PlantLncBoost: key features for plant lncRNA identification and significant improvement in accuracy and generalization
Summary Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in...
Uloženo v:
| Vydáno v: | The New phytologist Ročník 247; číslo 3; s. 1538 - 1549 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.08.2025
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models.
Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that effectively distinguish lncRNAs from mRNAs.
We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species.
PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant‐LncRNA‐pipeline v.2 (https://github.com/xuechantian/Plant‐LncRNA‐pipeline‐v2). |
|---|---|
| AbstractList | Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant‐LncRNA‐pipeline v.2 (https://github.com/xuechantian/Plant‐LncRNA‐pipeline‐v2). Summary Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant‐LncRNA‐pipeline v.2 (https://github.com/xuechantian/Plant‐LncRNA‐pipeline‐v2). Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features - ORF coverage, complex Fourier average, and atomic Fourier amplitude - that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant-LncRNA-pipeline v.2 (https://github.com/xuechantian/Plant-LncRNA-pipeline-v2).Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features - ORF coverage, complex Fourier average, and atomic Fourier amplitude - that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant-LncRNA-pipeline v.2 (https://github.com/xuechantian/Plant-LncRNA-pipeline-v2). |
| Author | Domingues, Douglas Tian, Xue‐Chan Jiang, Li‐Bo Nie, Shuai Rossi Paschoal, Alexandre Mao, Jian‐Feng |
| AuthorAffiliation | 2 State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China 7 Department of Plant Physiology Umeå Plant Science Centre (UPSC), Umeå University Umeå 90187 Sweden 1 School of Life Sciences and Medicine Shandong University of Technology Zibo Shandong 255000 China 4 Department of Genetics, “Luiz de Queiroz” College of Agriculture University of São Paulo 13418‐900 Piracicaba Sao Paulo Brazil 3 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Rice Science and Technology, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province) M |
| AuthorAffiliation_xml | – name: 5 Bioinformatics and Pattern Recognition Group (BIOINFO‐CP), Department of Computer Science Federal University of Technology – Paraná, UTFPR Campus Cornélio Procópio Cornélio Procópio 86300‐000 Brazil – name: 4 Department of Genetics, “Luiz de Queiroz” College of Agriculture University of São Paulo 13418‐900 Piracicaba Sao Paulo Brazil – name: 6 The Rosalind Franklin Institute OX110QX Didcot UK – name: 1 School of Life Sciences and Medicine Shandong University of Technology Zibo Shandong 255000 China – name: 3 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Rice Science and Technology, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province) Ministry of Agriculture and Rural Affairs Guangzhou 510640 China – name: 7 Department of Plant Physiology Umeå Plant Science Centre (UPSC), Umeå University Umeå 90187 Sweden – name: 2 State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China |
| Author_xml | – sequence: 1 givenname: Xue‐Chan orcidid: 0000-0001-9023-0114 surname: Tian fullname: Tian, Xue‐Chan organization: Beijing Forestry University – sequence: 2 givenname: Shuai orcidid: 0000-0002-4832-1271 surname: Nie fullname: Nie, Shuai organization: Ministry of Agriculture and Rural Affairs – sequence: 3 givenname: Douglas orcidid: 0000-0002-1290-0853 surname: Domingues fullname: Domingues, Douglas email: dougsd@usp.br organization: University of São Paulo – sequence: 4 givenname: Alexandre orcidid: 0000-0002-8887-0582 surname: Rossi Paschoal fullname: Rossi Paschoal, Alexandre organization: The Rosalind Franklin Institute – sequence: 5 givenname: Li‐Bo orcidid: 0000-0003-4703-9220 surname: Jiang fullname: Jiang, Li‐Bo email: libojiang@sdut.edu.cn organization: Shandong University of Technology – sequence: 6 givenname: Jian‐Feng orcidid: 0000-0001-9735-8516 surname: Mao fullname: Mao, Jian‐Feng email: jianfeng.mao@umu.se organization: Umeå Plant Science Centre (UPSC), Umeå University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40432231$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-240920$$DView record from Swedish Publication Index (Umeå universitet) |
| BookMark | eNp9kstu1DAUhi1URKcDC14ARWIDi7S-JbHZoKFcijQqFaoQO8vjOFOXxA52MtXw9JzJlIpWAm9s-Xz_r3M7Qgc-eIvQc4KPCZwT318dV5gS8gjNCC9lLgirDtAMYyrykpffD9FRStcYY1mU9Ak65JgzShmZoc1Fq_2w9OZdCGl4k_2w26yxehijTVkTYtbv4lnrzdfzReZq6wfXOKMHF3ymfZ0lt_bTD1Cu62PY2M7u3hA2ZozabCdubb2NunW_JulT9LjRbbLPbu85uvz44fL0LF9--fT5dLHMDRec5KImdb0qJSYN51pXBVmxspQry1cCF0RIoUuMLS404Q0uJGSOOUQqxgkrDZujfG-bbmw_rlQfXafjVgXt1Hv3baFCXKuxGxXlWFIM_Ns9D3BnawOFQM73ZPcj3l2pddgoQuFIWoHDq1uHGH6ONg2qc8nYFrpow5gUo4RWggkmAX35AL0OY_TQDqCoxAUTMKY5evF3Sne5_BkhAK_3gIkhpWibO4RgtVsPBeuhpvUA9uQBa9wwDQSqce3_FDeutdt_W6vzi7O94jfd_syx |
| CitedBy_id | crossref_primary_10_3389_fpls_2025_1640284 |
| Cites_doi | 10.1109/CIBCB48159.2020.9277716 10.1002/widm.1484 10.1038/s41598-022-22082-7 10.1109/TCBB.2014.2315991 10.1007/s10115-012-0487-8 10.2478/cait-2021-0016 10.1038/s41598-018-34708-w 10.1186/s13059-020-02247-1 10.1016/j.plaphy.2024.108892 10.1007/s11033-013-2736-7 10.3389/fpls.2020.00276 10.1109/ICMLA.2007.35 10.1093/nar/gkt006 10.1146/annurev-arplant-093020-035446 10.1109/ACCESS.2020.3028039 10.1093/bioinformatics/btr209 10.1186/s12859-023-05536-1 10.1186/s12859-021-04485-x 10.1093/nar/gkaa910 10.1186/s12915-023-01804-x 10.3390/e26020150 10.1007/s10142-021-00787-8 10.1145/2939672.2939785 10.1093/bioinformatics/bty428 10.6026/973206300191145 10.1093/bib/bby034 10.1103/PhysRevE.70.031910 10.1016/j.tust.2020.103493 10.1093/bioinformatics/btl158 10.1093/plphys/kiae034 10.1093/bib/bbab434 10.1186/1471-2105-15-311 10.1093/bioinformatics/btm344 10.1007/s10142-021-00769-w 10.3390/ncrna10040043 10.1093/hr/uhae041 10.1093/nar/gkm391 10.1093/nar/gkad1057 10.1093/plcell/koad027 10.1093/nar/gkx677 10.1093/nar/gkab1014 10.1038/s41598-023-27680-7 10.1371/journal.pone.0139654 10.1093/nar/gkx866 10.1093/bioinformatics/13.3.263 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). © 2025 New Phytologist Foundation. 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). © 2025 New Phytologist Foundation. – notice: 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC |
| DOI | 10.1111/nph.70211 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 1549 |
| ExternalDocumentID | oai_DiVA_org_umu_240920 PMC12222927 40432231 10_1111_nph_70211 NPH70211 |
| Genre | methodAndProtocol Journal Article |
| GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2025A1515012969 – fundername: Natural Science Fund for Excellent Young Scholars of Shandong Province funderid: ZR2022YQ23 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico ‐ CNPq funderid: #440412/2022‐6 – fundername: National Natural Science Foundation of China funderid: 32171816 – fundername: National Key R&D Program of China funderid: 2022YFD2200103 – fundername: Fundação Araucária funderid: Project: NAPI Bioinformatica #66.2021 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq grantid: #440412/2022-6 – fundername: Fundação Araucária grantid: Project: NAPI Bioinformatica #66.2021 – fundername: Natural Science Fund for Excellent Young Scholars of Shandong Province grantid: ZR2022YQ23 – fundername: National Natural Science Foundation of China grantid: 32171816 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2025A1515012969 – fundername: National Key R&D Program of China grantid: 2022YFD2200103 – fundername: ; grantid: #440412/2022‐6 – fundername: ; grantid: 2022YFD2200103 – fundername: ; grantid: 32171816 – fundername: ; grantid: Project: NAPI Bioinformatica #66.2021 – fundername: ; grantid: ZR2022YQ23 – fundername: ; grantid: 2025A1515012969 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABGDZ ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADXHL ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABUFD CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC |
| ID | FETCH-LOGICAL-c4841-8d1ddb6901f44aa751b3669be4b8051898a600e05a14f059fea04805734136c3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497232100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Sat Nov 29 03:15:21 EST 2025 Tue Nov 04 02:04:45 EST 2025 Fri Sep 05 15:59:29 EDT 2025 Sat Oct 25 11:13:45 EDT 2025 Sun Jul 06 01:40:35 EDT 2025 Tue Nov 18 22:26:51 EST 2025 Sat Nov 29 06:55:56 EST 2025 Thu Jul 03 09:30:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | model selection long noncoding RNAs (lncRNAs) Fourier transform ORF coverage gradient boosting algorithms feature selection |
| Language | English |
| License | Attribution 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4841-8d1ddb6901f44aa751b3669be4b8051898a600e05a14f059fea04805734136c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4832-1271 0000-0001-9023-0114 0000-0002-8887-0582 0000-0002-1290-0853 0000-0001-9735-8516 0000-0003-4703-9220 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70211 |
| PMID | 40432231 |
| PQID | 3229053804 |
| PQPubID | 2026848 |
| PageCount | 12 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_umu_240920 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12222927 proquest_miscellaneous_3212783839 proquest_journals_3229053804 pubmed_primary_40432231 crossref_primary_10_1111_nph_70211 crossref_citationtrail_10_1111_nph_70211 wiley_primary_10_1111_nph_70211_NPH70211 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2021; 21 2023; 13 2023; 35 2021; 23 2021; 22 2022; 50 2013; 40 2023; 19 2017; 45 2015; 10 2013; 41 2008 2007 2024; 52 2024; 10 2024; 11 2020; 11 2006; 1 2020; 103 2021; 72 2018; 20 2007; 35 2018; 46 2020; 8 2018; 8 2017; 30 2023; 24 2004; 70 2024; 214 2013; 34 2006; 22 2020 1997; 13 2022; 12 2024; 195 2020; 49 2014; 15 2018 2016 2024; 22 2015 2018; 34 2024; 26 2011; 27 2007; 23 2014; 11 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_41_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 Sun L (e_1_2_9_39_1) 2015; 10 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Ke G (e_1_2_9_20_1) 2017; 30 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 Guyon I (e_1_2_9_18_1) 2008 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 Nair AS (e_1_2_9_29_1) 2006; 1 Wucher V (e_1_2_9_45_1) 2017; 45 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 |
| References_xml | – volume: 13 year: 2023 article-title: Hyperparameter optimization: foundations, algorithms, best practices, and open challenges publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 26 start-page: 150 year: 2024 article-title: Fast model selection and hyperparameter tuning for generative models publication-title: Entropy – volume: 40 start-page: 6245 year: 2013 end-page: 6253 article-title: Long non‐coding genes implicated in response to stripe rust pathogen stress in wheat ( L.) publication-title: Molecular Biology Reports – volume: 41 year: 2013 article-title: : Coding‐Potential Assessment Tool using an alignment‐free logistic regression model publication-title: Nucleic Acids Research – volume: 45 year: 2017 article-title: FEELnc: a tool for long non‐coding RNA annotation and its application to the dog transcriptome publication-title: Nucleic Acids Research – volume: 52 start-page: D98 issue: D1 year: 2024 end-page: d106 article-title: EVLncRNAs 3.0: an updated comprehensive database for manually curated functional long non‐coding RNAs validated by low‐throughput experiments publication-title: Nucleic Acids Research – volume: 20 start-page: 682 year: 2018 end-page: 689 article-title: Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants publication-title: Briefings in Bioinformatics – volume: 50 start-page: D1442 issue: D1 year: 2022 end-page: D1447 article-title: G NC 2.0: a comprehensive database of plant long non‐coding RNAs publication-title: Nucleic Acids Research – year: 2018 – volume: 8 start-page: 16385 year: 2018 article-title: Prediction of LncRNA subcellular localization with deep learning from sequence features publication-title: Scientific Reports – volume: 23 start-page: 2507 year: 2007 end-page: 2517 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 13 start-page: 806 year: 2023 article-title: Computational prediction of disease related lncRNAs using machine learning publication-title: Scientific Reports – volume: 195 start-page: 232 year: 2024 end-page: 244 article-title: From environmental responses to adaptation: the roles of plant lncRNAs publication-title: Plant Physiology – volume: 24 start-page: 410 year: 2023 article-title: LncRNA–protein interaction prediction with reweighted feature selection publication-title: BMC Bioinformatics – volume: 22 start-page: 1658 year: 2006 end-page: 1659 article-title: Cd‐hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics – volume: 103 year: 2020 article-title: TBM performance prediction with Bayesian optimization and automated machine learning publication-title: Tunnelling and Underground Space Technology – year: 2008 – volume: 34 start-page: 3825 year: 2018 end-page: 3834 article-title: LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning publication-title: Bioinformatics – volume: 11 start-page: 276 year: 2020 article-title: Long non‐coding RNA in plants in the era of reference sequences publication-title: Frontiers in Plant Science – volume: 49 start-page: D1489 issue: D1 year: 2020 end-page: D1495 article-title: PL DB V.2.0: a comprehensive encyclopedia of plant long noncoding RNAs publication-title: Nucleic Acids Research – volume: 35 start-page: 1762 year: 2023 end-page: 1786 article-title: Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs publication-title: Plant Cell – year: 2015 – volume: 46 start-page: D100 issue: D1 year: 2018 end-page: D105 article-title: EVLncRNAs: a manually curated database for long non‐coding RNAs validated by low‐throughput experiments publication-title: Nucleic Acids Research – volume: 72 start-page: 245 year: 2021 end-page: 271 article-title: Long noncoding RNAs in plants publication-title: Annual Review of Plant Biology – volume: 8 start-page: 181683 year: 2020 end-page: 181697 article-title: A novel decomposing model with evolutionary algorithms for feature selection in long non‐coding RNAs publication-title: IEEE Access – volume: 12 year: 2022 article-title: LncDC: a machine learning‐based tool for long non‐coding RNA detection from RNA‐Seq data publication-title: Scientific Reports – volume: 21 start-page: 195 year: 2021 end-page: 204 article-title: LncMachine: a machine learning algorithm for long noncoding RNA annotation in plants publication-title: Functional & Integrative Genomics – year: 2007 – volume: 27 start-page: i275 year: 2011 end-page: i282 article-title: P CSF: a comparative genomics method to distinguish protein coding and non‐coding regions publication-title: Bioinformatics – volume: 214 year: 2024 article-title: lncRNAs and epigenetics regulate plant's resilience against biotic stresses publication-title: Plant Physiology and Biochemistry – volume: 22 start-page: 44 year: 2024 article-title: CircRNA identification and feature interpretability analysis publication-title: BMC Biology – year: 2016 – volume: 19 start-page: 1145 year: 2023 end-page: 1152 article-title: Composition, physicochemical property and base periodicity for discriminating lncRNA and mRNA publication-title: Bioinformation – volume: 15 start-page: 311 year: 2014 article-title: PLEK: a tool for predicting long non‐coding RNAs and messenger RNAs based on an improved ‐mer scheme publication-title: BMC Bioinformatics – volume: 11 year: 2024 article-title: Plant‐LncPipe: a computational pipeline providing significant improvement in plant lncRNA identification publication-title: Horticulture Research – volume: 1 start-page: 197 year: 2006 end-page: 202 article-title: A coding measure scheme employing electron‐ion interaction pseudopotential (EIIP) publication-title: Bioinformation – volume: 10 year: 2015 article-title: lncRScan‐SVM: a tool for predicting long non‐coding RNAs using support vector machine publication-title: PLoS ONE – volume: 30 start-page: 3146 year: 2017 end-page: 3154 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems – volume: 22 start-page: 29 year: 2021 article-title: Uncovering deeply conserved motif combinations in rapidly evolving noncoding sequences publication-title: Genome Biology – volume: 22 start-page: 1 year: 2021 end-page: 31 article-title: LPI‐HyADBS: a hybrid framework for lncRNA‐protein interaction prediction integrating feature selection and classification publication-title: BMC Bioinformatics – year: 2020 – volume: 23 year: 2021 article-title: MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors publication-title: Briefings in Bioinformatics – volume: 13 start-page: 263 year: 1997 end-page: 270 article-title: Prediction of probable genes by Fourier analysis of genomic sequences publication-title: Bioinformatics – volume: 21 start-page: 313 year: 2021 end-page: 330 article-title: Regulatory non‐coding RNAs: a new frontier in regulation of plant biology publication-title: Functional & Integrative Genomics – volume: 34 start-page: 483 year: 2013 end-page: 519 article-title: A review of feature selection methods on synthetic data publication-title: Knowledge and Information Systems – volume: 35 start-page: W345 year: 2007 end-page: W349 article-title: CPC: assess the protein‐coding potential of transcripts using sequence features and support vector machine publication-title: Nucleic Acids Research – volume: 70 year: 2004 article-title: Spectrum and symbol distribution of nucleotide sequences publication-title: Physical Review E – volume: 10 start-page: 43 year: 2024 article-title: Challenges in lncRNA biology: views and opinions publication-title: Noncoding RNA – volume: 21 start-page: 10 year: 2021 end-page: 28 article-title: A new noisy random forest based method for feature selection publication-title: Cybernetics and Information Technologies – volume: 45 year: 2017 article-title: PLncPRO for prediction of long non‐coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress‐responsive lncRNAs in rice and chickpea publication-title: Nucleic Acids Research – volume: 11 start-page: 863 year: 2014 end-page: 877 article-title: Building specific signals from frequency chaos game and revealing periodicities using a smoothed Fourier analysis publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 1 start-page: 197 year: 2006 ident: e_1_2_9_29_1 article-title: A coding measure scheme employing electron‐ion interaction pseudopotential (EIIP) publication-title: Bioinformation – ident: e_1_2_9_31_1 doi: 10.1109/CIBCB48159.2020.9277716 – ident: e_1_2_9_6_1 doi: 10.1002/widm.1484 – ident: e_1_2_9_24_1 doi: 10.1038/s41598-022-22082-7 – ident: e_1_2_9_28_1 doi: 10.1109/TCBB.2014.2315991 – ident: e_1_2_9_7_1 doi: 10.1007/s10115-012-0487-8 – ident: e_1_2_9_4_1 doi: 10.2478/cait-2021-0016 – ident: e_1_2_9_17_1 doi: 10.1038/s41598-018-34708-w – volume: 30 start-page: 3146 year: 2017 ident: e_1_2_9_20_1 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_16_1 – ident: e_1_2_9_35_1 doi: 10.1186/s13059-020-02247-1 – ident: e_1_2_9_46_1 doi: 10.1016/j.plaphy.2024.108892 – ident: e_1_2_9_48_1 doi: 10.1007/s11033-013-2736-7 – ident: e_1_2_9_10_1 doi: 10.3389/fpls.2020.00276 – ident: e_1_2_9_38_1 – ident: e_1_2_9_14_1 doi: 10.1109/ICMLA.2007.35 – ident: e_1_2_9_43_1 doi: 10.1093/nar/gkt006 – ident: e_1_2_9_44_1 doi: 10.1146/annurev-arplant-093020-035446 – ident: e_1_2_9_9_1 doi: 10.1109/ACCESS.2020.3028039 – ident: e_1_2_9_26_1 doi: 10.1093/bioinformatics/btr209 – ident: e_1_2_9_27_1 doi: 10.1186/s12859-023-05536-1 – ident: e_1_2_9_52_1 doi: 10.1186/s12859-021-04485-x – ident: e_1_2_9_19_1 doi: 10.1093/nar/gkaa910 – ident: e_1_2_9_32_1 doi: 10.1186/s12915-023-01804-x – ident: e_1_2_9_12_1 doi: 10.3390/e26020150 – ident: e_1_2_9_5_1 doi: 10.1007/s10142-021-00787-8 – ident: e_1_2_9_13_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_9_47_1 doi: 10.1093/bioinformatics/bty428 – ident: e_1_2_9_34_1 doi: 10.6026/973206300191145 – ident: e_1_2_9_30_1 doi: 10.1093/bib/bby034 – ident: e_1_2_9_3_1 doi: 10.1103/PhysRevE.70.031910 – volume: 45 year: 2017 ident: e_1_2_9_45_1 article-title: FEELnc: a tool for long non‐coding RNA annotation and its application to the dog transcriptome publication-title: Nucleic Acids Research – ident: e_1_2_9_49_1 doi: 10.1016/j.tust.2020.103493 – ident: e_1_2_9_25_1 doi: 10.1093/bioinformatics/btl158 – ident: e_1_2_9_42_1 doi: 10.1093/plphys/kiae034 – ident: e_1_2_9_8_1 doi: 10.1093/bib/bbab434 – ident: e_1_2_9_23_1 doi: 10.1186/1471-2105-15-311 – ident: e_1_2_9_36_1 doi: 10.1093/bioinformatics/btm344 – ident: e_1_2_9_11_1 doi: 10.1007/s10142-021-00769-w – ident: e_1_2_9_2_1 doi: 10.3390/ncrna10040043 – ident: e_1_2_9_40_1 doi: 10.1093/hr/uhae041 – ident: e_1_2_9_22_1 doi: 10.1093/nar/gkm391 – ident: e_1_2_9_50_1 doi: 10.1093/nar/gkad1057 – ident: e_1_2_9_33_1 doi: 10.1093/plcell/koad027 – ident: e_1_2_9_51_1 doi: 10.1093/nar/gkx677 – ident: e_1_2_9_15_1 doi: 10.1093/nar/gkab1014 – volume-title: Feature extraction: foundations and applications, vol. 207 year: 2008 ident: e_1_2_9_18_1 – ident: e_1_2_9_21_1 doi: 10.1038/s41598-023-27680-7 – volume: 10 year: 2015 ident: e_1_2_9_39_1 article-title: lncRScan‐SVM: a tool for predicting long non‐coding RNAs using support vector machine publication-title: PLoS ONE doi: 10.1371/journal.pone.0139654 – ident: e_1_2_9_37_1 doi: 10.1093/nar/gkx866 – ident: e_1_2_9_41_1 doi: 10.1093/bioinformatics/13.3.263 |
| SSID | ssj0009562 |
| Score | 2.4922097 |
| Snippet | Summary
Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due... Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the... |
| SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1538 |
| SubjectTerms | Accuracy Algorithms Biological activity Computational Biology - methods Computer applications Conserved sequence feature selection Flowers & plants Fourier transform gradient boosting algorithms Identification long noncoding RNAs (lncRNAs) Methods model selection Non-coding RNA Open Reading Frames - genetics ORF coverage Performance assessment Plant species Plants Plants - genetics RNA, Long Noncoding - genetics RNA, Messenger - genetics RNA, Plant - genetics Software Wildlife conservation |
| Title | PlantLncBoost: key features for plant lncRNA identification and significant improvement in accuracy and generalization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70211 https://www.ncbi.nlm.nih.gov/pubmed/40432231 https://www.proquest.com/docview/3229053804 https://www.proquest.com/docview/3212783839 https://pubmed.ncbi.nlm.nih.gov/PMC12222927 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-240920 |
| Volume | 247 |
| WOSCitedRecordID | wos001497232100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 1469-8137 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBal7cNedr9464o2xtiLR2Qrlrw9petCH0IIpRt5M5Ilt4ZODnFc6L_fOfKFmm4w2Esw0bEdS-f4fFKOvo-QD6KwsphoHU51FIdcMhbKyJqQa5tCwrcwp_CqJQuxXMr1Ol3tka_9XpiWH2JYcMPI8O9rDHCl6ztB7jZXnwVkKJj6HDAWS9RtiPjqDuNuEvUUzAlP1h2tEJbxDKeOk9E9hHm_ULKjEx0jWZ-K5o_-6yEek4cdAqWz1mWekD3rnpLDkwpQ4u0zcoMqRruFy0-qqt59oRDjtLCe_bOmAHDpBtvptcvPlzNamq7YyI8vVc5QLAjx34BV6Vcs_AIkLaE5z5utym-93WXLd91tA31OLubfL76dhZ02Q5hzyWFADTNGo5pVwblSYsp0nCSptlxLiHOZSgVQyk6mivECIBz8Uty9PhWYNZM8fkH2XeXsK0INmBqhjEQuPhEXUmlhpC0AOlhmpArIp36MsrzjLUf5jOusn79AJ2a-EwPyfjDdtGQdfzI66gc66-K1zmKkvYd3_4QH5N3QDJGGf58oZ6sGbRjKkgCiDMjL1i-GuyBHEQAtuLgcecxggCze4xZXXnk2bxahpHokAvKxda7ROaflz1lWbS-z5leTAfpKowl0iHepvz9itlyd-YPX_276hjyIUNrY1zYekf3dtrFvyWF-syvr7bEPLfgUa3lMDk7P5z8WvwFYnSsk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KW9he9v3hrtu0McZePGJbseWxl3RdyJgXSslG3oRsya2htUMSF_rf707-oKYbDPZmrJNtSXe6n-TT7wDeRbkR-ShN3XHqBy4XnucK32iXpyZGh29wTWGzliTRfC6Wy_hkBz53Z2Eafoh-w40sw87XZOC0IX3DysvV-ccIXRSuffY4qhHq997x6fRncoN0N_Q7FuaQh8uWWYgiefrKQ390C2TejpVsGUWHYNZ6o-n9_2vHA7jXolA2adTmIeyY8hHsH1WIFK8fwxVlMtomZXZUVZvtJ4Z2znJjGUA3DEEuW1E5uyiz0_mEFboNOLJjzFSpGQWF2DsoVdhdC7sJyQoszrJ6rbJrK3fWcF63R0GfwGL6dfFl5rb5GdyMC46Dqj2tU8polXOuVDT20iAM49TwVKCti1gohFNmNFYezxHG4ZfSCfZxRJ4zzIKnsFtWpXkOTKOojpQWxMcXBblQaaSFyRE-GE8L5cCHbpBk1nKXUwqNC9mtYbATpe1EB972oquGsONPQofdSMvWZjcyIOp7nP9H3IE3fTFaG_1CUaWpapLxKDUJokoHnjWK0b-FeIoQbOHDxUBlegFi8h6WlMW5ZfT2fEqr7kcOvG-0a1DnuPg1kdX6TNaXtUQEFvsj7BCrU39vopyfzOzFwb-LvoY7s8WPRCbf5t9fwF2fUh3bWMdD2N2ua_MS9rOrbbFZv2ot7TcZ5C4i |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KWsZe9v3hrdu0McZeXGJbseWxl3RZ6FgwoXQjb0K25NbQ2SGJC_3vdyd_UNMNBnsz1tmOpTvfT8rp9wN4H-VG5OM0dSepH7hceJ4rfKNdnpoYE77BOYVVLVlESSJWq3i5B5-7vTANP0S_4EaRYb_XFOBmrfMbUV6uL44iTFE499nnJCIzgv3Z6fzH4gbpbuh3LMwhD1ctsxBV8vQXD_PRLZB5u1ayZRQdglmbjeb3_-89HsC9FoWyaeM2D2HPlI_g4LhCpHj9GK5IyWi3KLPjqtruPjGMc5YbywC6ZQhy2Zra2WWZnSZTVui24MiOMVOlZlQUYs-gVWFXLewiJCuwOcvqjcqurd15w3ndbgV9Amfzr2dfTtxWn8HNuOA4qNrTOiVFq5xzpaKJlwZhGKeGpwJjXcRCIZwy44nyeI4wDn8p7WCfRJQ5wyx4CqOyKs1zYBpNdaS0ID6-KMiFSiMtTI7wwXhaKAc-doMks5a7nCQ0LmU3h8FOlLYTHXjXm64bwo4_GR12Iy3bmN3KgKjv8fs_5g687Zsx2ugvFFWaqiYbj6RJEFU68KxxjP4pxFOEYAtvLgYu0xsQk_ewpSwuLKO355Osuh858KHxrsE1s-LnVFabc1n_qiUisNgfY4dYn_r7K8pkeWIPXvy76Ru4s5zN5eJb8v0l3PVJ6diWOh7CaLepzSs4yK52xXbzug2032Q_LZ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PlantLncBoost%3A+key+features+for+plant+lncRNA+identification+and+significant+improvement+in+accuracy+and+generalization&rft.jtitle=The+New+phytologist&rft.au=Tian%2C+Xue-Chan&rft.au=Nie%2C+Shuai&rft.au=Domingues%2C+Douglas&rft.au=Rossi+Paschoal%2C+Alexandre&rft.date=2025-08-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.70211&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |