A modified YOLOv3 detection method for vision-based water surface garbage capture robot

To tackle the water surface pollution problem, a vision-based water surface garbage capture robot has been developed in our lab. In this article, we present a modified you only look once v3-based garbage detection method, allowing real-time and high-precision object detection in dynamic aquatic envi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems Vol. 17; no. 3
Main Authors: Li, Xiali, Tian, Manjun, Kong, Shihan, Wu, Licheng, Yu, Junzhi
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01.05.2020
Sage Publications Ltd
SAGE Publishing
Subjects:
ISSN:1729-8806, 1729-8814
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To tackle the water surface pollution problem, a vision-based water surface garbage capture robot has been developed in our lab. In this article, we present a modified you only look once v3-based garbage detection method, allowing real-time and high-precision object detection in dynamic aquatic environments. More specifically, to improve the real-time detection performance, the detection scales of you only look once v3 are simplified from 3 to 2. Besides, to guarantee the accuracy of detection, the anchor boxes of our training data set are reclustered for replacing some of the original you only look once v3 prior anchor boxes that are not appropriate to our data set. By virtue of the proposed detection method, the capture robot has the capability of cleaning floating garbage in the field. Experimental results demonstrate that both detection speed and accuracy of the modified you only look once v3 are better than those of other object detection algorithms. The obtained results provide valuable insight into the high-speed detection and grasping of dynamic objects in complex aquatic environments autonomously and intelligently.
AbstractList To tackle the water surface pollution problem, a vision-based water surface garbage capture robot has been developed in our lab. In this article, we present a modified you only look once v3-based garbage detection method, allowing real-time and high-precision object detection in dynamic aquatic environments. More specifically, to improve the real-time detection performance, the detection scales of you only look once v3 are simplified from 3 to 2. Besides, to guarantee the accuracy of detection, the anchor boxes of our training data set are reclustered for replacing some of the original you only look once v3 prior anchor boxes that are not appropriate to our data set. By virtue of the proposed detection method, the capture robot has the capability of cleaning floating garbage in the field. Experimental results demonstrate that both detection speed and accuracy of the modified you only look once v3 are better than those of other object detection algorithms. The obtained results provide valuable insight into the high-speed detection and grasping of dynamic objects in complex aquatic environments autonomously and intelligently.
Author Tian, Manjun
Yu, Junzhi
Kong, Shihan
Wu, Licheng
Li, Xiali
Author_xml – sequence: 1
  givenname: Xiali
  orcidid: 0000-0001-7950-6204
  surname: Li
  fullname: Li, Xiali
– sequence: 2
  givenname: Manjun
  surname: Tian
  fullname: Tian, Manjun
– sequence: 3
  givenname: Shihan
  surname: Kong
  fullname: Kong, Shihan
– sequence: 4
  givenname: Licheng
  orcidid: 0000-0001-5739-634X
  surname: Wu
  fullname: Wu, Licheng
– sequence: 5
  givenname: Junzhi
  orcidid: 0000-0002-6347-572X
  surname: Yu
  fullname: Yu, Junzhi
  email: junzhi.yu@ia.ac.cn
BookMark eNp9kUFLXDEUhUNR0Kp7l4GuX5vkZV5eliJahYHZtIircJPcTDPMTKZJRvHfN68jCkKbTcLhfCeHez-To23aIiGXnH3lXKlvXAk9jlwKpnuh-OwTOZ2kbtKO3t5sOCEXpazYdBSbaXVKHq7oJvkYInr6uJgvnnrqsaKrMW3pBuuv5GlImT7F0pTOQmnGZ6iYadnnAA7pErKFJVIHu7rPSHOyqZ6T4wDrghev9xn5eXvz4_qumy--319fzTsnx752gVm0ygVkspcChUAfrBjYiNJqEMq54DW4XqqBj4xLLzkOPuBMYu9Fg87I_SHXJ1iZXY4byC8mQTR_hZSXBnKNbo2Ga8X9qEGCRcnAWRccBjuzkmnhtGpZXw5Zu5x-77FUs0r7vG31jZCtH2_FJhc7uFxOpWQMb79yZqZtmI_baMjwAXGxwjTimiGu_wd2B7C0Ab-3-af_D9Bjm_4
CitedBy_id crossref_primary_10_3390_su141811729
crossref_primary_10_1080_01691864_2024_2366995
crossref_primary_10_1007_s11554_024_01510_z
crossref_primary_10_1177_0954405420979461
crossref_primary_10_3389_fpubh_2022_907280
crossref_primary_10_3390_electronics10182292
crossref_primary_10_3390_app122211441
crossref_primary_10_1016_j_jhazmat_2024_135956
crossref_primary_10_1007_s00170_023_12043_3
crossref_primary_10_1016_j_biosystemseng_2022_06_015
crossref_primary_10_1631_FITEE_2100473
crossref_primary_10_3390_s21041102
crossref_primary_10_3389_fnbot_2021_723336
crossref_primary_10_3390_jmse11081485
crossref_primary_10_3390_en16207156
crossref_primary_10_1088_1742_6596_2405_1_012008
crossref_primary_10_1093_ijlct_ctae189
crossref_primary_10_1109_ACCESS_2024_3353688
crossref_primary_10_3390_w16101373
crossref_primary_10_3390_app14052084
crossref_primary_10_3390_w15173156
crossref_primary_10_1038_s41598_025_93659_1
crossref_primary_10_1016_j_wasman_2021_10_016
crossref_primary_10_1088_1361_6501_adc02e
crossref_primary_10_1155_2021_9470895
crossref_primary_10_3390_electronics12163403
crossref_primary_10_1117_1_JEI_32_4_043013
crossref_primary_10_3390_w15122302
crossref_primary_10_32604_cmc_2023_039451
crossref_primary_10_1016_j_ecoinf_2024_102926
crossref_primary_10_1109_TITS_2025_3530678
crossref_primary_10_1007_s11554_023_01265_z
crossref_primary_10_3390_s22207821
crossref_primary_10_1016_j_jterra_2022_11_002
crossref_primary_10_1007_s11042_024_18731_w
crossref_primary_10_1177_09544062251339384
Cites_doi 10.1021/acs.est.9b01452
10.1006/jcss.1997.1504
10.1016/j.compind.2018.03.010
10.1038/nature.2014.16581
10.1016/j.rse.2018.06.028
10.4028/www.scientific.net/AMR.97-101.4482
10.1109/TPAMI.2015.2389824
10.1177/1729881417703114
10.1007/s13139-017-0504-7
10.1016/j.patrec.2009.09.011
10.1007/s10278-017-9955-8
10.1109/TIE.2017.2764844
10.1109/TCE.2018.2859629
10.1038/544297a
10.1007/s11432-018-9649-8
10.1126/scirobotics.aah3690
10.1166/asl.2017.9746
10.1097/MD.0000000000015200
10.2319/022019-127.1
10.1007/s11432-018-9723-5
10.1002/mrm.27096
10.1177/1729881419857432
10.1016/j.autcon.2018.03.015
10.1109/TPAMI.2002.1017623
10.1016/j.marpolbul.2018.01.011
10.1126/scirobotics.aau4984
10.1017/sus.2018.15
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID AFRWT
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOA
DOI 10.1177/1729881420932715
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef


Technology Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1729-8814
ExternalDocumentID oai_doaj_org_article_1971d89a4abe40acbcfcefb5b4092c97
10_1177_1729881420932715
10.1177_1729881420932715
GrantInformation_xml – fundername: Minzu University of China (MUC) 111 Project
  grantid: 61725305, U1909206, 61873291, 61773416
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 0R~
29J
2WC
54M
5VS
8VB
AAJPV
AASGM
ABAWP
ABQXT
ACGFO
ACGFS
ACIWK
ACROE
ADBBV
ADMLS
ADOGD
AEDFJ
AENEX
AEWDL
AFCOW
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
E3Z
EBO
EBS
GROUPED_DOAJ
H13
IAO
ICD
J8X
K.F
K1G
KQ8
M~E
O9-
OK1
P2P
QWB
RNS
ROL
SAUOL
SCDPB
SCNPE
SFC
TH9
TR2
ZL0
AAYXX
ACHEB
CITATION
OVT
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c483t-f0beb7cfe04342e22edfb2608e4b9a27ccfd9ac347618014d41e6dfe54e3d2043
IEDL.DBID DOA
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549188700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1729-8806
IngestDate Fri Oct 03 12:43:58 EDT 2025
Mon Jun 30 10:01:51 EDT 2025
Sat Nov 29 08:13:28 EST 2025
Tue Nov 18 22:20:35 EST 2025
Tue Jun 17 22:48:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords garbage capture robot
detection
modified YOLOv3
aquatic environment
Object detection
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-f0beb7cfe04342e22edfb2608e4b9a27ccfd9ac347618014d41e6dfe54e3d2043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6347-572X
0000-0001-7950-6204
0000-0001-5739-634X
OpenAccessLink https://doaj.org/article/1971d89a4abe40acbcfcefb5b4092c97
PQID 2443412607
PQPubID 2029541
ParticipantIDs doaj_primary_oai_doaj_org_article_1971d89a4abe40acbcfcefb5b4092c97
proquest_journals_2443412607
crossref_primary_10_1177_1729881420932715
crossref_citationtrail_10_1177_1729881420932715
sage_journals_10_1177_1729881420932715
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle International journal of advanced robotic systems
PublicationYear 2020
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Ding, Jiang, Li 2019; 53
Prabakaran, Elara, Pathmakumar 2018; 91
Mahler, Matl, Liu
Laschi, Mazzolai, Cianchetti 2016; 1
Ojala, Pietikäinen, Maenpaa 2002; 24
Chiao, Chen, Liao 2019; 98
Bergmann, Tekman, Gutow 2017; 544
Redmon, Farhadi
Kyathanahally, Döring, Kreis 2018; 80
Kim, Mishra, Limosani 2019; 16
Freund, Schapire 1997; 55
Bai, Lian, Liu 2018; 64
Kellenberger, Marcos, Tuia 2018; 216
Xu, Karuppusamy, Kang 2017; 23
He, Zhang, Ren 2015; 37
Yu, Li, Pang 2019; 62
Kong, Tian, Qiu 2020
Chen, Jahanshahi 2018; 65
Choi 2018; 52
Simonyan, Zisserman
Albitar, Dandan, Ananiev 2016; 7
Mahler, Liang, Niyaz
Ma, Li, Zhou 2017; 14
Kins, Gupta 2019; 2
Schneider, Parsons, Clift 2018; 128
Li, Li, Li 2010; 97–101
Lee, Tajmir, Lee 2017; 30
Xue, Liu, Wu 2019; 62
Jain 2010; 31
Dias, Tabb, Medeiros 2018; 99
Park, Hwang, Moon 2019; 89
Mahler, Matl, Satish 2019; 4
Liu W (bibr34-1729881420932715)
Sculley D (bibr44-1729881420932715)
bibr22-1729881420932715
bibr48-1729881420932715
Kins P (bibr1-1729881420932715) 2019; 2
bibr39-1729881420932715
Whitehill J (bibr15-1729881420932715)
Ali A (bibr38-1729881420932715)
Szarvas M (bibr19-1729881420932715)
bibr47-1729881420932715
bibr8-1729881420932715
bibr20-1729881420932715
bibr41-1729881420932715
Simonyan K (bibr45-1729881420932715)
bibr25-1729881420932715
Girshick R (bibr29-1729881420932715)
bibr46-1729881420932715
Mahler J (bibr11-1729881420932715)
bibr2-1729881420932715
Yuan F (bibr4-1729881420932715)
bibr10-1729881420932715
Girshick R (bibr28-1729881420932715)
bibr23-1729881420932715
Benjdira B (bibr40-1729881420932715)
Mahler J (bibr12-1729881420932715)
bibr49-1729881420932715
bibr27-1729881420932715
bibr6-1729881420932715
bibr5-1729881420932715
bibr35-1729881420932715
bibr18-1729881420932715
Viola P (bibr37-1729881420932715)
Dalal N (bibr17-1729881420932715)
Vapnik V (bibr36-1729881420932715) 2013
bibr51-1729881420932715
bibr7-1729881420932715
Ren S (bibr30-1729881420932715)
Mahler J (bibr13-1729881420932715)
Kong S (bibr14-1729881420932715) 2020
bibr26-1729881420932715
Redmon J (bibr33-1729881420932715)
bibr43-1729881420932715
Kagaya H (bibr21-1729881420932715)
Redmon J (bibr32-1729881420932715)
bibr50-1729881420932715
bibr16-1729881420932715
bibr42-1729881420932715
Redmon J (bibr31-1729881420932715)
bibr9-1729881420932715
bibr24-1729881420932715
Albitar H (bibr3-1729881420932715) 2016; 7
References_xml – volume: 23
  start-page: 9557
  issue: 10
  year: 2017
  end-page: 9560
  article-title: A novel design to improve the cooperative ability of the multi-cleaning robot in the unknown environment
  publication-title: Adv Sci Lett
– volume: 128
  start-page: 162
  year: 2018
  end-page: 174
  article-title: Collected marine litter—a growing waste challenge
  publication-title: Mar Pollut Bull
– volume: 64
  start-page: 382
  issue: 3
  year: 2018
  end-page: 389
  article-title: Deep learning based robot for automatically picking up garbage on the grass
  publication-title: IEEE Trans Consum Electron
– start-page: 1
  year: 2020
  end-page: 11
  article-title: IWSCR: an intelligent water surface cleaner robot for collecting floating garbage
  publication-title: IEEE Trans Syst Man Cybern Syst
– volume: 97–101
  start-page: 4482
  year: 2010
  end-page: 4486
  article-title: Development of the self-adaptive pipeline cleaning robot
  publication-title: Adv Mater Res
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  end-page: 1916
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 98
  start-page: e15200
  issue: 19
  year: 2019
  article-title: Detection and classification the breast tumors using mask R-CNN on sonograms
  publication-title: Medicine (Baltimore)
– article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 216
  start-page: 139
  year: 2018
  end-page: 153
  article-title: Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote Sens Environ
– article-title: YOLOv3: an incremental improvement
  publication-title: arXiv preprint arXiv:1804.02767
– volume: 89
  start-page: 903
  issue: 6
  year: 2019
  end-page: 909
  article-title: Automated identification of cephalometric landmarks: part 1—comparisons between the latest deep-learning methods YOLOV3 and SSD
  publication-title: Angle Orthod
– article-title: Dex-Net 3.0: computing robust robot vacuum suction grasp targets in point clouds using a new analytic model and deep learning
  publication-title: arXiv preprint arXiv:1709.06670
– volume: 30
  start-page: 427
  year: 2017
  end-page: 441
  article-title: Fully automated deep learning system for bone age assessment
  publication-title: J Digit Imaging
– volume: 62
  year: 2019
  article-title: Design and attitude control of a novel robotic jellyfish capable of 3D motion
  publication-title: Sci China Inf Sci
– volume: 7
  start-page: 13
  year: 2016
  article-title: Underwater robotics: surface cleaning technics, adhesion and locomotion systems
  publication-title: Int J Adv Robot Syst
– volume: 16
  start-page: 1
  issue: 4
  year: 2019
  end-page: 21
  article-title: Control strategies for cleaning robots in domestic applications: a comprehensive review
  publication-title: Int J Adv Robot Syst
– volume: 91
  start-page: 155
  year: 2018
  end-page: 165
  article-title: Floor cleaning robot with reconfigurable mechanism
  publication-title: Autom Constr
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  end-page: 987
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  end-page: 666
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit Lett
– volume: 2
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Perspective: a healthy planet for healthy people
  publication-title: Global Sustain
– volume: 4
  start-page: eaau4984
  issue: 26
  year: 2019
  article-title: Learning ambidextrous robot grasping policies
  publication-title: Sci Robot
– volume: 62
  start-page: 1
  year: 2019
  end-page: 084202
  article-title: Development and path planning of a novel unmanned surface vehicle system and its application to exploitation of Qarhan Salt Lake
  publication-title: Sci China Inf Sci
– volume: 544
  start-page: 297
  year: 2017
  article-title: Marine litter: sea change for plastic pollution
  publication-title: Nature
– volume: 53
  start-page: 8036
  issue: 14
  year: 2019
  end-page: 8046
  article-title: Microplastics in the coral reef systems from Xisha islands of South China Sea
  publication-title: Environ Sci Technol
– volume: 80
  start-page: 851
  issue: 3
  year: 2018
  end-page: 863
  article-title: Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy
  publication-title: Magn Reson Med
– article-title: Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics
  publication-title: arXiv preprint arXiv:1703.09312
– volume: 65
  start-page: 4392
  issue: 5
  year: 2018
  end-page: 4400
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion
  publication-title: IEEE Trans Ind Electron
– volume: 1
  start-page: eaah3690
  year: 2016
  article-title: Soft robotics: technologies and systems pushing the boundaries of robot abilities
  publication-title: Sci Robot
– volume: 52
  start-page: 109
  issue: 2
  year: 2018
  end-page: 118
  article-title: Deep learning in nuclear medicine and molecular imaging: current perspectives and future directions
  publication-title: Q J Nucl Med Mol Imag
– volume: 99
  start-page: 17
  year: 2018
  end-page: 28
  article-title: Apple flower detection using deep convolutional networks
  publication-title: Comput Ind
– volume: 14
  start-page: 1
  issue: 3
  year: 2017
  end-page: 17
  article-title: A surface defects inspection method based on multidirectional gray-level fluctuation
  publication-title: Int J Adv Robot Syst
– ident: bibr50-1729881420932715
  doi: 10.1021/acs.est.9b01452
– ident: bibr35-1729881420932715
  doi: 10.1006/jcss.1997.1504
– ident: bibr23-1729881420932715
  doi: 10.1016/j.compind.2018.03.010
– start-page: 1175
  volume-title: Proceedings 2011 international conference on management science and industrial engineering (MSIE)
  ident: bibr4-1729881420932715
– ident: bibr47-1729881420932715
  doi: 10.1038/nature.2014.16581
– start-page: 580
  volume-title: Proceedings 27th IEEE international conference on computer vision and pattern recognition (CVPR)
  ident: bibr28-1729881420932715
– ident: bibr24-1729881420932715
  doi: 10.1016/j.rse.2018.06.028
– ident: bibr43-1729881420932715
– start-page: 511
  volume-title: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR)
  ident: bibr37-1729881420932715
– ident: bibr7-1729881420932715
  doi: 10.4028/www.scientific.net/AMR.97-101.4482
– ident: bibr13-1729881420932715
  publication-title: arXiv preprint arXiv:1709.06670
– ident: bibr39-1729881420932715
  doi: 10.1109/TPAMI.2015.2389824
– ident: bibr18-1729881420932715
  doi: 10.1177/1729881417703114
– ident: bibr26-1729881420932715
  doi: 10.1007/s13139-017-0504-7
– ident: bibr42-1729881420932715
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 91
  volume-title: Proceedings 29th international conference neural information processing sysems (NIPS)
  ident: bibr30-1729881420932715
– ident: bibr45-1729881420932715
  publication-title: arXiv preprint arXiv:1409.1556
– ident: bibr25-1729881420932715
  doi: 10.1007/s10278-017-9955-8
– start-page: 1
  year: 2020
  ident: bibr14-1729881420932715
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: bibr20-1729881420932715
  doi: 10.1109/TIE.2017.2764844
– ident: bibr5-1729881420932715
  doi: 10.1109/TCE.2018.2859629
– start-page: 97
  volume-title: Proceedings. IEEE international conference on automatic face and gesture recognition (FGR06)
  ident: bibr15-1729881420932715
– ident: bibr51-1729881420932715
  doi: 10.1038/544297a
– ident: bibr49-1729881420932715
  doi: 10.1007/s11432-018-9649-8
– ident: bibr2-1729881420932715
  doi: 10.1126/scirobotics.aah3690
– start-page: 1177
  volume-title: Proceedings 19th. International conference world wide web ACM (WWW’10)
  ident: bibr44-1729881420932715
– volume-title: The nature of statistical learning theory
  year: 2013
  ident: bibr36-1729881420932715
– start-page: 1
  volume-title: Proceedings of the IEEE 59th midwest symposium on circuits and systems (MWSCAS)
  ident: bibr38-1729881420932715
– ident: bibr8-1729881420932715
  doi: 10.1166/asl.2017.9746
– ident: bibr33-1729881420932715
  publication-title: arXiv preprint arXiv:1804.02767
– start-page: 1
  volume-title: Proceedings 1st international conference on unmanned vehicle systems, Oman (UVS)
  ident: bibr40-1729881420932715
– ident: bibr27-1729881420932715
  doi: 10.1097/MD.0000000000015200
– ident: bibr41-1729881420932715
  doi: 10.2319/022019-127.1
– start-page: 886
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
  ident: bibr17-1729881420932715
– ident: bibr12-1729881420932715
  publication-title: arXiv preprint arXiv:1703.09312
– ident: bibr48-1729881420932715
  doi: 10.1007/s11432-018-9723-5
– start-page: 7263
  volume-title: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR)
  ident: bibr32-1729881420932715
– ident: bibr22-1729881420932715
  doi: 10.1002/mrm.27096
– start-page: 1957
  volume-title: Proceedings IEEE international conference on robotics and automation (ICRA)
  ident: bibr11-1729881420932715
– start-page: 779
  volume-title: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR)
  ident: bibr31-1729881420932715
– ident: bibr6-1729881420932715
  doi: 10.1177/1729881419857432
– volume: 7
  start-page: 13
  year: 2016
  ident: bibr3-1729881420932715
  publication-title: Int J Adv Robot Syst
– start-page: 224
  volume-title: Proceedings IEEE intelligent vehicles symposium (IV’05)
  ident: bibr19-1729881420932715
– ident: bibr9-1729881420932715
  doi: 10.1016/j.autcon.2018.03.015
– ident: bibr16-1729881420932715
  doi: 10.1109/TPAMI.2002.1017623
– start-page: 1440
  volume-title: Proceedings IEEE international conference on computer vision (ICCV)
  ident: bibr29-1729881420932715
– ident: bibr46-1729881420932715
  doi: 10.1016/j.marpolbul.2018.01.011
– start-page: 1085
  volume-title: Proceedings of the 22nd ACM international conference on multimedia
  ident: bibr21-1729881420932715
– start-page: 21
  volume-title: European conference on computer vision (ECCV)
  ident: bibr34-1729881420932715
– ident: bibr10-1729881420932715
  doi: 10.1126/scirobotics.aau4984
– volume: 2
  start-page: 1
  year: 2019
  ident: bibr1-1729881420932715
  publication-title: Global Sustain
  doi: 10.1017/sus.2018.15
SSID ssj0000070597
Score 2.4933186
Snippet To tackle the water surface pollution problem, a vision-based water surface garbage capture robot has been developed in our lab. In this article, we present a...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Anchors
Aquatic environment
Boxes
Computer vision
Datasets
Garbage
Grasping (robotics)
Object recognition
Real time
Robots
Water pollution
Title A modified YOLOv3 detection method for vision-based water surface garbage capture robot
URI https://journals.sagepub.com/doi/full/10.1177/1729881420932715
https://www.proquest.com/docview/2443412607
https://doaj.org/article/1971d89a4abe40acbcfcefb5b4092c97
Volume 17
WOSCitedRecordID wos000549188700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1729-8814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070597
  issn: 1729-8806
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yEEED0v3kW6SYxWLh9J6UKynJZlMiqCtbFf9-ya723YV1IvXTRaGmQnzDTPzDSFnqU1BmVAGVic2YApkoDsyCVKZMqEiG1pTUub3-WAgRiN521j15XvCKnrgSnHtSPLICKmY0shCBRosoNUd7RKTGGQ5R-5QTyOZqoAvd7iBL-uSbReopRARi10KH3O_BbcRh0q6_i8Ys9HWVUaa3hbZrCEi7VaibZMVnOyQjQZx4C556NKXqXmyDj_Sx2F_-J5Qg0XZVTWh1VJo6tAorSbHAx-qDP1wsDKns7fcKkA69oWGMVJQr76IQPOpnhZ75L53fXd1E9QrEgJgIikCG2rUHCyGLGExxjEaq12KIpBpqWIOYI1UkDCeRp4nxrAIU2OxwzAxfix2n6xOphM8IBS4VQ6uREpAyqyHAcoIZzLUnnOeyxZpzxWWQc0f7tdYPGdRTRn-XcUtcrH447Xizvjl7qW3weKeZ70uPzhfyGpfyP7yhRY5nlswq5_iLHP4xUVqpxN3fO6tujz6SZjD_xDmiKzHPjcvmyOPyWqRv-EJWYP34mmWn5bu-glmc-t3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+YOLOv3+detection+method+for+vision-based+water+surface+garbage+capture+robot&rft.jtitle=International+journal+of+advanced+robotic+systems&rft.au=Xiali+Li&rft.au=Manjun+Tian&rft.au=Shihan+Kong&rft.au=Licheng+Wu&rft.date=2020-05-01&rft.pub=SAGE+Publishing&rft.eissn=1729-8814&rft.volume=17&rft_id=info:doi/10.1177%2F1729881420932715&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1971d89a4abe40acbcfcefb5b4092c97
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1729-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1729-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1729-8806&client=summon