inc 01.01.2017
Témata:
ISSN:2041-210X, 2041-210X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches. Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck). By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion.
AbstractList Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches. Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck). By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion.
Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches. Here, we introduce an r implementation of PhyloPars , a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck). By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion.
Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation‐based approaches.Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear‐time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours.In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early‐Burst, multivariate Ornstein‐Uhlenbeck).By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within‐species variation and deviations from Brownian motion.
1. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation-based approaches. 2. Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear-time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. 3. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early-Burst, multivariate Ornstein-Uhlenbeck). 4. By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within-species variation and deviations from Brownian motion.
Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa that continues to rise dramatically. Recent methods for phylogenetic comparative studies have provided ways to incorporate measurement error and to address computational challenges. However, missing data remain a particularly common problem, in which data are unavailable for some but not all traits of interest for a given species (or individual), leaving researchers with the choice between omitting observations or utilizing imputation-based approaches. Here, we introduce an r implementation of PhyloPars, a tool for phylogenetic imputation of missing data and estimation of trait covariance across species (phylogenetic covariance) and within species (phenotypic covariance). Rphylopars provides expanded capabilities over the original PhyloPars interface including a fast linear-time algorithm, thus allowing for extremely large data sets (which were previously computationally infeasible) to be analysed in seconds or minutes rather than hours. In addition to providing fast and computationally efficient implementations, we introduce in Rphylopars methods to estimate macroevolutionary parameters under alternative evolutionary models (e.g. Early-Burst, multivariate Ornstein-Uhlenbeck). By providing fast and computationally efficient methods with flexible options for various phylogenetic comparative approaches, Rphylopars expands the possibilities for researchers to analyse large and complex data with missing observations, within-species variation and deviations from Brownian motion.
Author Goolsby, Eric W.
Bruggeman, Jorn
Fitzjohn, Richard
Ané, Cécile
Author_xml – sequence: 1
  givenname: Eric W.
  surname: Goolsby
  fullname: Goolsby, Eric W.
  email: eric.goolsby.evolution@gmail.com
  organization: University of Georgia
– sequence: 2
  givenname: Jorn
  surname: Bruggeman
  fullname: Bruggeman, Jorn
  organization: Plymouth Marine Laboratory, Prospect Place, The Hoe
– sequence: 3
  givenname: Cécile
  surname: Ané
  fullname: Ané, Cécile
  organization: University of Wisconsin‐Madison
– sequence: 4
  givenname: Richard
  surname: Fitzjohn
  fullname: Fitzjohn, Richard
BookMark eNqFkc9O3DAQxq2KStAtZ66WuHBZ8J_YcbghtNBKVJWqInGzhsRmjRI72F5We-MR-ox9kno3VYU40LnY8ny_mfF8n9CeD94gdETJKS1xxkhF54ySu1PKJGUf0MG_l71X9310mNIjKcFVQ1h1gPyPcbnpwwgxnWMLKeNh1Wf3DNFBNniXfDDeZNfiNgxFByVr8GDyMnQJ2xDx4FJy_gF3kAGD7_Da5aXzv19-pdG0ziQ8lXPBf0YfLfTJHP49Z-j2avHz8sv85vv118uLm3lbqYrNm87SrqmtgYZLVZc_SdEJou5r0zSWqLbrGqqoYNYqIkkFUkIFwGXFoCbins_QyVR3jOFpZVLWZcjW9D14E1ZJUyUVZ0SURczQ8RvpY1hFX6bTjNeCMMLr6j0VVUI1QnFOi-psUrUxpBSN1WN0A8SNpkRvjdJbK_TWCr0zqhDiDdG6vFtVjuD6dzg5cWvXm83_2uhviwWfwD9gaqix
CitedBy_id crossref_primary_10_1111_ele_12542
crossref_primary_10_1093_pnasnexus_pgaf261
crossref_primary_10_3389_fevo_2018_00219
crossref_primary_10_1007_s10336_023_02051_1
crossref_primary_10_1038_s41559_021_01411_5
crossref_primary_10_1098_rspb_2025_0574
crossref_primary_10_1111_1365_2745_70146
crossref_primary_10_1038_s41477_022_01299_4
crossref_primary_10_1038_s41559_023_02007_x
crossref_primary_10_1111_cobi_14291
crossref_primary_10_1093_sysbio_syaf034
crossref_primary_10_1093_sysbio_syy089
crossref_primary_10_1126_science_abm7525
crossref_primary_10_1016_j_scitotenv_2023_165959
crossref_primary_10_1111_ecog_05973
crossref_primary_10_1111_jeb_14234
crossref_primary_10_1073_pnas_2204336119
crossref_primary_10_1002_evl3_146
crossref_primary_10_1111_geb_70076
crossref_primary_10_1002_jmv_28461
crossref_primary_10_1371_journal_pone_0261613
crossref_primary_10_1111_ddi_12452
crossref_primary_10_1038_s41586_023_06371_3
crossref_primary_10_1016_j_ecoinf_2025_103295
crossref_primary_10_1242_jeb_243295
crossref_primary_10_1111_nph_16522
crossref_primary_10_1007_s10531_024_02849_2
crossref_primary_10_1086_703112
crossref_primary_10_1016_j_cub_2023_03_014
crossref_primary_10_1038_s43705_023_00281_1
crossref_primary_10_1093_sysbio_syaa010
crossref_primary_10_1111_ele_14299
crossref_primary_10_1016_j_cortex_2019_04_011
crossref_primary_10_1093_icb_icaa074
crossref_primary_10_1086_706195
crossref_primary_10_1038_s41564_021_00980_2
crossref_primary_10_1038_s41586_020_2903_7
crossref_primary_10_1038_s41597_024_04181_4
crossref_primary_10_1038_s41586_025_08777_7
crossref_primary_10_1093_icb_icx048
crossref_primary_10_1038_s41467_025_59273_5
crossref_primary_10_1086_706238
crossref_primary_10_1111_jeb_14172
crossref_primary_10_7554_eLife_80859
crossref_primary_10_1002_ajb2_1540
crossref_primary_10_1093_sysbio_syab090
crossref_primary_10_1038_s41467_025_61036_1
crossref_primary_10_1002_ece3_1947
crossref_primary_10_1111_2041_210X_14304
crossref_primary_10_1371_journal_pbio_2006962
crossref_primary_10_1016_j_pld_2024_06_004
crossref_primary_10_1016_j_cub_2024_06_077
crossref_primary_10_1007_s11258_023_01314_4
crossref_primary_10_1007_s10021_020_00556_x
crossref_primary_10_1093_evolut_qpad185
crossref_primary_10_1111_syen_12415
crossref_primary_10_1038_s41467_023_41812_7
crossref_primary_10_1111_1755_0998_13350
crossref_primary_10_1111_geb_13369
crossref_primary_10_1093_sysbio_syy033
crossref_primary_10_1073_pnas_2424908122
crossref_primary_10_1038_s41477_024_01790_0
crossref_primary_10_1093_iob_obab014
crossref_primary_10_1016_j_jenvman_2023_118374
crossref_primary_10_1038_s41467_022_35665_9
crossref_primary_10_7717_peerj_7476
crossref_primary_10_1038_s41598_021_98616_2
crossref_primary_10_1111_ecog_07520
crossref_primary_10_1007_s40415_024_01059_y
crossref_primary_10_1086_708273
crossref_primary_10_1186_s12864_020_6746_2
crossref_primary_10_1038_s41597_025_05234_y
crossref_primary_10_3897_neobiota_91_115675
crossref_primary_10_1111_jbi_70016
crossref_primary_10_1111_2041_210X_70044
crossref_primary_10_1038_s43247_025_02288_z
crossref_primary_10_1111_1749_4877_12315
crossref_primary_10_1111_btp_12949
crossref_primary_10_1038_s42003_023_04882_3
crossref_primary_10_1111_1462_2920_15843
crossref_primary_10_1093_sysbio_syaa102
crossref_primary_10_1098_rspb_2024_2824
crossref_primary_10_1002_ppp3_10551
crossref_primary_10_1016_j_landurbplan_2020_103877
crossref_primary_10_1177_1176934320901721
crossref_primary_10_1111_brv_70001
crossref_primary_10_1186_s12862_020_01642_3
crossref_primary_10_1093_sysbio_syad053
crossref_primary_10_1111_oik_10521
crossref_primary_10_1093_sysbio_syy045
crossref_primary_10_1038_s42003_023_05553_z
crossref_primary_10_1016_j_pecon_2020_12_006
crossref_primary_10_1002_ajpa_24891
crossref_primary_10_1111_2041_210X_12826
crossref_primary_10_1126_science_adu8988
crossref_primary_10_1007_s00239_020_09967_9
crossref_primary_10_1111_1755_0998_12919
crossref_primary_10_1016_j_ecolmodel_2022_110122
crossref_primary_10_1016_j_landurbplan_2019_103730
crossref_primary_10_1111_nph_14956
crossref_primary_10_1002_ece3_10930
crossref_primary_10_1098_rsbl_2025_0374
crossref_primary_10_7554_eLife_49544
crossref_primary_10_1002_ecs2_2638
crossref_primary_10_1126_science_aaz3658
crossref_primary_10_1038_s41467_021_22792_y
crossref_primary_10_1093_cz_zoae025
crossref_primary_10_1371_journal_pbio_3002658
crossref_primary_10_1093_sysbio_syac079
crossref_primary_10_1111_mec_14334
crossref_primary_10_1146_annurev_ecolsys_012221_111742
crossref_primary_10_1111_geb_70049
crossref_primary_10_1111_ecog_05885
crossref_primary_10_1111_jeb_13515
crossref_primary_10_1093_evolut_qpaf113
crossref_primary_10_1002_ajb2_16093
crossref_primary_10_1111_oik_10629
crossref_primary_10_1111_geb_13185
crossref_primary_10_1038_s41467_019_09721_w
crossref_primary_10_1111_geb_12923
crossref_primary_10_1016_j_tpb_2019_11_005
crossref_primary_10_1016_j_biocon_2023_109929
crossref_primary_10_1111_cobi_14076
crossref_primary_10_1007_s11692_021_09534_0
crossref_primary_10_1093_molbev_msac027
crossref_primary_10_1093_molbev_msac269
crossref_primary_10_1093_ornithology_ukae015
crossref_primary_10_1016_j_anbehav_2018_01_012
crossref_primary_10_1086_704774
crossref_primary_10_1002_zoo_21427
crossref_primary_10_1126_science_adh2449
crossref_primary_10_15252_msb_202311613
crossref_primary_10_1093_biolinnean_blab122
crossref_primary_10_1073_pnas_1915769117
crossref_primary_10_1126_science_ado1629
crossref_primary_10_1098_rsos_170899
crossref_primary_10_1002_ece3_2837
crossref_primary_10_1111_evo_14220
crossref_primary_10_1073_pnas_2418632121
crossref_primary_10_1111_2041_210X_13136
crossref_primary_10_1111_fwb_13499
crossref_primary_10_1016_j_cub_2019_04_005
crossref_primary_10_1038_s41597_020_00788_5
crossref_primary_10_1093_cz_zoab059
crossref_primary_10_1038_s41559_025_02663_1
crossref_primary_10_3389_fgene_2018_00081
crossref_primary_10_1111_cla_12506
crossref_primary_10_1080_01621459_2020_1799812
crossref_primary_10_1111_ele_13662
crossref_primary_10_1017_S0959270922000065
crossref_primary_10_1017_pab_2024_35
crossref_primary_10_1111_ecog_03480
crossref_primary_10_1126_science_aav4632
crossref_primary_10_1093_conphys_coz110
crossref_primary_10_1111_nph_16666
crossref_primary_10_1093_biolinnean_blz140
crossref_primary_10_1111_gcb_15663
crossref_primary_10_1111_evo_13824
crossref_primary_10_1111_gcb_15385
Cites_doi 10.1093/sysbio/syu005
10.1111/j.2517-6161.1977.tb01600.x
10.1086/380570
10.1086/426002
10.1038/44766
10.1111/2041-210X.12136
10.1111/j.2041-210X.2012.00234.x
10.1111/j.1558-5646.1997.tb01457.x
10.1111/evo.12463
10.1093/nar/gkp370
10.1111/j.1558-5646.2010.01025.x
10.3732/ajb.1000481
10.1111/2041-210X.12420
10.1086/286013
10.1093/sysbio/syu030
10.1080/10635150701313830
10.1111/evo.12743
10.1111/1365-2745.12260
10.1093/sysbio/syr122
10.1111/j.1420-9101.2009.01915.x
10.1016/j.jtbi.2012.08.005
10.1111/j.2041-210X.2012.00220.x
10.1111/j.1463-6409.1997.tb00423.x
10.1086/284325
10.1007/BF00140873
10.1086/587525
ContentType Journal Article
Copyright 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society
Copyright © 2017 British Ecological Society
Copyright_xml – notice: 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society
– notice: Copyright © 2017 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOI 10.1111/2041-210X.12612
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Genetics Abstracts
Genetics Abstracts
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 27
ExternalDocumentID 4302824961
10_1111_2041_210X_12612
MEE312612
Genre technicalNote
GrantInformation_xml – fundername: NERC National Capability in Marine Modelling
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
BANNL
CITATION
PHGZM
PHGZT
PQGLB
WIN
7QG
7SN
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c4842-9df1d97fea9368712665d508b7e99f08cdd918152ff80604a66a4aa3642a705b3
IEDL.DBID WIN
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393305300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-210X
IngestDate Tue Oct 07 09:18:04 EDT 2025
Mon Jul 28 13:51:17 EDT 2025
Wed Aug 13 11:37:22 EDT 2025
Tue Nov 18 21:01:43 EST 2025
Sat Nov 29 05:20:27 EST 2025
Wed Jan 22 16:52:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4842-9df1d97fea9368712665d508b7e99f08cdd918152ff80604a66a4aa3642a705b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/2041-210X.12612
PQID 1858958331
PQPubID 1016379
PageCount 6
ParticipantIDs proquest_miscellaneous_1868320500
proquest_journals_2375020374
proquest_journals_1858958331
crossref_primary_10_1111_2041_210X_12612
crossref_citationtrail_10_1111_2041_210X_12612
wiley_primary_10_1111_2041_210X_12612_MEE312612
PublicationCentury 2000
PublicationDate January 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2004; 164
2015; 6
2014b; 68
2004; 163
1997; 26
1985; 125
2011; 98
1996; 243
2014; 63
1999; 401
2007; 56
2010; 23
2015; 69
2010; 64
1997; 149
1997; 51
2014; 5
2012; 3
1977; 39
1973; 25
2015
2014a; 63
2012; 314
2009; 37
1996; 6
2008; 171
2014; 102
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Arbuckle J.L. (e_1_2_8_4_1) 1996; 243
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Felsenstein J. (e_1_2_8_12_1) 1973; 25
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_30_1
Cressie N. (e_1_2_8_9_1) 2015
References_xml – volume: 69
  start-page: 2425
  year: 2015
  end-page: 2440
  article-title: A new phylogenetic test for comparing multiple high‐dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae)
  publication-title: Evolution
– volume: 314
  start-page: 204
  year: 2012
  end-page: 215
  article-title: A phylogenetic comparative method for studying multivariate adaptation
  publication-title: Journal of Theoretical Biology
– volume: 37
  start-page: W179
  year: 2009
  end-page: W184
  article-title: PhyloPars: estimation of missing parameter values using phylogeny
  publication-title: Nucleic Acids Research
– volume: 164
  start-page: 683
  year: 2004
  end-page: 695
  article-title: Phylogenetic comparative analysis: a modeling approach for adaptive evolution
  publication-title: The American Naturalist
– volume: 64
  start-page: 2385
  year: 2010
  end-page: 2396
  article-title: Early bursts of body size and shape evolution are rare in comparative data
  publication-title: Evolution
– volume: 171
  start-page: 713
  year: 2008
  end-page: 725
  article-title: Comparative methods with sampling error and within‐species variation: contrasts revisited and revised
  publication-title: The American Naturalist
– volume: 51
  start-page: 1341
  year: 1997
  end-page: 1351
  article-title: Stabilizing selection and the comparative analysis of adaptation
  publication-title: Evolution
– volume: 25
  start-page: 471
  year: 1973
  end-page: 492
  article-title: Maximum‐likelihood estimation of evolutionary trees from continuous characters
  publication-title: American Journal of Human Genetics
– volume: 3
  start-page: 940
  year: 2012
  end-page: 947
  article-title: Fast likelihood calculations for comparative analyses
  publication-title: Methods in Ecology and Evolution
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 125
  start-page: 1
  year: 1985
  end-page: 15
  article-title: Phylogenies and the comparative method
  publication-title: The American Naturalist
– volume: 149
  start-page: 646
  year: 1997
  end-page: 667
  article-title: Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data
  publication-title: The American Naturalist
– volume: 98
  start-page: 404
  year: 2011
  end-page: 414
  article-title: Understanding angiosperm diversification using small and large phylogenetic trees
  publication-title: American Journal of Botany
– volume: 23
  start-page: 494
  year: 2010
  end-page: 508
  article-title: General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters
  publication-title: Journal of Evolutionary Biology
– volume: 401
  start-page: 877
  year: 1999
  end-page: 884
  article-title: Inferring the historical patterns of biological evolution
  publication-title: Nature
– volume: 61
  start-page: 413
  year: 2012
  end-page: 425
  article-title: Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies
  publication-title: Systematic Biology
– volume: 68
  start-page: 2675
  year: 2014b
  end-page: 2688
  article-title: A method for assessing phylogenetic least squares models for shape and other high‐dimensional multivariate data
  publication-title: Evolution
– volume: 63
  start-page: 685
  year: 2014a
  end-page: 697
  article-title: A generalized K statistic for estimating phylogenetic signal from shape and other high‐dimensional multivariate data
  publication-title: Systematic Biology
– volume: 243
  start-page: 277
  year: 1996
  article-title: Full information estimation in the presence of incomplete data
  publication-title: Advanced Structural Equation Modeling: Issues and Techniques
– volume: 3
  start-page: 1084
  year: 2012
  end-page: 1092
  article-title: Diversitree: comparative phylogenetic analyses of diversification in R
  publication-title: Methods in Ecology and Evolution
– volume: 102
  start-page: 1266
  year: 2014
  end-page: 1272
  article-title: How much of the world is woody?
  publication-title: Journal of Ecology
– volume: 26
  start-page: 331
  year: 1997
  end-page: 348
  article-title: Inferring evolutionary processes from phylogenies
  publication-title: Zoologica Scripta
– volume: 6
  start-page: 1311
  year: 2015
  end-page: 1319
  article-title: : an R package for fitting multivariate evolutionary models to morphometric data
  publication-title: Methods in Ecology and Evolution
– volume: 5
  start-page: 9
  year: 2014
  end-page: 15
  article-title: Functional trait metrics are sensitive to the completeness of the species' trait data?
  publication-title: Methods in Ecology and Evolution
– volume: 163
  start-page: 84
  year: 2004
  end-page: 96
  article-title: The phylogenetic mixed model
  publication-title: The American Naturalist
– volume: 56
  start-page: 252
  year: 2007
  end-page: 270
  article-title: Within‐species variation and measurement error in phylogenetic comparative methods
  publication-title: Systematic Biology
– volume: 63
  start-page: 397
  year: 2014
  end-page: 408
  article-title: A linear‐time algorithm for Gaussian and non‐Gaussian trait evolution models
  publication-title: Systematic Biology
– volume: 6
  start-page: 289
  year: 1996
  end-page: 296
  article-title: Unconstrained parametrizations for variance‐covariance matrices
  publication-title: Statistics and Computing
– year: 2015
– volume-title: Statistics for Spatial Data
  year: 2015
  ident: e_1_2_8_9_1
– ident: e_1_2_8_22_1
  doi: 10.1093/sysbio/syu005
– ident: e_1_2_8_10_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_23_1
  doi: 10.1086/380570
– ident: e_1_2_8_7_1
  doi: 10.1086/426002
– ident: e_1_2_8_27_1
  doi: 10.1038/44766
– ident: e_1_2_8_28_1
  doi: 10.1111/2041-210X.12136
– ident: e_1_2_8_15_1
  doi: 10.1111/j.2041-210X.2012.00234.x
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1558-5646.1997.tb01457.x
– ident: e_1_2_8_3_1
  doi: 10.1111/evo.12463
– ident: e_1_2_8_6_1
  doi: 10.1093/nar/gkp370
– volume: 25
  start-page: 471
  year: 1973
  ident: e_1_2_8_12_1
  article-title: Maximum‐likelihood estimation of evolutionary trees from continuous characters
  publication-title: American Journal of Human Genetics
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1558-5646.2010.01025.x
– ident: e_1_2_8_30_1
  doi: 10.3732/ajb.1000481
– ident: e_1_2_8_8_1
  doi: 10.1111/2041-210X.12420
– ident: e_1_2_8_25_1
  doi: 10.1086/286013
– ident: e_1_2_8_2_1
  doi: 10.1093/sysbio/syu030
– ident: e_1_2_8_24_1
  doi: 10.1080/10635150701313830
– ident: e_1_2_8_11_1
  doi: 10.1111/evo.12743
– ident: e_1_2_8_16_1
  doi: 10.1111/1365-2745.12260
– ident: e_1_2_8_20_1
  doi: 10.1093/sysbio/syr122
– ident: e_1_2_8_18_1
  doi: 10.1111/j.1420-9101.2009.01915.x
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jtbi.2012.08.005
– ident: e_1_2_8_17_1
  doi: 10.1111/j.2041-210X.2012.00220.x
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1463-6409.1997.tb00423.x
– volume: 243
  start-page: 277
  year: 1996
  ident: e_1_2_8_4_1
  article-title: Full information estimation in the presence of incomplete data
  publication-title: Advanced Structural Equation Modeling: Issues and Techniques
– ident: e_1_2_8_13_1
  doi: 10.1086/284325
– ident: e_1_2_8_29_1
  doi: 10.1007/BF00140873
– ident: e_1_2_8_14_1
  doi: 10.1086/587525
SSID ssj0000389024
Score 2.5380025
Snippet Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of...
Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa...
Summary Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of...
1. Over the past several years, phylogenetic comparative studies have increasingly approached trait evolution in a multivariate context, with a number of taxa...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Algorithms
Brownian motion
Comparative studies
Computational efficiency
Computer applications
Covariance
fast methods
linear‐time algorithm
Missing data
Multivariate analysis
multivariate Ornstein‐Uhlenbeck
Parameter estimation
phylogenetic comparative method
phylogenetic generalized least squares
phylogenetic imputation
Phylogenetics
Phylogeny
Researchers
Species
Title Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12612
https://www.proquest.com/docview/1858958331
https://www.proquest.com/docview/2375020374
https://www.proquest.com/docview/1868320500
Volume 8
WOSCitedRecordID wos000393305300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2041-210X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389024
  issn: 2041-210X
  databaseCode: WIN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7SJYVe2iZt6abboEAPvTiVZdmWcgvFIYFkCSWlezOyJUEgOGW9Weil9BHyjH2SzsheZ1saSiE3g34QI83om7HmG4B3SSydcRVaP-2zSCrrIi0qFxknNKIDl8s67PRpPp2q2Uyf968JKRem44cYAm6kGcFek4Kbql1TcsFlHKHDMtuPiQYLrXAsY6ph8OVkOkRZiD6Oh8q2Q_ee34ee8_wxxe9X0x3eXEet4do5evYAC34OT3vMyQ67Q7IFG67ZhsdF4Kv-9gKaTyjqK3Se5-0B86ZdsPDKcIleNAJRFhrxmFG2I6vvyMJZV3y6ZQh7GZ4WCjowenDKTGMZxXcvm58_bimVE71x1k2Hp-AlfD4qLj4eR30ZhqiWSopIWx9bnXtndJKhf4VXemoR11W509pzVVurESekwntFVDwmy4w0JkHPxuQ8rZJXMGquG_camOXaq1ylhhsrE66MqxEQykrmudfOx2PYX-1AWfcc5VQq46pc-SokxJKEWAYhjuH9MOBrR89xf9fJakvLXk_bEtGK0pR4Fv-1WSQIqARR9Ixhb2hGkdJfFdO46xuaIkOryFPOx_Ah7P-_VlKeFUUSvnb-e8QbeCIIWIQg0ARGi_mNewub9XJx2c534dHZ92I3qMAvZ88DBw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEC5cddGLj13F8RnBw15a-5HpTryJjCiOcxDFuTXpTgKCtDI9Ct78Cf5Gf4lV6Z52FGURvDXkQahUJV9Vp74C2IkCbpTJ8PSTNva40MaTYWY8ZUKJ6MAkPHc73U16PdHvy_FcmIofogm4kWW485oMnALSY1Ye-jzw0GPp7wbEg_ULpjjCDSrfcHXSa-IsRCDnu9q2Tf-a4Yce9HyY4_3l9IY4x3Gru3iO5n9iyQswV8NOdlDpySJMmOIP_O44yurHv1Cco7Rv0H8elPvMqnLI3EPDB3SkEYsy14iaRgmPLH_jC2dV_emSIfJlqDAUd2D05pSpQjMK8V4XL0_PlM2JDjmrpkNFWILLo87F4bFXV2Lwci546EltAy0Ta5SMYnSx8FZva4R2WWKktL7ItZYIFdqhtYLYeFQcK65UhM6NSvx2Fi3DZHFbmBVg2pdWJKKtfKV55AtlcsSEPONJYqWxQQt2R1uQ5jVNOVXLuElH7goJMSUhpk6ILfjXDLirGDq-7ro-2tO0NtUyRcAiJOWeBZ82hxFiqpBYelqw3TSjSOnHiirM7T1NEePB6KPytWDPKcD_VpKedTqR-1r99ogtmDm-OOum3ZPe6RrMhoQzXExoHSaHg3uzAdP5w_C6HGw6S3gFhu8F9A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7y04Rc0jZt6KbbVIUecvFWtmVb6i00uzQkXUpJYW9GtiRYWJyw3gR66yP0GfMkmZG9zja0hEJvBv0gRjPSN2PNNwDv41BYbQs8_ZRLAyGNDVRU2EDbSCE6sJko_U6fZ-OxnEzUai5Mww_RBdzIMvx5TQZur4xbsfKIizBAj2UyCIkHax02RYpeOWWVnI67OAsRyHFf27br3zL80IOeB3P8fjndI85V3OovntHT_7HkZ7Dbwk523OjJc1iz1R5sDT1l9Y8XUH1Dac_Qf57XH5nT9YL5h4Y36EgjFmW-ETWNEh5Zec8Xzpr60zVD5MtQYSjuwOjNKdOVYRTinVa3P39RNic65KyZDhXhJXwfDS8-fQ7aSgxBKaSIAmVcaFTmrFZxii4W3uqJQWhXZFYpx2VpjEKokETOSWLj0WmqhdYxOjc640kR78NGdVnZV8AMV05mMtFcGxFzqW2JmFAUIsucsi7swWC5BXnZ0pRTtYxZvnRXSIg5CTH3QuzBUTfgqmHo-HvX_nJP89ZU6xwBi1SUexb-sTmKEVNFxNLTg3ddM4qUfqzoyl5e0xQpHow84bwHH7wCPLaS_MtwGPuvg38e8Ra2v56M8vPT8dlr2IkIZviQUB82FvNr-waelDeLaT0_9IZwByJMBXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rphylopars%3A+fast+multivariate+phylogenetic+comparative+methods+for+missing+data+and+within%E2%80%90species+variation&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Goolsby%2C+Eric+W&rft.au=Bruggeman%2C+Jorn&rft.au=An%C3%A9%2C+C%C3%A9cile&rft.date=2017-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2041-210X&rft.volume=8&rft.issue=1&rft.spage=22&rft.epage=27&rft_id=info:doi/10.1111%2F2041-210X.12612&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon