Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells
Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficien...
Uloženo v:
| Vydáno v: | The Journal of experimental medicine Ročník 211; číslo 9; s. 1759 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
25.08.2014
|
| Témata: | |
| ISSN: | 1540-9538, 1540-9538 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress. |
|---|---|
| AbstractList | Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress. Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress. |
| Author | van Lohuizen, Maarten Gargiulo, Gaetano Blom, Marleen van den Berk, Paul C M Hulsman, Danielle Jacobs, Heinz Tanger, Ellen Song, Ji-Ying Vens, Conchita Vissers, Joseph H A Citterio, Elisabetta Lancini, Cesare Serresi, Michela |
| Author_xml | – sequence: 1 givenname: Cesare surname: Lancini fullname: Lancini, Cesare organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 2 givenname: Paul C M surname: van den Berk fullname: van den Berk, Paul C M organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 3 givenname: Joseph H A surname: Vissers fullname: Vissers, Joseph H A organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 4 givenname: Gaetano surname: Gargiulo fullname: Gargiulo, Gaetano organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 5 givenname: Ji-Ying surname: Song fullname: Song, Ji-Ying organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 6 givenname: Danielle surname: Hulsman fullname: Hulsman, Danielle organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 7 givenname: Michela surname: Serresi fullname: Serresi, Michela organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 8 givenname: Ellen surname: Tanger fullname: Tanger, Ellen organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 9 givenname: Marleen surname: Blom fullname: Blom, Marleen organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 10 givenname: Conchita surname: Vens fullname: Vens, Conchita organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 11 givenname: Maarten surname: van Lohuizen fullname: van Lohuizen, Maarten organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 12 givenname: Heinz surname: Jacobs fullname: Jacobs, Heinz organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands – sequence: 13 givenname: Elisabetta surname: Citterio fullname: Citterio, Elisabetta email: e.citterio@nki.nl organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands e.citterio@nki.nl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25113974$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM9LwzAUx4Mo7ofePEuOXjqTNGnT45g_Yajgdi5p87JltGnXpMKO_ud2OMHT-_L48OG97wSdu8YBQjeUzCiR_H4H9YwRGlMeJ2doTAUnUSZief4vj9DE-x0hlHORXKIRE5TGWcrH6HtlN9uAO9j0lQq2cbgxuC_svrfBuqgGbVUAjR_e5lirWm1gYH3bOA-4OOD150eM22ED3Rd4HLaATe_Ko0hV2LoAm86Gw1G6hVqFpm0sBFtiH6DGJVSVv0IXRlUerk9zitZPj6vFS7R8f35dzJdRyWUcIjDakNIIKLSSKUnL4S8tlc5IloDiiSoUIxJKwwXoFIjJBlRlDEwRM54wNkV3v962a_Y9-JDX1h8vUA6a3udUiJRIJqUc0NsT2hdDA3nb2Vp1h_yvNvYD4Nt0Hw |
| CitedBy_id | crossref_primary_10_1016_j_bbagrm_2024_195044 crossref_primary_10_1038_s41420_024_02010_6 crossref_primary_10_1038_s41419_024_07117_3 crossref_primary_10_1016_j_exphem_2019_01_001 crossref_primary_10_1016_j_jbc_2023_105043 crossref_primary_10_1038_s41467_021_24298_z crossref_primary_10_1016_j_drudis_2018_05_035 crossref_primary_10_3389_fgene_2015_00282 crossref_primary_10_3389_fgene_2016_00122 crossref_primary_10_1038_s41556_021_00792_w crossref_primary_10_1016_j_bbcan_2019_188312 crossref_primary_10_3390_ijms17050685 crossref_primary_10_15252_embr_202357828 crossref_primary_10_1016_j_dib_2015_12_049 crossref_primary_10_1371_journal_pone_0233394 crossref_primary_10_1038_s41374_022_00836_1 crossref_primary_10_1073_pnas_1719856115 crossref_primary_10_1016_j_pharmthera_2016_12_003 crossref_primary_10_1016_j_bbagrm_2024_195033 crossref_primary_10_1016_j_canlet_2015_06_011 crossref_primary_10_1177_1010428317717138 crossref_primary_10_1186_s12885_021_08934_x crossref_primary_10_1007_s00018_023_04979_2 crossref_primary_10_1111_cas_16178 crossref_primary_10_1155_2018_3712083 crossref_primary_10_1007_s00018_015_2129_2 crossref_primary_10_1073_pnas_1517041113 crossref_primary_10_1242_jcs_163766 crossref_primary_10_1038_s41598_017_04368_3 crossref_primary_10_1038_s41418_020_0557_5 crossref_primary_10_1016_j_dnarep_2019_05_004 crossref_primary_10_1038_s41467_017_02653_3 crossref_primary_10_1080_19768354_2019_1661283 crossref_primary_10_3390_ijms21072548 crossref_primary_10_1097_CM9_0000000000002478 crossref_primary_10_1002_1873_3468_14991 crossref_primary_10_1016_j_abb_2016_02_018 crossref_primary_10_1128_MCB_00847_15 crossref_primary_10_1101_gad_271841_115 crossref_primary_10_3390_cancers12051103 crossref_primary_10_1002_med_21421 crossref_primary_10_3390_ijms23158187 crossref_primary_10_22207_JPAM_16_2_03 crossref_primary_10_1371_journal_pone_0209592 crossref_primary_10_3390_cells9071699 crossref_primary_10_1016_j_jmb_2017_05_029 crossref_primary_10_1083_jcb_2064OIA143 crossref_primary_10_1074_jbc_RA119_009102 crossref_primary_10_1038_s41401_025_01625_4 crossref_primary_10_1016_j_dnarep_2017_06_011 crossref_primary_10_1038_s41525_022_00308_x crossref_primary_10_1186_s12943_023_01871_2 crossref_primary_10_1111_febs_15857 crossref_primary_10_1016_j_arr_2021_101312 crossref_primary_10_1016_j_jaci_2016_10_053 crossref_primary_10_3390_cancers13153753 crossref_primary_10_1016_j_jaci_2023_12_001 crossref_primary_10_1038_nrm_2016_58 crossref_primary_10_3389_fcell_2022_928113 crossref_primary_10_1186_s13046_019_1270_4 |
| ContentType | Journal Article |
| Copyright | 2014 Lancini et al. |
| Copyright_xml | – notice: 2014 Lancini et al. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1084/jem.20131436 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1540-9538 |
| ExternalDocumentID | 25113974 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CGR CS3 CUY CVF D-I DIK DU5 E3Z EBS ECM EIF EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A NPM O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ 7X8 |
| ID | FETCH-LOGICAL-c483t-efdf0cf5ebda8707c953d8ad9096ea46aba208ecf45ed7e0f95eba92efb324622 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342744500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-9538 |
| IngestDate | Thu Sep 04 18:41:24 EDT 2025 Thu Apr 03 07:04:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | 2014 Lancini et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-efdf0cf5ebda8707c953d8ad9096ea46aba208ecf45ed7e0f95eba92efb324622 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://jem.rupress.org/content/jem/211/9/1759.full.pdf |
| PMID | 25113974 |
| PQID | 1557082888 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1557082888 pubmed_primary_25113974 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-25 |
| PublicationDateYYYYMMDD | 2014-08-25 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of experimental medicine |
| PublicationTitleAlternate | J Exp Med |
| PublicationYear | 2014 |
| References | 21362549 - Mol Cell. 2011 Mar 4;41(5):529-42 21552324 - PLoS Genet. 2011 Apr;7(4):e1001381 18001824 - Cell. 2007 Nov 30;131(5):887-900 271971 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5492-5 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68 20978197 - Cancer Res. 2010 Nov 1;70(21):8706-14 10373565 - Mol Cell Biol. 1999 Jul;19(7):5166-9 21362548 - Mol Cell. 2011 Mar 4;41(5):515-28 22952011 - Nat Rev Cancer. 2012 Oct;12(10):709-20 23615962 - J Biol Chem. 2013 Jun 7;288(23):16579-87 19626045 - Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63 23584423 - Nat Rev Immunol. 2013 May;13(5):376-89 22385964 - Cell. 2012 Mar 2;148(5):1001-14 24366338 - Cell Res. 2014 Apr;24(4):400-16 8782459 - Nat Med. 1996 Sep;2(9):1011-6 16079837 - Nature. 2005 Aug 4;436(7051):660-5 19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85 12809602 - Cell. 2003 Jun 13;113(6):703-16 20385750 - J Exp Med. 2010 May 10;207(5):983-97 10835623 - Nat Genet. 2000 Jun;25(2):139-40 20619763 - Cell Stem Cell. 2010 Aug 6;7(2):186-97 21078816 - Genes Dev. 2010 Nov 15;24(22):2463-79 20619762 - Cell Stem Cell. 2010 Aug 6;7(2):174-85 23382699 - PLoS Genet. 2013;9(1):e1003259 22914294 - Nat Rev Mol Cell Biol. 2012 Sep;13(9):579-90 11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6 12640136 - Mol Cell Biol. 2003 Apr;23(7):2556-63 18006705 - Science. 2007 Dec 7;318(5856):1637-40 24196443 - Cell Cycle. 2014;13(1):106-14 11694875 - Nat Genet. 2001 Dec;29(4):418-25 19500350 - BMC Mol Biol. 2009;10:55 19203579 - Cell. 2009 Feb 6;136(3):435-46 18424665 - Blood. 2008 Jun 15;111(12):5562-70 18001825 - Cell. 2007 Nov 30;131(5):901-14 22713238 - Cell Cycle. 2012 Jul 1;11(13):2538-44 22123971 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20012-7 21363960 - Genes Dev. 2011 Mar 1;25(5):409-33 17728714 - Nature. 2007 Sep 13;449(7159):238-42 18248857 - DNA Repair (Amst). 2008 Mar 1;7(3):523-9 17554302 - Nature. 2007 Jun 7;447(7145):686-90 18295583 - Cell. 2008 Feb 22;132(4):681-96 8662508 - Science. 1996 Jul 12;273(5272):242-5 21164193 - Mutagenesis. 2011 Jan;26(1):125-32 18371351 - Cell Stem Cell. 2007 Aug 16;1(2):204-17 23104738 - J Cell Sci. 2012 Sep 1;125(Pt 17):3939-48 15789413 - Genesis. 2005 Apr;41(4):171-8 18370297 - Methods Mol Biol. 2008;430:143-57 21968989 - Nat Cell Biol. 2011 Oct;13(10):1161-9 22980979 - Cell. 2012 Sep 14;150(6):1182-95 12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4 8689561 - Annu Rev Cell Dev Biol. 1995;11:35-71 19277586 - Methods Mol Biol. 2009;538:301-15 15496926 - Nature. 2004 Oct 21;431(7011):997-1002 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10 18840712 - Blood. 2008 Dec 15;112(13):4862-73 17525340 - Science. 2007 May 25;316(5828):1194-8 23473600 - Mol Cell. 2013 Mar 7;49(5):808-24 17980597 - Curr Biol. 2007 Nov 20;17(22):1972-7 19847258 - Nature. 2009 Oct 22;461(7267):1071-8 20227040 - Cancer Cell. 2010 Mar 16;17(3):262-72 20550933 - Cell. 2010 Jun 11;141(6):970-81 23760478 - Nature. 2013 Jul 4;499(7456):50-4 24002223 - Nat Rev Mol Cell Biol. 2013 Oct;14(10):661-72 19203578 - Cell. 2009 Feb 6;136(3):420-34 21408175 - PLoS One. 2011;6(3):e17487 22884692 - Cell. 2012 Aug 17;150(4):697-709 23416108 - Mol Cell. 2013 Mar 7;49(5):795-807 16682494 - J Exp Med. 2006 May 15;203(5):1283-93 18295578 - Cell. 2008 Feb 22;132(4):598-611 21383063 - Mol Cell Biol. 2011 May;31(10):1972-82 9620848 - Genes Dev. 1998 Jun 1;12(11):1599-609 23374339 - Cell. 2013 Jan 31;152(3):417-29 20921134 - J Cell Biol. 2010 Oct 4;191(1):45-60 17554309 - Nature. 2007 Jun 7;447(7145):725-9 |
| References_xml | – reference: 23473600 - Mol Cell. 2013 Mar 7;49(5):808-24 – reference: 18371351 - Cell Stem Cell. 2007 Aug 16;1(2):204-17 – reference: 8689561 - Annu Rev Cell Dev Biol. 1995;11:35-71 – reference: 18295578 - Cell. 2008 Feb 22;132(4):598-611 – reference: 11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6 – reference: 8782459 - Nat Med. 1996 Sep;2(9):1011-6 – reference: 23382699 - PLoS Genet. 2013;9(1):e1003259 – reference: 16682494 - J Exp Med. 2006 May 15;203(5):1283-93 – reference: 23760478 - Nature. 2013 Jul 4;499(7456):50-4 – reference: 12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4 – reference: 22914294 - Nat Rev Mol Cell Biol. 2012 Sep;13(9):579-90 – reference: 17980597 - Curr Biol. 2007 Nov 20;17(22):1972-7 – reference: 21363960 - Genes Dev. 2011 Mar 1;25(5):409-33 – reference: 22980979 - Cell. 2012 Sep 14;150(6):1182-95 – reference: 23374339 - Cell. 2013 Jan 31;152(3):417-29 – reference: 20619763 - Cell Stem Cell. 2010 Aug 6;7(2):186-97 – reference: 10373565 - Mol Cell Biol. 1999 Jul;19(7):5166-9 – reference: 22884692 - Cell. 2012 Aug 17;150(4):697-709 – reference: 15789413 - Genesis. 2005 Apr;41(4):171-8 – reference: 22713238 - Cell Cycle. 2012 Jul 1;11(13):2538-44 – reference: 18370297 - Methods Mol Biol. 2008;430:143-57 – reference: 18248857 - DNA Repair (Amst). 2008 Mar 1;7(3):523-9 – reference: 10835623 - Nat Genet. 2000 Jun;25(2):139-40 – reference: 20550933 - Cell. 2010 Jun 11;141(6):970-81 – reference: 12809602 - Cell. 2003 Jun 13;113(6):703-16 – reference: 20978197 - Cancer Res. 2010 Nov 1;70(21):8706-14 – reference: 23584423 - Nat Rev Immunol. 2013 May;13(5):376-89 – reference: 23615962 - J Biol Chem. 2013 Jun 7;288(23):16579-87 – reference: 17554302 - Nature. 2007 Jun 7;447(7145):686-90 – reference: 19277586 - Methods Mol Biol. 2009;538:301-15 – reference: 22385964 - Cell. 2012 Mar 2;148(5):1001-14 – reference: 271971 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5492-5 – reference: 22952011 - Nat Rev Cancer. 2012 Oct;12(10):709-20 – reference: 18001825 - Cell. 2007 Nov 30;131(5):901-14 – reference: 24196443 - Cell Cycle. 2014;13(1):106-14 – reference: 21383063 - Mol Cell Biol. 2011 May;31(10):1972-82 – reference: 21408175 - PLoS One. 2011;6(3):e17487 – reference: 18001824 - Cell. 2007 Nov 30;131(5):887-900 – reference: 8662508 - Science. 1996 Jul 12;273(5272):242-5 – reference: 19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85 – reference: 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68 – reference: 17728714 - Nature. 2007 Sep 13;449(7159):238-42 – reference: 18424665 - Blood. 2008 Jun 15;111(12):5562-70 – reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10 – reference: 24002223 - Nat Rev Mol Cell Biol. 2013 Oct;14(10):661-72 – reference: 17554309 - Nature. 2007 Jun 7;447(7145):725-9 – reference: 12640136 - Mol Cell Biol. 2003 Apr;23(7):2556-63 – reference: 16079837 - Nature. 2005 Aug 4;436(7051):660-5 – reference: 17525340 - Science. 2007 May 25;316(5828):1194-8 – reference: 21078816 - Genes Dev. 2010 Nov 15;24(22):2463-79 – reference: 19203579 - Cell. 2009 Feb 6;136(3):435-46 – reference: 15496926 - Nature. 2004 Oct 21;431(7011):997-1002 – reference: 22123971 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20012-7 – reference: 11694875 - Nat Genet. 2001 Dec;29(4):418-25 – reference: 21552324 - PLoS Genet. 2011 Apr;7(4):e1001381 – reference: 19847258 - Nature. 2009 Oct 22;461(7267):1071-8 – reference: 23104738 - J Cell Sci. 2012 Sep 1;125(Pt 17):3939-48 – reference: 18840712 - Blood. 2008 Dec 15;112(13):4862-73 – reference: 19203578 - Cell. 2009 Feb 6;136(3):420-34 – reference: 20385750 - J Exp Med. 2010 May 10;207(5):983-97 – reference: 21164193 - Mutagenesis. 2011 Jan;26(1):125-32 – reference: 21968989 - Nat Cell Biol. 2011 Oct;13(10):1161-9 – reference: 20619762 - Cell Stem Cell. 2010 Aug 6;7(2):174-85 – reference: 19626045 - Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63 – reference: 18295583 - Cell. 2008 Feb 22;132(4):681-96 – reference: 20921134 - J Cell Biol. 2010 Oct 4;191(1):45-60 – reference: 24366338 - Cell Res. 2014 Apr;24(4):400-16 – reference: 18006705 - Science. 2007 Dec 7;318(5856):1637-40 – reference: 23416108 - Mol Cell. 2013 Mar 7;49(5):795-807 – reference: 20227040 - Cancer Cell. 2010 Mar 16;17(3):262-72 – reference: 21362548 - Mol Cell. 2011 Mar 4;41(5):515-28 – reference: 9620848 - Genes Dev. 1998 Jun 1;12(11):1599-609 – reference: 21362549 - Mol Cell. 2011 Mar 4;41(5):529-42 – reference: 19500350 - BMC Mol Biol. 2009;10:55 |
| SSID | ssj0014456 |
| Score | 2.411279 |
| Snippet | Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1759 |
| SubjectTerms | Animals Carcinogenesis Cell Proliferation Cellular Senescence DNA Breaks, Double-Stranded DNA Damage - physiology DNA Repair - physiology Female Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Histones - metabolism Homeostasis Lymphopenia - etiology Male Mice Mice, 129 Strain Mice, Inbred C57BL Mice, Knockout Ubiquitin-Specific Proteases - deficiency Ubiquitin-Specific Proteases - genetics Ubiquitin-Specific Proteases - metabolism Ubiquitination |
| Title | Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25113974 https://www.proquest.com/docview/1557082888 |
| Volume | 211 |
| WOSCitedRecordID | wos000342744500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qinjx_VhfRPAa7CNtk5OIunjZsqDC3kqeUMF2tbuCR_-5M23FkyB46SkNYTIz-eZNyEWY6JBnWjOXpI5xFWgmpPfMZhJjr1ZypdphE1mei-lUTnqHW9OnVX7rxFZR29qgj_wyxF5RYB4IcTV7ZTg1CqOr_QiNZTKIAcogV2fTnygC5-301hCD_xIku098DwS_fHZYhh7GABfS38Fl-8iMNv97vC2y0cNLet3xwzZZctUOWRv3AfRd8vmIxjh96ybQw53Q2tOFLl8X5bysWFtHAhiU3ubX1KoXUDawts2idVR_0KeHSUwxdRbzJBsK4JHiw9j5E2nXegJgPW7aNoOtZ3WJVZIU20VTDBI0e-RpdPd4c8_6KQzMcBHPmfPWB8YnTlsFwp0ZoKQVykowfpziqdIqCoQznifOZi7wEpYqGTmvAaylUbRPVqq6coeEcmmixBonvUq4lamIPU8tQszQpDGPh-T8m7gFcDmeSlWuXjTFD3mH5KC7oWLWteMo0EgCVMWP_vD3MVmHW-foFI6SEzLwIOPulKya93nZvJ217APffDL-AkzM0zc |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+regulation+of+ubiquitin-mediated+DNA+damage+response+by+USP3+preserves+the+functional+integrity+of+hematopoietic+stem+cells&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Lancini%2C+Cesare&rft.au=van+den+Berk%2C+Paul+C+M&rft.au=Vissers%2C+Joseph+H+A&rft.au=Gargiulo%2C+Gaetano&rft.date=2014-08-25&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=211&rft.issue=9&rft.spage=1759&rft_id=info:doi/10.1084%2Fjem.20131436&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon |