PlantLncBoost: key features for plant lncRNA identification and significant improvement in accuracy and generalization

Summary Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The New phytologist Ročník 247; číslo 3; s. 1538 - 1549
Hlavní autoři: Tian, Xue‐Chan, Nie, Shuai, Domingues, Douglas, Rossi Paschoal, Alexandre, Jiang, Li‐Bo, Mao, Jian‐Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley Subscription Services, Inc 01.08.2025
John Wiley and Sons Inc
Témata:
ISSN:0028-646X, 1469-8137, 1469-8137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant‐LncRNA‐pipeline v.2 (https://github.com/xuechantian/Plant‐LncRNA‐pipeline‐v2).
AbstractList Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant‐LncRNA‐pipeline v.2 (https://github.com/xuechantian/Plant‐LncRNA‐pipeline‐v2).
Summary Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features – ORF coverage, complex Fourier average, and atomic Fourier amplitude – that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant‐LncRNA‐pipeline v.2 (https://github.com/xuechantian/Plant‐LncRNA‐pipeline‐v2).
Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features - ORF coverage, complex Fourier average, and atomic Fourier amplitude - that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant-LncRNA-pipeline v.2 (https://github.com/xuechantian/Plant-LncRNA-pipeline-v2).Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the low sequence conservation across various species. Existing computational methods for lncRNA identification often face difficulties in generalizing across diverse plant species, highlighting the need for more robust and versatile identification models. Here, we present PlantLncBoost, a novel computational tool designed to improve the generalization in plant lncRNA identification. By integrating advanced gradient boosting algorithms with comprehensive feature selection, our approach achieves both high accuracy and generalizability. We conducted an extensive analysis of 1662 features and identified three key features - ORF coverage, complex Fourier average, and atomic Fourier amplitude - that effectively distinguish lncRNAs from mRNAs. We assessed the performance of PlantLncBoost using comprehensive datasets from 20 plant species. The model exhibited exceptional performance, with an accuracy of 96.63%, a sensitivity of 98.42%, and a specificity of 94.93%, significantly outperforming existing tools. Further analysis revealed that the features we selected effectively capture the differences between lncRNAs and mRNAs across a variety of plant species. PlantLncBoost represents a significant advancement in plant lncRNA identification. It is freely accessible on GitHub (https://github.com/xuechantian/PlantLncBoost) and has been integrated into a comprehensive analysis pipeline, Plant-LncRNA-pipeline v.2 (https://github.com/xuechantian/Plant-LncRNA-pipeline-v2).
Author Domingues, Douglas
Tian, Xue‐Chan
Jiang, Li‐Bo
Nie, Shuai
Rossi Paschoal, Alexandre
Mao, Jian‐Feng
AuthorAffiliation 2 State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China
7 Department of Plant Physiology Umeå Plant Science Centre (UPSC), Umeå University Umeå 90187 Sweden
1 School of Life Sciences and Medicine Shandong University of Technology Zibo Shandong 255000 China
4 Department of Genetics, “Luiz de Queiroz” College of Agriculture University of São Paulo 13418‐900 Piracicaba Sao Paulo Brazil
3 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Rice Science and Technology, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province) M
AuthorAffiliation_xml – name: 5 Bioinformatics and Pattern Recognition Group (BIOINFO‐CP), Department of Computer Science Federal University of Technology – Paraná, UTFPR Campus Cornélio Procópio Cornélio Procópio 86300‐000 Brazil
– name: 4 Department of Genetics, “Luiz de Queiroz” College of Agriculture University of São Paulo 13418‐900 Piracicaba Sao Paulo Brazil
– name: 6 The Rosalind Franklin Institute OX110QX Didcot UK
– name: 1 School of Life Sciences and Medicine Shandong University of Technology Zibo Shandong 255000 China
– name: 3 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Rice Science and Technology, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province) Ministry of Agriculture and Rural Affairs Guangzhou 510640 China
– name: 7 Department of Plant Physiology Umeå Plant Science Centre (UPSC), Umeå University Umeå 90187 Sweden
– name: 2 State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology Beijing Forestry University Beijing 100083 China
Author_xml – sequence: 1
  givenname: Xue‐Chan
  orcidid: 0000-0001-9023-0114
  surname: Tian
  fullname: Tian, Xue‐Chan
  organization: Beijing Forestry University
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0002-4832-1271
  surname: Nie
  fullname: Nie, Shuai
  organization: Ministry of Agriculture and Rural Affairs
– sequence: 3
  givenname: Douglas
  orcidid: 0000-0002-1290-0853
  surname: Domingues
  fullname: Domingues, Douglas
  email: dougsd@usp.br
  organization: University of São Paulo
– sequence: 4
  givenname: Alexandre
  orcidid: 0000-0002-8887-0582
  surname: Rossi Paschoal
  fullname: Rossi Paschoal, Alexandre
  organization: The Rosalind Franklin Institute
– sequence: 5
  givenname: Li‐Bo
  orcidid: 0000-0003-4703-9220
  surname: Jiang
  fullname: Jiang, Li‐Bo
  email: libojiang@sdut.edu.cn
  organization: Shandong University of Technology
– sequence: 6
  givenname: Jian‐Feng
  orcidid: 0000-0001-9735-8516
  surname: Mao
  fullname: Mao, Jian‐Feng
  email: jianfeng.mao@umu.se
  organization: Umeå Plant Science Centre (UPSC), Umeå University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40432231$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-240920$$DView record from Swedish Publication Index (Umeå universitet)
BookMark eNp9kstu1DAUhi1URKcDC14ARWIDi7S-JbHZoKFcijQqFaoQO8vjOFOXxA52MtXw9JzJlIpWAm9s-Xz_r3M7Qgc-eIvQc4KPCZwT318dV5gS8gjNCC9lLgirDtAMYyrykpffD9FRStcYY1mU9Ak65JgzShmZoc1Fq_2w9OZdCGl4k_2w26yxehijTVkTYtbv4lnrzdfzReZq6wfXOKMHF3ymfZ0lt_bTD1Cu62PY2M7u3hA2ZozabCdubb2NunW_JulT9LjRbbLPbu85uvz44fL0LF9--fT5dLHMDRec5KImdb0qJSYN51pXBVmxspQry1cCF0RIoUuMLS404Q0uJGSOOUQqxgkrDZujfG-bbmw_rlQfXafjVgXt1Hv3baFCXKuxGxXlWFIM_Ns9D3BnawOFQM73ZPcj3l2pddgoQuFIWoHDq1uHGH6ONg2qc8nYFrpow5gUo4RWggkmAX35AL0OY_TQDqCoxAUTMKY5evF3Sne5_BkhAK_3gIkhpWibO4RgtVsPBeuhpvUA9uQBa9wwDQSqce3_FDeutdt_W6vzi7O94jfd_syx
CitedBy_id crossref_primary_10_3389_fpls_2025_1640284
Cites_doi 10.1109/CIBCB48159.2020.9277716
10.1002/widm.1484
10.1038/s41598-022-22082-7
10.1109/TCBB.2014.2315991
10.1007/s10115-012-0487-8
10.2478/cait-2021-0016
10.1038/s41598-018-34708-w
10.1186/s13059-020-02247-1
10.1016/j.plaphy.2024.108892
10.1007/s11033-013-2736-7
10.3389/fpls.2020.00276
10.1109/ICMLA.2007.35
10.1093/nar/gkt006
10.1146/annurev-arplant-093020-035446
10.1109/ACCESS.2020.3028039
10.1093/bioinformatics/btr209
10.1186/s12859-023-05536-1
10.1186/s12859-021-04485-x
10.1093/nar/gkaa910
10.1186/s12915-023-01804-x
10.3390/e26020150
10.1007/s10142-021-00787-8
10.1145/2939672.2939785
10.1093/bioinformatics/bty428
10.6026/973206300191145
10.1093/bib/bby034
10.1103/PhysRevE.70.031910
10.1016/j.tust.2020.103493
10.1093/bioinformatics/btl158
10.1093/plphys/kiae034
10.1093/bib/bbab434
10.1186/1471-2105-15-311
10.1093/bioinformatics/btm344
10.1007/s10142-021-00769-w
10.3390/ncrna10040043
10.1093/hr/uhae041
10.1093/nar/gkm391
10.1093/nar/gkad1057
10.1093/plcell/koad027
10.1093/nar/gkx677
10.1093/nar/gkab1014
10.1038/s41598-023-27680-7
10.1371/journal.pone.0139654
10.1093/nar/gkx866
10.1093/bioinformatics/13.3.263
ContentType Journal Article
Copyright 2025 The Author(s). © 2025 New Phytologist Foundation.
2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). © 2025 New Phytologist Foundation.
– notice: 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOI 10.1111/nph.70211
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1549
ExternalDocumentID oai_DiVA_org_umu_240920
PMC12222927
40432231
10_1111_nph_70211
NPH70211
Genre methodAndProtocol
Journal Article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2025A1515012969
– fundername: Natural Science Fund for Excellent Young Scholars of Shandong Province
  funderid: ZR2022YQ23
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico ‐ CNPq
  funderid: #440412/2022‐6
– fundername: National Natural Science Foundation of China
  funderid: 32171816
– fundername: National Key R&D Program of China
  funderid: 2022YFD2200103
– fundername: Fundação Araucária
  funderid: Project: NAPI Bioinformatica #66.2021
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
  grantid: #440412/2022-6
– fundername: Fundação Araucária
  grantid: Project: NAPI Bioinformatica #66.2021
– fundername: Natural Science Fund for Excellent Young Scholars of Shandong Province
  grantid: ZR2022YQ23
– fundername: National Natural Science Foundation of China
  grantid: 32171816
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2025A1515012969
– fundername: National Key R&D Program of China
  grantid: 2022YFD2200103
– fundername: ;
  grantid: #440412/2022‐6
– fundername: ;
  grantid: 2022YFD2200103
– fundername: ;
  grantid: 32171816
– fundername: ;
  grantid: Project: NAPI Bioinformatica #66.2021
– fundername: ;
  grantid: ZR2022YQ23
– fundername: ;
  grantid: 2025A1515012969
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABGDZ
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABUFD
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ID FETCH-LOGICAL-c4841-8d1ddb6901f44aa751b3669be4b8051898a600e05a14f059fea04805734136c3
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497232100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Sat Nov 29 03:15:21 EST 2025
Tue Nov 04 02:04:45 EST 2025
Fri Sep 05 15:59:29 EDT 2025
Sat Oct 25 11:13:45 EDT 2025
Sun Jul 06 01:40:35 EDT 2025
Tue Nov 18 22:26:51 EST 2025
Sat Nov 29 06:55:56 EST 2025
Thu Jul 03 09:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords model selection
long noncoding RNAs (lncRNAs)
Fourier transform
ORF coverage
gradient boosting algorithms
feature selection
Language English
License Attribution
2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4841-8d1ddb6901f44aa751b3669be4b8051898a600e05a14f059fea04805734136c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4832-1271
0000-0001-9023-0114
0000-0002-8887-0582
0000-0002-1290-0853
0000-0001-9735-8516
0000-0003-4703-9220
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70211
PMID 40432231
PQID 3229053804
PQPubID 2026848
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_umu_240920
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12222927
proquest_miscellaneous_3212783839
proquest_journals_3229053804
pubmed_primary_40432231
crossref_primary_10_1111_nph_70211
crossref_citationtrail_10_1111_nph_70211
wiley_primary_10_1111_nph_70211_NPH70211
PublicationCentury 2000
PublicationDate August 2025
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 21
2023; 13
2023; 35
2021; 23
2021; 22
2022; 50
2013; 40
2023; 19
2017; 45
2015; 10
2013; 41
2008
2007
2024; 52
2024; 10
2024; 11
2020; 11
2006; 1
2020; 103
2021; 72
2018; 20
2007; 35
2018; 46
2020; 8
2018; 8
2017; 30
2023; 24
2004; 70
2024; 214
2013; 34
2006; 22
2020
1997; 13
2022; 12
2024; 195
2020; 49
2014; 15
2018
2016
2024; 22
2015
2018; 34
2024; 26
2011; 27
2007; 23
2014; 11
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
Sun L (e_1_2_9_39_1) 2015; 10
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Ke G (e_1_2_9_20_1) 2017; 30
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
Guyon I (e_1_2_9_18_1) 2008
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
Nair AS (e_1_2_9_29_1) 2006; 1
Wucher V (e_1_2_9_45_1) 2017; 45
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 13
  year: 2023
  article-title: Hyperparameter optimization: foundations, algorithms, best practices, and open challenges
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 26
  start-page: 150
  year: 2024
  article-title: Fast model selection and hyperparameter tuning for generative models
  publication-title: Entropy
– volume: 40
  start-page: 6245
  year: 2013
  end-page: 6253
  article-title: Long non‐coding genes implicated in response to stripe rust pathogen stress in wheat ( L.)
  publication-title: Molecular Biology Reports
– volume: 41
  year: 2013
  article-title: : Coding‐Potential Assessment Tool using an alignment‐free logistic regression model
  publication-title: Nucleic Acids Research
– volume: 45
  year: 2017
  article-title: FEELnc: a tool for long non‐coding RNA annotation and its application to the dog transcriptome
  publication-title: Nucleic Acids Research
– volume: 52
  start-page: D98
  issue: D1
  year: 2024
  end-page: d106
  article-title: EVLncRNAs 3.0: an updated comprehensive database for manually curated functional long non‐coding RNAs validated by low‐throughput experiments
  publication-title: Nucleic Acids Research
– volume: 20
  start-page: 682
  year: 2018
  end-page: 689
  article-title: Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants
  publication-title: Briefings in Bioinformatics
– volume: 50
  start-page: D1442
  issue: D1
  year: 2022
  end-page: D1447
  article-title: G NC 2.0: a comprehensive database of plant long non‐coding RNAs
  publication-title: Nucleic Acids Research
– year: 2018
– volume: 8
  start-page: 16385
  year: 2018
  article-title: Prediction of LncRNA subcellular localization with deep learning from sequence features
  publication-title: Scientific Reports
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 13
  start-page: 806
  year: 2023
  article-title: Computational prediction of disease related lncRNAs using machine learning
  publication-title: Scientific Reports
– volume: 195
  start-page: 232
  year: 2024
  end-page: 244
  article-title: From environmental responses to adaptation: the roles of plant lncRNAs
  publication-title: Plant Physiology
– volume: 24
  start-page: 410
  year: 2023
  article-title: LncRNA–protein interaction prediction with reweighted feature selection
  publication-title: BMC Bioinformatics
– volume: 22
  start-page: 1658
  year: 2006
  end-page: 1659
  article-title: Cd‐hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
– volume: 103
  year: 2020
  article-title: TBM performance prediction with Bayesian optimization and automated machine learning
  publication-title: Tunnelling and Underground Space Technology
– year: 2008
– volume: 34
  start-page: 3825
  year: 2018
  end-page: 3834
  article-title: LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning
  publication-title: Bioinformatics
– volume: 11
  start-page: 276
  year: 2020
  article-title: Long non‐coding RNA in plants in the era of reference sequences
  publication-title: Frontiers in Plant Science
– volume: 49
  start-page: D1489
  issue: D1
  year: 2020
  end-page: D1495
  article-title: PL DB V.2.0: a comprehensive encyclopedia of plant long noncoding RNAs
  publication-title: Nucleic Acids Research
– volume: 35
  start-page: 1762
  year: 2023
  end-page: 1786
  article-title: Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs
  publication-title: Plant Cell
– year: 2015
– volume: 46
  start-page: D100
  issue: D1
  year: 2018
  end-page: D105
  article-title: EVLncRNAs: a manually curated database for long non‐coding RNAs validated by low‐throughput experiments
  publication-title: Nucleic Acids Research
– volume: 72
  start-page: 245
  year: 2021
  end-page: 271
  article-title: Long noncoding RNAs in plants
  publication-title: Annual Review of Plant Biology
– volume: 8
  start-page: 181683
  year: 2020
  end-page: 181697
  article-title: A novel decomposing model with evolutionary algorithms for feature selection in long non‐coding RNAs
  publication-title: IEEE Access
– volume: 12
  year: 2022
  article-title: LncDC: a machine learning‐based tool for long non‐coding RNA detection from RNA‐Seq data
  publication-title: Scientific Reports
– volume: 21
  start-page: 195
  year: 2021
  end-page: 204
  article-title: LncMachine: a machine learning algorithm for long noncoding RNA annotation in plants
  publication-title: Functional & Integrative Genomics
– year: 2007
– volume: 27
  start-page: i275
  year: 2011
  end-page: i282
  article-title: P CSF: a comparative genomics method to distinguish protein coding and non‐coding regions
  publication-title: Bioinformatics
– volume: 214
  year: 2024
  article-title: lncRNAs and epigenetics regulate plant's resilience against biotic stresses
  publication-title: Plant Physiology and Biochemistry
– volume: 22
  start-page: 44
  year: 2024
  article-title: CircRNA identification and feature interpretability analysis
  publication-title: BMC Biology
– year: 2016
– volume: 19
  start-page: 1145
  year: 2023
  end-page: 1152
  article-title: Composition, physicochemical property and base periodicity for discriminating lncRNA and mRNA
  publication-title: Bioinformation
– volume: 15
  start-page: 311
  year: 2014
  article-title: PLEK: a tool for predicting long non‐coding RNAs and messenger RNAs based on an improved ‐mer scheme
  publication-title: BMC Bioinformatics
– volume: 11
  year: 2024
  article-title: Plant‐LncPipe: a computational pipeline providing significant improvement in plant lncRNA identification
  publication-title: Horticulture Research
– volume: 1
  start-page: 197
  year: 2006
  end-page: 202
  article-title: A coding measure scheme employing electron‐ion interaction pseudopotential (EIIP)
  publication-title: Bioinformation
– volume: 10
  year: 2015
  article-title: lncRScan‐SVM: a tool for predicting long non‐coding RNAs using support vector machine
  publication-title: PLoS ONE
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– volume: 22
  start-page: 29
  year: 2021
  article-title: Uncovering deeply conserved motif combinations in rapidly evolving noncoding sequences
  publication-title: Genome Biology
– volume: 22
  start-page: 1
  year: 2021
  end-page: 31
  article-title: LPI‐HyADBS: a hybrid framework for lncRNA‐protein interaction prediction integrating feature selection and classification
  publication-title: BMC Bioinformatics
– year: 2020
– volume: 23
  year: 2021
  article-title: MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors
  publication-title: Briefings in Bioinformatics
– volume: 13
  start-page: 263
  year: 1997
  end-page: 270
  article-title: Prediction of probable genes by Fourier analysis of genomic sequences
  publication-title: Bioinformatics
– volume: 21
  start-page: 313
  year: 2021
  end-page: 330
  article-title: Regulatory non‐coding RNAs: a new frontier in regulation of plant biology
  publication-title: Functional & Integrative Genomics
– volume: 34
  start-page: 483
  year: 2013
  end-page: 519
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowledge and Information Systems
– volume: 35
  start-page: W345
  year: 2007
  end-page: W349
  article-title: CPC: assess the protein‐coding potential of transcripts using sequence features and support vector machine
  publication-title: Nucleic Acids Research
– volume: 70
  year: 2004
  article-title: Spectrum and symbol distribution of nucleotide sequences
  publication-title: Physical Review E
– volume: 10
  start-page: 43
  year: 2024
  article-title: Challenges in lncRNA biology: views and opinions
  publication-title: Noncoding RNA
– volume: 21
  start-page: 10
  year: 2021
  end-page: 28
  article-title: A new noisy random forest based method for feature selection
  publication-title: Cybernetics and Information Technologies
– volume: 45
  year: 2017
  article-title: PLncPRO for prediction of long non‐coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress‐responsive lncRNAs in rice and chickpea
  publication-title: Nucleic Acids Research
– volume: 11
  start-page: 863
  year: 2014
  end-page: 877
  article-title: Building specific signals from frequency chaos game and revealing periodicities using a smoothed Fourier analysis
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 1
  start-page: 197
  year: 2006
  ident: e_1_2_9_29_1
  article-title: A coding measure scheme employing electron‐ion interaction pseudopotential (EIIP)
  publication-title: Bioinformation
– ident: e_1_2_9_31_1
  doi: 10.1109/CIBCB48159.2020.9277716
– ident: e_1_2_9_6_1
  doi: 10.1002/widm.1484
– ident: e_1_2_9_24_1
  doi: 10.1038/s41598-022-22082-7
– ident: e_1_2_9_28_1
  doi: 10.1109/TCBB.2014.2315991
– ident: e_1_2_9_7_1
  doi: 10.1007/s10115-012-0487-8
– ident: e_1_2_9_4_1
  doi: 10.2478/cait-2021-0016
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598-018-34708-w
– volume: 30
  start-page: 3146
  year: 2017
  ident: e_1_2_9_20_1
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_16_1
– ident: e_1_2_9_35_1
  doi: 10.1186/s13059-020-02247-1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.plaphy.2024.108892
– ident: e_1_2_9_48_1
  doi: 10.1007/s11033-013-2736-7
– ident: e_1_2_9_10_1
  doi: 10.3389/fpls.2020.00276
– ident: e_1_2_9_38_1
– ident: e_1_2_9_14_1
  doi: 10.1109/ICMLA.2007.35
– ident: e_1_2_9_43_1
  doi: 10.1093/nar/gkt006
– ident: e_1_2_9_44_1
  doi: 10.1146/annurev-arplant-093020-035446
– ident: e_1_2_9_9_1
  doi: 10.1109/ACCESS.2020.3028039
– ident: e_1_2_9_26_1
  doi: 10.1093/bioinformatics/btr209
– ident: e_1_2_9_27_1
  doi: 10.1186/s12859-023-05536-1
– ident: e_1_2_9_52_1
  doi: 10.1186/s12859-021-04485-x
– ident: e_1_2_9_19_1
  doi: 10.1093/nar/gkaa910
– ident: e_1_2_9_32_1
  doi: 10.1186/s12915-023-01804-x
– ident: e_1_2_9_12_1
  doi: 10.3390/e26020150
– ident: e_1_2_9_5_1
  doi: 10.1007/s10142-021-00787-8
– ident: e_1_2_9_13_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_9_47_1
  doi: 10.1093/bioinformatics/bty428
– ident: e_1_2_9_34_1
  doi: 10.6026/973206300191145
– ident: e_1_2_9_30_1
  doi: 10.1093/bib/bby034
– ident: e_1_2_9_3_1
  doi: 10.1103/PhysRevE.70.031910
– volume: 45
  year: 2017
  ident: e_1_2_9_45_1
  article-title: FEELnc: a tool for long non‐coding RNA annotation and its application to the dog transcriptome
  publication-title: Nucleic Acids Research
– ident: e_1_2_9_49_1
  doi: 10.1016/j.tust.2020.103493
– ident: e_1_2_9_25_1
  doi: 10.1093/bioinformatics/btl158
– ident: e_1_2_9_42_1
  doi: 10.1093/plphys/kiae034
– ident: e_1_2_9_8_1
  doi: 10.1093/bib/bbab434
– ident: e_1_2_9_23_1
  doi: 10.1186/1471-2105-15-311
– ident: e_1_2_9_36_1
  doi: 10.1093/bioinformatics/btm344
– ident: e_1_2_9_11_1
  doi: 10.1007/s10142-021-00769-w
– ident: e_1_2_9_2_1
  doi: 10.3390/ncrna10040043
– ident: e_1_2_9_40_1
  doi: 10.1093/hr/uhae041
– ident: e_1_2_9_22_1
  doi: 10.1093/nar/gkm391
– ident: e_1_2_9_50_1
  doi: 10.1093/nar/gkad1057
– ident: e_1_2_9_33_1
  doi: 10.1093/plcell/koad027
– ident: e_1_2_9_51_1
  doi: 10.1093/nar/gkx677
– ident: e_1_2_9_15_1
  doi: 10.1093/nar/gkab1014
– volume-title: Feature extraction: foundations and applications, vol. 207
  year: 2008
  ident: e_1_2_9_18_1
– ident: e_1_2_9_21_1
  doi: 10.1038/s41598-023-27680-7
– volume: 10
  year: 2015
  ident: e_1_2_9_39_1
  article-title: lncRScan‐SVM: a tool for predicting long non‐coding RNAs using support vector machine
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139654
– ident: e_1_2_9_37_1
  doi: 10.1093/nar/gkx866
– ident: e_1_2_9_41_1
  doi: 10.1093/bioinformatics/13.3.263
SSID ssj0009562
Score 2.4922097
Snippet Summary Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due...
Long noncoding RNAs (lncRNAs) are critical regulators of numerous biological processes in plants. Nevertheless, their identification is challenging due to the...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1538
SubjectTerms Accuracy
Algorithms
Biological activity
Computational Biology - methods
Computer applications
Conserved sequence
feature selection
Flowers & plants
Fourier transform
gradient boosting algorithms
Identification
long noncoding RNAs (lncRNAs)
Methods
model selection
Non-coding RNA
Open Reading Frames - genetics
ORF coverage
Performance assessment
Plant species
Plants
Plants - genetics
RNA, Long Noncoding - genetics
RNA, Messenger - genetics
RNA, Plant - genetics
Software
Wildlife conservation
Title PlantLncBoost: key features for plant lncRNA identification and significant improvement in accuracy and generalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70211
https://www.ncbi.nlm.nih.gov/pubmed/40432231
https://www.proquest.com/docview/3229053804
https://www.proquest.com/docview/3212783839
https://pubmed.ncbi.nlm.nih.gov/PMC12222927
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-240920
Volume 247
WOSCitedRecordID wos001497232100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 1469-8137
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBal7cNedr9464o2xtiLR2Qrlrw9petCH0IIpRt5M5Ilt4ZODnFc6L_fOfKFmm4w2Esw0bEdS-f4fFKOvo-QD6KwsphoHU51FIdcMhbKyJqQa5tCwrcwp_CqJQuxXMr1Ol3tka_9XpiWH2JYcMPI8O9rDHCl6ztB7jZXnwVkKJj6HDAWS9RtiPjqDuNuEvUUzAlP1h2tEJbxDKeOk9E9hHm_ULKjEx0jWZ-K5o_-6yEek4cdAqWz1mWekD3rnpLDkwpQ4u0zcoMqRruFy0-qqt59oRDjtLCe_bOmAHDpBtvptcvPlzNamq7YyI8vVc5QLAjx34BV6Vcs_AIkLaE5z5utym-93WXLd91tA31OLubfL76dhZ02Q5hzyWFADTNGo5pVwblSYsp0nCSptlxLiHOZSgVQyk6mivECIBz8Uty9PhWYNZM8fkH2XeXsK0INmBqhjEQuPhEXUmlhpC0AOlhmpArIp36MsrzjLUf5jOusn79AJ2a-EwPyfjDdtGQdfzI66gc66-K1zmKkvYd3_4QH5N3QDJGGf58oZ6sGbRjKkgCiDMjL1i-GuyBHEQAtuLgcecxggCze4xZXXnk2bxahpHokAvKxda7ROaflz1lWbS-z5leTAfpKowl0iHepvz9itlyd-YPX_276hjyIUNrY1zYekf3dtrFvyWF-syvr7bEPLfgUa3lMDk7P5z8WvwFYnSsk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KW9he9v3hrtu0McZePGJbseWxl3RdyJgXSslG3oRsya2htUMSF_rf707-oKYbDPZmrJNtSXe6n-TT7wDeRbkR-ShN3XHqBy4XnucK32iXpyZGh29wTWGzliTRfC6Wy_hkBz53Z2Eafoh-w40sw87XZOC0IX3DysvV-ccIXRSuffY4qhHq997x6fRncoN0N_Q7FuaQh8uWWYgiefrKQ390C2TejpVsGUWHYNZ6o-n9_2vHA7jXolA2adTmIeyY8hHsH1WIFK8fwxVlMtomZXZUVZvtJ4Z2znJjGUA3DEEuW1E5uyiz0_mEFboNOLJjzFSpGQWF2DsoVdhdC7sJyQoszrJ6rbJrK3fWcF63R0GfwGL6dfFl5rb5GdyMC46Dqj2tU8polXOuVDT20iAM49TwVKCti1gohFNmNFYezxHG4ZfSCfZxRJ4zzIKnsFtWpXkOTKOojpQWxMcXBblQaaSFyRE-GE8L5cCHbpBk1nKXUwqNC9mtYbATpe1EB972oquGsONPQofdSMvWZjcyIOp7nP9H3IE3fTFaG_1CUaWpapLxKDUJokoHnjWK0b-FeIoQbOHDxUBlegFi8h6WlMW5ZfT2fEqr7kcOvG-0a1DnuPg1kdX6TNaXtUQEFvsj7BCrU39vopyfzOzFwb-LvoY7s8WPRCbf5t9fwF2fUh3bWMdD2N2ua_MS9rOrbbFZv2ot7TcZ5C4i
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KWsZe9v3hrdu0McZeXGJbseWxl3RZ6FgwoXQjb0K25NbQ2SGJC_3vdyd_UNMNBnsz1tmOpTvfT8rp9wN4H-VG5OM0dSepH7hceJ4rfKNdnpoYE77BOYVVLVlESSJWq3i5B5-7vTANP0S_4EaRYb_XFOBmrfMbUV6uL44iTFE499nnJCIzgv3Z6fzH4gbpbuh3LMwhD1ctsxBV8vQXD_PRLZB5u1ayZRQdglmbjeb3_-89HsC9FoWyaeM2D2HPlI_g4LhCpHj9GK5IyWi3KLPjqtruPjGMc5YbywC6ZQhy2Zra2WWZnSZTVui24MiOMVOlZlQUYs-gVWFXLewiJCuwOcvqjcqurd15w3ndbgV9Amfzr2dfTtxWn8HNuOA4qNrTOiVFq5xzpaKJlwZhGKeGpwJjXcRCIZwy44nyeI4wDn8p7WCfRJQ5wyx4CqOyKs1zYBpNdaS0ID6-KMiFSiMtTI7wwXhaKAc-doMks5a7nCQ0LmU3h8FOlLYTHXjXm64bwo4_GR12Iy3bmN3KgKjv8fs_5g687Zsx2ugvFFWaqiYbj6RJEFU68KxxjP4pxFOEYAtvLgYu0xsQk_ewpSwuLKO355Osuh858KHxrsE1s-LnVFabc1n_qiUisNgfY4dYn_r7K8pkeWIPXvy76Ru4s5zN5eJb8v0l3PVJ6diWOh7CaLepzSs4yK52xXbzug2032Q_LZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PlantLncBoost%3A+key+features+for+plant+lncRNA+identification+and+significant+improvement+in+accuracy+and+generalization&rft.jtitle=The+New+phytologist&rft.au=Tian%2C+Xue-Chan&rft.au=Nie%2C+Shuai&rft.au=Domingues%2C+Douglas&rft.au=Rossi+Paschoal%2C+Alexandre&rft.date=2025-08-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.70211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon