Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells

Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficien...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of experimental medicine Ročník 211; číslo 9; s. 1759
Hlavní autoři: Lancini, Cesare, van den Berk, Paul C M, Vissers, Joseph H A, Gargiulo, Gaetano, Song, Ji-Ying, Hulsman, Danielle, Serresi, Michela, Tanger, Ellen, Blom, Marleen, Vens, Conchita, van Lohuizen, Maarten, Jacobs, Heinz, Citterio, Elisabetta
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.08.2014
Témata:
ISSN:1540-9538, 1540-9538
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.
AbstractList Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.
Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.
Author van Lohuizen, Maarten
Gargiulo, Gaetano
Blom, Marleen
van den Berk, Paul C M
Hulsman, Danielle
Jacobs, Heinz
Tanger, Ellen
Song, Ji-Ying
Vens, Conchita
Vissers, Joseph H A
Citterio, Elisabetta
Lancini, Cesare
Serresi, Michela
Author_xml – sequence: 1
  givenname: Cesare
  surname: Lancini
  fullname: Lancini, Cesare
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 2
  givenname: Paul C M
  surname: van den Berk
  fullname: van den Berk, Paul C M
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 3
  givenname: Joseph H A
  surname: Vissers
  fullname: Vissers, Joseph H A
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 4
  givenname: Gaetano
  surname: Gargiulo
  fullname: Gargiulo, Gaetano
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 5
  givenname: Ji-Ying
  surname: Song
  fullname: Song, Ji-Ying
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 6
  givenname: Danielle
  surname: Hulsman
  fullname: Hulsman, Danielle
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 7
  givenname: Michela
  surname: Serresi
  fullname: Serresi, Michela
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 8
  givenname: Ellen
  surname: Tanger
  fullname: Tanger, Ellen
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 9
  givenname: Marleen
  surname: Blom
  fullname: Blom, Marleen
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 10
  givenname: Conchita
  surname: Vens
  fullname: Vens, Conchita
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 11
  givenname: Maarten
  surname: van Lohuizen
  fullname: van Lohuizen, Maarten
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 12
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
– sequence: 13
  givenname: Elisabetta
  surname: Citterio
  fullname: Citterio, Elisabetta
  email: e.citterio@nki.nl
  organization: Division of Molecular Genetics, Division of Biological Stress Response, and Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands e.citterio@nki.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25113974$$D View this record in MEDLINE/PubMed
BookMark eNpNkM9LwzAUx4Mo7ofePEuOXjqTNGnT45g_Yajgdi5p87JltGnXpMKO_ud2OMHT-_L48OG97wSdu8YBQjeUzCiR_H4H9YwRGlMeJ2doTAUnUSZief4vj9DE-x0hlHORXKIRE5TGWcrH6HtlN9uAO9j0lQq2cbgxuC_svrfBuqgGbVUAjR_e5lirWm1gYH3bOA-4OOD150eM22ED3Rd4HLaATe_Ko0hV2LoAm86Gw1G6hVqFpm0sBFtiH6DGJVSVv0IXRlUerk9zitZPj6vFS7R8f35dzJdRyWUcIjDakNIIKLSSKUnL4S8tlc5IloDiiSoUIxJKwwXoFIjJBlRlDEwRM54wNkV3v962a_Y9-JDX1h8vUA6a3udUiJRIJqUc0NsT2hdDA3nb2Vp1h_yvNvYD4Nt0Hw
CitedBy_id crossref_primary_10_1016_j_bbagrm_2024_195044
crossref_primary_10_1038_s41420_024_02010_6
crossref_primary_10_1038_s41419_024_07117_3
crossref_primary_10_1016_j_exphem_2019_01_001
crossref_primary_10_1016_j_jbc_2023_105043
crossref_primary_10_1038_s41467_021_24298_z
crossref_primary_10_1016_j_drudis_2018_05_035
crossref_primary_10_3389_fgene_2015_00282
crossref_primary_10_3389_fgene_2016_00122
crossref_primary_10_1038_s41556_021_00792_w
crossref_primary_10_1016_j_bbcan_2019_188312
crossref_primary_10_3390_ijms17050685
crossref_primary_10_15252_embr_202357828
crossref_primary_10_1016_j_dib_2015_12_049
crossref_primary_10_1371_journal_pone_0233394
crossref_primary_10_1038_s41374_022_00836_1
crossref_primary_10_1073_pnas_1719856115
crossref_primary_10_1016_j_pharmthera_2016_12_003
crossref_primary_10_1016_j_bbagrm_2024_195033
crossref_primary_10_1016_j_canlet_2015_06_011
crossref_primary_10_1177_1010428317717138
crossref_primary_10_1186_s12885_021_08934_x
crossref_primary_10_1007_s00018_023_04979_2
crossref_primary_10_1111_cas_16178
crossref_primary_10_1155_2018_3712083
crossref_primary_10_1007_s00018_015_2129_2
crossref_primary_10_1073_pnas_1517041113
crossref_primary_10_1242_jcs_163766
crossref_primary_10_1038_s41598_017_04368_3
crossref_primary_10_1038_s41418_020_0557_5
crossref_primary_10_1016_j_dnarep_2019_05_004
crossref_primary_10_1038_s41467_017_02653_3
crossref_primary_10_1080_19768354_2019_1661283
crossref_primary_10_3390_ijms21072548
crossref_primary_10_1097_CM9_0000000000002478
crossref_primary_10_1002_1873_3468_14991
crossref_primary_10_1016_j_abb_2016_02_018
crossref_primary_10_1128_MCB_00847_15
crossref_primary_10_1101_gad_271841_115
crossref_primary_10_3390_cancers12051103
crossref_primary_10_1002_med_21421
crossref_primary_10_3390_ijms23158187
crossref_primary_10_22207_JPAM_16_2_03
crossref_primary_10_1371_journal_pone_0209592
crossref_primary_10_3390_cells9071699
crossref_primary_10_1016_j_jmb_2017_05_029
crossref_primary_10_1083_jcb_2064OIA143
crossref_primary_10_1074_jbc_RA119_009102
crossref_primary_10_1038_s41401_025_01625_4
crossref_primary_10_1016_j_dnarep_2017_06_011
crossref_primary_10_1038_s41525_022_00308_x
crossref_primary_10_1186_s12943_023_01871_2
crossref_primary_10_1111_febs_15857
crossref_primary_10_1016_j_arr_2021_101312
crossref_primary_10_1016_j_jaci_2016_10_053
crossref_primary_10_3390_cancers13153753
crossref_primary_10_1016_j_jaci_2023_12_001
crossref_primary_10_1038_nrm_2016_58
crossref_primary_10_3389_fcell_2022_928113
crossref_primary_10_1186_s13046_019_1270_4
ContentType Journal Article
Copyright 2014 Lancini et al.
Copyright_xml – notice: 2014 Lancini et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1084/jem.20131436
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1540-9538
ExternalDocumentID 25113974
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CGR
CS3
CUY
CVF
D-I
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
F9R
GX1
H13
HYE
IH2
K-O
KQ8
L7B
N9A
NPM
O5R
O5S
OK1
P2P
P6G
R.V
RHI
SJN
TR2
TRP
UHB
W8F
WOQ
7X8
ID FETCH-LOGICAL-c483t-efdf0cf5ebda8707c953d8ad9096ea46aba208ecf45ed7e0f95eba92efb324622
IEDL.DBID 7X8
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342744500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-9538
IngestDate Thu Sep 04 18:41:24 EDT 2025
Thu Apr 03 07:04:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2014 Lancini et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-efdf0cf5ebda8707c953d8ad9096ea46aba208ecf45ed7e0f95eba92efb324622
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://jem.rupress.org/content/jem/211/9/1759.full.pdf
PMID 25113974
PQID 1557082888
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1557082888
pubmed_primary_25113974
PublicationCentury 2000
PublicationDate 2014-08-25
PublicationDateYYYYMMDD 2014-08-25
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2014
References 21362549 - Mol Cell. 2011 Mar 4;41(5):529-42
21552324 - PLoS Genet. 2011 Apr;7(4):e1001381
18001824 - Cell. 2007 Nov 30;131(5):887-900
271971 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5492-5
9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68
20978197 - Cancer Res. 2010 Nov 1;70(21):8706-14
10373565 - Mol Cell Biol. 1999 Jul;19(7):5166-9
21362548 - Mol Cell. 2011 Mar 4;41(5):515-28
22952011 - Nat Rev Cancer. 2012 Oct;12(10):709-20
23615962 - J Biol Chem. 2013 Jun 7;288(23):16579-87
19626045 - Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63
23584423 - Nat Rev Immunol. 2013 May;13(5):376-89
22385964 - Cell. 2012 Mar 2;148(5):1001-14
24366338 - Cell Res. 2014 Apr;24(4):400-16
8782459 - Nat Med. 1996 Sep;2(9):1011-6
16079837 - Nature. 2005 Aug 4;436(7051):660-5
19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85
12809602 - Cell. 2003 Jun 13;113(6):703-16
20385750 - J Exp Med. 2010 May 10;207(5):983-97
10835623 - Nat Genet. 2000 Jun;25(2):139-40
20619763 - Cell Stem Cell. 2010 Aug 6;7(2):186-97
21078816 - Genes Dev. 2010 Nov 15;24(22):2463-79
20619762 - Cell Stem Cell. 2010 Aug 6;7(2):174-85
23382699 - PLoS Genet. 2013;9(1):e1003259
22914294 - Nat Rev Mol Cell Biol. 2012 Sep;13(9):579-90
11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6
12640136 - Mol Cell Biol. 2003 Apr;23(7):2556-63
18006705 - Science. 2007 Dec 7;318(5856):1637-40
24196443 - Cell Cycle. 2014;13(1):106-14
11694875 - Nat Genet. 2001 Dec;29(4):418-25
19500350 - BMC Mol Biol. 2009;10:55
19203579 - Cell. 2009 Feb 6;136(3):435-46
18424665 - Blood. 2008 Jun 15;111(12):5562-70
18001825 - Cell. 2007 Nov 30;131(5):901-14
22713238 - Cell Cycle. 2012 Jul 1;11(13):2538-44
22123971 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20012-7
21363960 - Genes Dev. 2011 Mar 1;25(5):409-33
17728714 - Nature. 2007 Sep 13;449(7159):238-42
18248857 - DNA Repair (Amst). 2008 Mar 1;7(3):523-9
17554302 - Nature. 2007 Jun 7;447(7145):686-90
18295583 - Cell. 2008 Feb 22;132(4):681-96
8662508 - Science. 1996 Jul 12;273(5272):242-5
21164193 - Mutagenesis. 2011 Jan;26(1):125-32
18371351 - Cell Stem Cell. 2007 Aug 16;1(2):204-17
23104738 - J Cell Sci. 2012 Sep 1;125(Pt 17):3939-48
15789413 - Genesis. 2005 Apr;41(4):171-8
18370297 - Methods Mol Biol. 2008;430:143-57
21968989 - Nat Cell Biol. 2011 Oct;13(10):1161-9
22980979 - Cell. 2012 Sep 14;150(6):1182-95
12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4
8689561 - Annu Rev Cell Dev Biol. 1995;11:35-71
19277586 - Methods Mol Biol. 2009;538:301-15
15496926 - Nature. 2004 Oct 21;431(7011):997-1002
11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
18840712 - Blood. 2008 Dec 15;112(13):4862-73
17525340 - Science. 2007 May 25;316(5828):1194-8
23473600 - Mol Cell. 2013 Mar 7;49(5):808-24
17980597 - Curr Biol. 2007 Nov 20;17(22):1972-7
19847258 - Nature. 2009 Oct 22;461(7267):1071-8
20227040 - Cancer Cell. 2010 Mar 16;17(3):262-72
20550933 - Cell. 2010 Jun 11;141(6):970-81
23760478 - Nature. 2013 Jul 4;499(7456):50-4
24002223 - Nat Rev Mol Cell Biol. 2013 Oct;14(10):661-72
19203578 - Cell. 2009 Feb 6;136(3):420-34
21408175 - PLoS One. 2011;6(3):e17487
22884692 - Cell. 2012 Aug 17;150(4):697-709
23416108 - Mol Cell. 2013 Mar 7;49(5):795-807
16682494 - J Exp Med. 2006 May 15;203(5):1283-93
18295578 - Cell. 2008 Feb 22;132(4):598-611
21383063 - Mol Cell Biol. 2011 May;31(10):1972-82
9620848 - Genes Dev. 1998 Jun 1;12(11):1599-609
23374339 - Cell. 2013 Jan 31;152(3):417-29
20921134 - J Cell Biol. 2010 Oct 4;191(1):45-60
17554309 - Nature. 2007 Jun 7;447(7145):725-9
References_xml – reference: 23473600 - Mol Cell. 2013 Mar 7;49(5):808-24
– reference: 18371351 - Cell Stem Cell. 2007 Aug 16;1(2):204-17
– reference: 8689561 - Annu Rev Cell Dev Biol. 1995;11:35-71
– reference: 18295578 - Cell. 2008 Feb 22;132(4):598-611
– reference: 11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6
– reference: 8782459 - Nat Med. 1996 Sep;2(9):1011-6
– reference: 23382699 - PLoS Genet. 2013;9(1):e1003259
– reference: 16682494 - J Exp Med. 2006 May 15;203(5):1283-93
– reference: 23760478 - Nature. 2013 Jul 4;499(7456):50-4
– reference: 12551891 - J Biol Chem. 2003 Apr 4;278(14):11731-4
– reference: 22914294 - Nat Rev Mol Cell Biol. 2012 Sep;13(9):579-90
– reference: 17980597 - Curr Biol. 2007 Nov 20;17(22):1972-7
– reference: 21363960 - Genes Dev. 2011 Mar 1;25(5):409-33
– reference: 22980979 - Cell. 2012 Sep 14;150(6):1182-95
– reference: 23374339 - Cell. 2013 Jan 31;152(3):417-29
– reference: 20619763 - Cell Stem Cell. 2010 Aug 6;7(2):186-97
– reference: 10373565 - Mol Cell Biol. 1999 Jul;19(7):5166-9
– reference: 22884692 - Cell. 2012 Aug 17;150(4):697-709
– reference: 15789413 - Genesis. 2005 Apr;41(4):171-8
– reference: 22713238 - Cell Cycle. 2012 Jul 1;11(13):2538-44
– reference: 18370297 - Methods Mol Biol. 2008;430:143-57
– reference: 18248857 - DNA Repair (Amst). 2008 Mar 1;7(3):523-9
– reference: 10835623 - Nat Genet. 2000 Jun;25(2):139-40
– reference: 20550933 - Cell. 2010 Jun 11;141(6):970-81
– reference: 12809602 - Cell. 2003 Jun 13;113(6):703-16
– reference: 20978197 - Cancer Res. 2010 Nov 1;70(21):8706-14
– reference: 23584423 - Nat Rev Immunol. 2013 May;13(5):376-89
– reference: 23615962 - J Biol Chem. 2013 Jun 7;288(23):16579-87
– reference: 17554302 - Nature. 2007 Jun 7;447(7145):686-90
– reference: 19277586 - Methods Mol Biol. 2009;538:301-15
– reference: 22385964 - Cell. 2012 Mar 2;148(5):1001-14
– reference: 271971 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5492-5
– reference: 22952011 - Nat Rev Cancer. 2012 Oct;12(10):709-20
– reference: 18001825 - Cell. 2007 Nov 30;131(5):901-14
– reference: 24196443 - Cell Cycle. 2014;13(1):106-14
– reference: 21383063 - Mol Cell Biol. 2011 May;31(10):1972-82
– reference: 21408175 - PLoS One. 2011;6(3):e17487
– reference: 18001824 - Cell. 2007 Nov 30;131(5):887-900
– reference: 8662508 - Science. 1996 Jul 12;273(5272):242-5
– reference: 19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85
– reference: 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68
– reference: 17728714 - Nature. 2007 Sep 13;449(7159):238-42
– reference: 18424665 - Blood. 2008 Jun 15;111(12):5562-70
– reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
– reference: 24002223 - Nat Rev Mol Cell Biol. 2013 Oct;14(10):661-72
– reference: 17554309 - Nature. 2007 Jun 7;447(7145):725-9
– reference: 12640136 - Mol Cell Biol. 2003 Apr;23(7):2556-63
– reference: 16079837 - Nature. 2005 Aug 4;436(7051):660-5
– reference: 17525340 - Science. 2007 May 25;316(5828):1194-8
– reference: 21078816 - Genes Dev. 2010 Nov 15;24(22):2463-79
– reference: 19203579 - Cell. 2009 Feb 6;136(3):435-46
– reference: 15496926 - Nature. 2004 Oct 21;431(7011):997-1002
– reference: 22123971 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20012-7
– reference: 11694875 - Nat Genet. 2001 Dec;29(4):418-25
– reference: 21552324 - PLoS Genet. 2011 Apr;7(4):e1001381
– reference: 19847258 - Nature. 2009 Oct 22;461(7267):1071-8
– reference: 23104738 - J Cell Sci. 2012 Sep 1;125(Pt 17):3939-48
– reference: 18840712 - Blood. 2008 Dec 15;112(13):4862-73
– reference: 19203578 - Cell. 2009 Feb 6;136(3):420-34
– reference: 20385750 - J Exp Med. 2010 May 10;207(5):983-97
– reference: 21164193 - Mutagenesis. 2011 Jan;26(1):125-32
– reference: 21968989 - Nat Cell Biol. 2011 Oct;13(10):1161-9
– reference: 20619762 - Cell Stem Cell. 2010 Aug 6;7(2):174-85
– reference: 19626045 - Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63
– reference: 18295583 - Cell. 2008 Feb 22;132(4):681-96
– reference: 20921134 - J Cell Biol. 2010 Oct 4;191(1):45-60
– reference: 24366338 - Cell Res. 2014 Apr;24(4):400-16
– reference: 18006705 - Science. 2007 Dec 7;318(5856):1637-40
– reference: 23416108 - Mol Cell. 2013 Mar 7;49(5):795-807
– reference: 20227040 - Cancer Cell. 2010 Mar 16;17(3):262-72
– reference: 21362548 - Mol Cell. 2011 Mar 4;41(5):515-28
– reference: 9620848 - Genes Dev. 1998 Jun 1;12(11):1599-609
– reference: 21362549 - Mol Cell. 2011 Mar 4;41(5):529-42
– reference: 19500350 - BMC Mol Biol. 2009;10:55
SSID ssj0014456
Score 2.411279
Snippet Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1759
SubjectTerms Animals
Carcinogenesis
Cell Proliferation
Cellular Senescence
DNA Breaks, Double-Stranded
DNA Damage - physiology
DNA Repair - physiology
Female
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Histones - metabolism
Homeostasis
Lymphopenia - etiology
Male
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Knockout
Ubiquitin-Specific Proteases - deficiency
Ubiquitin-Specific Proteases - genetics
Ubiquitin-Specific Proteases - metabolism
Ubiquitination
Title Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells
URI https://www.ncbi.nlm.nih.gov/pubmed/25113974
https://www.proquest.com/docview/1557082888
Volume 211
WOSCitedRecordID wos000342744500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qinjx_VhfRPAa7CNtk5OIunjZsqDC3kqeUMF2tbuCR_-5M23FkyB46SkNYTIz-eZNyEWY6JBnWjOXpI5xFWgmpPfMZhJjr1ZypdphE1mei-lUTnqHW9OnVX7rxFZR29qgj_wyxF5RYB4IcTV7ZTg1CqOr_QiNZTKIAcogV2fTnygC5-301hCD_xIku098DwS_fHZYhh7GABfS38Fl-8iMNv97vC2y0cNLet3xwzZZctUOWRv3AfRd8vmIxjh96ybQw53Q2tOFLl8X5bysWFtHAhiU3ubX1KoXUDawts2idVR_0KeHSUwxdRbzJBsK4JHiw9j5E2nXegJgPW7aNoOtZ3WJVZIU20VTDBI0e-RpdPd4c8_6KQzMcBHPmfPWB8YnTlsFwp0ZoKQVykowfpziqdIqCoQznifOZi7wEpYqGTmvAaylUbRPVqq6coeEcmmixBonvUq4lamIPU8tQszQpDGPh-T8m7gFcDmeSlWuXjTFD3mH5KC7oWLWteMo0EgCVMWP_vD3MVmHW-foFI6SEzLwIOPulKya93nZvJ217APffDL-AkzM0zc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tight+regulation+of+ubiquitin-mediated+DNA+damage+response+by+USP3+preserves+the+functional+integrity+of+hematopoietic+stem+cells&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Lancini%2C+Cesare&rft.au=van+den+Berk%2C+Paul+C+M&rft.au=Vissers%2C+Joseph+H+A&rft.au=Gargiulo%2C+Gaetano&rft.date=2014-08-25&rft.issn=1540-9538&rft.eissn=1540-9538&rft.volume=211&rft.issue=9&rft.spage=1759&rft_id=info:doi/10.1084%2Fjem.20131436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-9538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-9538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-9538&client=summon