FedCSD: A Federated Learning Based Approach for Code-Smell Detection

Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; p. 1
Main Authors: Alawadi, Sadi, Alkharabsheh, Khalid, Alkhabbas, Fahed, Kebande, Victor R., Awaysheh, Feras M., Palomba, Fabio, Awad, Mohammed
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting "God Class," to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers.
AbstractList Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting "God Class," to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers.
Software quality is critical, as low quality, or 'Code smell,' increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting 'God Class,' to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers. © 2013 IEEE.
Author Alkhabbas, Fahed
Alkharabsheh, Khalid
Kebande, Victor R.
Awaysheh, Feras M.
Awad, Mohammed
Alawadi, Sadi
Palomba, Fabio
Author_xml – sequence: 1
  givenname: Sadi
  orcidid: 0000-0002-6309-2892
  surname: Alawadi
  fullname: Alawadi, Sadi
  organization: Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden
– sequence: 2
  givenname: Khalid
  orcidid: 0000-0002-3182-418X
  surname: Alkharabsheh
  fullname: Alkharabsheh, Khalid
  organization: Software Engineering Department, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, As-Salt, Jordan
– sequence: 3
  givenname: Fahed
  surname: Alkhabbas
  fullname: Alkhabbas, Fahed
  organization: Internet of Things and People Research Center, Malmö University, Malmö, Sweden
– sequence: 4
  givenname: Victor R.
  orcidid: 0000-0003-4071-4596
  surname: Kebande
  fullname: Kebande, Victor R.
  organization: Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden
– sequence: 5
  givenname: Feras M.
  surname: Awaysheh
  fullname: Awaysheh, Feras M.
  organization: Delta Research Centre, Institute of Computer Science, University of Tartu, Tartu, Estonia
– sequence: 6
  givenname: Fabio
  orcidid: 0000-0001-9337-5116
  surname: Palomba
  fullname: Palomba, Fabio
  organization: University of Salerno, Italy
– sequence: 7
  givenname: Mohammed
  surname: Awad
  fullname: Awad, Mohammed
  organization: Arab American University, Palestine
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:bth-26101$$DView record from Swedish Publication Index (Blekinge Tekniska Högskola)
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-66923$$DView record from Swedish Publication Index
BookMark eNqNUU1v1DAQtVCRKKW_AA6RuJLFX3FibiHbQqWVOCxwtcb2uM0qGy9OVhX_Hm9TpMIBMZcZj957Gr_3kpyNcURCXjO6Yozq923XXW23K065XAnRUKbqZ-ScM6VLUQl19mR-QS6naUdzNXlV1edkfY2-264_FG2RJ0wwoy82CGnsx9viI0z52R4OKYK7K0JMRRc9lts9DkOxxhnd3MfxFXkeYJjw8rFfkG_XV1-7z-Xmy6ebrt2UTjZiLr0IlstK2QqorjkVwnGtqAQFzHmtPVBU3AvJG2yUhSCCbyjY2rkgrUBxQW4WXR9hZw6p30P6aSL05mER062BNPduQMMrZJ4CDdhUUgVrBdde6poGmr8Zqqz1btGa7vFwtH-orfvv7YPaHo5GKc3F_8HtfGe4YpRl-NsFnp37ccRpNrt4TGM2xwjKKsq1rnVG6QXlUpymhMG4foaTo3OCfjCMmlPCZknYnBI2jwlnrviL-_ukf7PeLKweEZ8wZF1LJsQv4OiyYQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s13748_024_00322_3
crossref_primary_10_1007_s13748_025_00386_9
crossref_primary_10_1145_3708529
crossref_primary_10_1038_s41597_025_05465_z
crossref_primary_10_1007_s10586_024_04724_9
crossref_primary_10_1016_j_engappai_2024_109527
Cites_doi 10.1016/j.infsof.2021.106736
10.1109/COMST.2021.3094993
10.1109/TIFS.2023.3302161
10.1002/smr.1737
10.1007/s10664-008-9102-8
10.1109/JIOT.2020.3007662
10.1145/157710.157715
10.1145/3510548.3519372
10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361408
10.1109/TEM.2020.3045661
10.1088/1742-6596/1142/1/012012
10.1002/smr.1702
10.1016/j.infsof.2021.106783
10.1109/EDGE60047.2023.00054
10.1007/s11219-021-09550-5
10.1038/s41598-023-43380-8
10.1109/ICSM.2015.7332458
10.1109/ACCESS.2021.3049216
10.1109/ICDCS.2019.00023
10.1145/1321631.1321727
10.1109/IRI.2019.00039
10.1016/j.entcs.2005.02.059
10.1109/COMST.2020.2986024
10.1109/MSP.2020.2975749
10.1002/smr.2320
10.1109/ACCESS.2021.3075203
10.1109/ACCESS.2021.3133810
10.1109/ACCESS.2021.3123123
10.1109/SE.2007.13
10.1201/9781003194538-3
10.1016/j.jksuci.2022.09.011
10.1007/978-3-642-29044-2
10.1145/581339.581453
10.1007/s10664-015-9378-4
10.18293/SEKE2019-140
10.1109/csit.2018.8486180
10.1007/978-3-642-21378-6_2
10.1016/j.jss.2020.110693
10.1109/ACCESS.2021.3063002
10.1016/j.procs.2022.12.125
10.1007/s11219-018-9424-8
10.1145/2351676.2351723
10.1145/3423423.3423425
10.1109/eScience.2017.35
10.1007/s13369-019-04311-w
10.1145/2557833.2560586
10.1016/j.knosys.2021.106775
10.1007/978-3-030-85082-1_21
10.1109/ICPC.2019.00023
10.3390/app122010321
10.3390/fi13030073
10.1016/j.jss.2010.11.921
10.1145/3338501.3357370
10.1016/j.infsof.2018.12.009
10.1109/QUATIC.2010.61
10.1109/JCSSE.2011.5930143
10.1007/978-3-319-10632-8
10.1109/METRICS.2005.38
10.1109/JEEIT53412.2021.9634144
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8T
DF3
ZZAVC
DOA
DOI 10.1109/ACCESS.2024.3380167
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Blekinge Tekniska Högskola
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_25e1d0a0fe8546fbb329d4970f0edef5
oai_DiVA_org_mau_66923
oai_DiVA_org_bth_26101
10_1109_ACCESS_2024_3380167
10477413
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8T
DF3
ZZAVC
ID FETCH-LOGICAL-c483t-d3fb2456b5a0972033c29604a6a1cd99da0e62d3428e86baf3fd80ab7ccf4b3e3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193664800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:23 EDT 2025
Thu Aug 21 06:38:18 EDT 2025
Tue Nov 04 16:14:34 EST 2025
Mon Jun 30 03:04:57 EDT 2025
Sat Nov 29 06:25:34 EST 2025
Tue Nov 18 22:33:12 EST 2025
Wed Aug 27 02:17:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-d3fb2456b5a0972033c29604a6a1cd99da0e62d3428e86baf3fd80ab7ccf4b3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3182-418X
0000-0001-9337-5116
0000-0002-6309-2892
0000-0003-4071-4596
0000-0002-8025-4734
0000-0002-5053-0785
OpenAccessLink https://ieeexplore.ieee.org/document/10477413
PQID 3015029979
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_25e1d0a0fe8546fbb329d4970f0edef5
ieee_primary_10477413
swepub_primary_oai_DiVA_org_mau_66923
proquest_journals_3015029979
crossref_primary_10_1109_ACCESS_2024_3380167
swepub_primary_oai_DiVA_org_bth_26101
crossref_citationtrail_10_1109_ACCESS_2024_3380167
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Ragab (ref44) 2021; 2840
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Marinescu (ref9)
ref17
ref16
Pérez (ref2) 2011
ref19
ref18
ref51
Bonawitz (ref49) 2019
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref8
ref4
ref3
Alkharabsheh (ref39) 2016
ref6
ref40
ref35
ref34
Galozy (ref74) 2023
ref37
ref36
ref31
ref30
ref33
Ekmefjord (ref64) 2021
ref1
Alkharabsheh (ref66) 2021
Suri (ref73) 2022
McMahan (ref50) 2017; 54
ref71
ref70
ref72
Brown (ref5) 1998
Alkharabsheh (ref38) 2016
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref63
ref22
ref21
ref65
ref28
ref27
ref29
Lanza (ref32) 2007
Choinzon (ref7)
ref60
ref62
ref61
Goodfellow (ref56) 2014
References_xml – ident: ref37
  doi: 10.1016/j.infsof.2021.106736
– ident: ref45
  doi: 10.1109/COMST.2021.3094993
– ident: ref72
  doi: 10.1109/TIFS.2023.3302161
– start-page: 159
  year: 2016
  ident: ref38
  article-title: Comparación de herramientas de detección de design smells
  publication-title: XXI Jornadas de Ingeniería del Softw. Bases de Datos
– start-page: 61
  volume-title: Proc. 7th Joint Conf. Knowl.-Based Softw. Eng.
  ident: ref7
  article-title: Detecting defects in object oriented designs using design metrics
– ident: ref30
  doi: 10.1002/smr.1737
– volume-title: AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis
  year: 1998
  ident: ref5
– ident: ref61
  doi: 10.1007/s10664-008-9102-8
– ident: ref48
  doi: 10.1109/JIOT.2020.3007662
– ident: ref6
  doi: 10.1145/157710.157715
– ident: ref71
  doi: 10.1145/3510548.3519372
– volume-title: Object-oriented Metrics in Practice: Using Software Metrics To Characterize, Evaluate, and Improve the Design of Object-oriented Systems
  year: 2007
  ident: ref32
– ident: ref59
  doi: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361408
– ident: ref51
  doi: 10.1109/TEM.2020.3045661
– ident: ref23
  doi: 10.1088/1742-6596/1142/1/012012
– year: 2022
  ident: ref73
  article-title: Subject membership inference attacks in federated learning
  publication-title: arXiv:2206.03317
– ident: ref12
  doi: 10.1002/smr.1702
– ident: ref31
  doi: 10.1016/j.infsof.2021.106783
– ident: ref27
  doi: 10.1109/EDGE60047.2023.00054
– ident: ref13
  doi: 10.1007/s11219-021-09550-5
– ident: ref24
  doi: 10.1038/s41598-023-43380-8
– ident: ref41
  doi: 10.1109/ICSM.2015.7332458
– ident: ref55
  doi: 10.1109/ACCESS.2021.3049216
– ident: ref47
  doi: 10.1109/ICDCS.2019.00023
– ident: ref10
  doi: 10.1145/1321631.1321727
– volume-title: Replication package of raw data, scripts and all necessary material for replication
  year: 2021
  ident: ref66
– start-page: 143
  year: 2016
  ident: ref39
  article-title: Sobre El grado de acuerdo entre evaluadores en La detección de design smells
  publication-title: XXI Jornadas de Ingeniería del Softw. Bases de Datos
– ident: ref53
  doi: 10.1109/IRI.2019.00039
– ident: ref16
  doi: 10.1016/j.entcs.2005.02.059
– ident: ref46
  doi: 10.1109/COMST.2020.2986024
– ident: ref28
  doi: 10.1109/MSP.2020.2975749
– year: 2021
  ident: ref64
  article-title: Scalable federated machine learning with FEDn
  publication-title: arXiv:2103.00148
– ident: ref3
  doi: 10.1002/smr.2320
– year: 2019
  ident: ref49
  article-title: Towards federated learning at scale: System design
  publication-title: arXiv:1902.01046
– year: 2023
  ident: ref74
  article-title: Beyond random noise: Insights on anonymization strategies from a latent bandit study
  publication-title: arXiv:2310.00221
– ident: ref69
  doi: 10.1109/ACCESS.2021.3075203
– ident: ref26
  doi: 10.1109/ACCESS.2021.3133810
– ident: ref35
  doi: 10.1109/ACCESS.2021.3123123
– ident: ref40
  doi: 10.1109/SE.2007.13
– ident: ref63
  doi: 10.1201/9781003194538-3
– ident: ref36
  doi: 10.1016/j.jksuci.2022.09.011
– ident: ref62
  doi: 10.1007/978-3-642-29044-2
– ident: ref1
  doi: 10.1145/581339.581453
– ident: ref22
  doi: 10.1007/s10664-015-9378-4
– ident: ref65
  doi: 10.18293/SEKE2019-140
– volume: 2840
  start-page: 71
  year: 2021
  ident: ref44
  article-title: An in-depth investigation of large-scale RDF relational schema optimizations using spark-SQL
  publication-title: DOLAP
– ident: ref33
  doi: 10.1109/csit.2018.8486180
– ident: ref8
  doi: 10.1007/978-3-642-21378-6_2
– ident: ref18
  doi: 10.1016/j.jss.2020.110693
– ident: ref57
  doi: 10.1109/ACCESS.2021.3063002
– ident: ref67
  doi: 10.1016/j.procs.2022.12.125
– ident: ref4
  doi: 10.1007/s11219-018-9424-8
– ident: ref42
  doi: 10.1145/2351676.2351723
– year: 2014
  ident: ref56
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv:1412.6572
– ident: ref58
  doi: 10.1145/3423423.3423425
– ident: ref68
  doi: 10.1109/eScience.2017.35
– ident: ref20
  doi: 10.1007/s13369-019-04311-w
– start-page: 77
  volume-title: Proc. Intl. Conf. Softw. Maintenance—Ind. Tool
  ident: ref9
  article-title: IPlasma: An integrated platform for quality assessment of object-oriented design
– ident: ref43
  doi: 10.1145/2557833.2560586
– ident: ref29
  doi: 10.1016/j.knosys.2021.106775
– ident: ref54
  doi: 10.1007/978-3-030-85082-1_21
– year: 2011
  ident: ref2
  article-title: Refactoring planning for design smell correction object-oriented software
– ident: ref19
  doi: 10.1109/ICPC.2019.00023
– ident: ref25
  doi: 10.3390/app122010321
– volume: 54
  start-page: 1273
  year: 2017
  ident: ref50
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc. Artif. Intell. Statist.
– ident: ref70
  doi: 10.3390/fi13030073
– ident: ref15
  doi: 10.1016/j.jss.2010.11.921
– ident: ref52
  doi: 10.1145/3338501.3357370
– ident: ref21
  doi: 10.1016/j.infsof.2018.12.009
– ident: ref14
  doi: 10.1109/QUATIC.2010.61
– ident: ref17
  doi: 10.1109/JCSSE.2011.5930143
– ident: ref60
  doi: 10.1007/978-3-319-10632-8
– ident: ref11
  doi: 10.1109/METRICS.2005.38
– ident: ref34
  doi: 10.1109/JEEIT53412.2021.9634144
SSID ssj0000816957
Score 2.3667486
Snippet Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model...
Software quality is critical, as low quality, or “Code smell,” increases technical debt and maintenance costs. There is a timely need for a collaborative model...
Software quality is critical, as low quality, or 'Code smell,' increases technical debt and maintenance costs. There is a timely need for a collaborative model...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Application programs
Code
Code smell
Code Smell Detection
Codes
Codes (symbols)
Companies
Computer software maintenance
Computer software selection and evaluation
Costs
Cryptography
Data privacy
Datasets
Experiments
Federated learning
Ho-momorphic encryptions
Homomorphic encryption
Homomorphic-encryptions
Maintenance costs
Maintenance engineering
Model accuracy
Object oriented modeling
Object oriented modelling
Object oriented programming
Odors
Privacy
Privacy preserving
Quality management
Software development
Software engineering
Software quality
Source code
Technical Debit
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOiI8iAgX5ADdCndhxbG5plhWnCqmAerP8MYZK223Vpvx-xo5bZS_0wjVyNPHzJPOeY70h5D1o3skoutpab2shrapt0BFzuVcon72PLuRmE_3xsTo91d8Wrb7SmbDZHngG7rDtoAnMsgiqEzI6x1sdhO5ZZBAgZvdSZD0LMZW_waqRuuuLzVDD9OEwjjgjFISt-ISyLJ2-3ylF2bG_tFjZZZtLB9FcddZPyZNCF-kwP-Yz8gC2z8njhYngC7JaQxhPVp_pQNfJGQLJY6DFNvUXPcIqFehQnMMpUlQ6XgSoT85hs6ErmPJRrO0--bH-8n38WpfeCLUXik914NGlf5aus8mAh3Hu2-SzYqVtfNA6WAayDRzVBSjpbOQxKGZdj-gLx4G_JHvbiy28IhQJU2SdFwJxFT2zlnEnrQQLTIBWtiLtLUzGF-Pw1L9iY7KAYNrM2JqErSnYVuTj3U2Xs2_Gv4cfJfzvhibT63wBU8GUVDD3pUJF9tPqLeIJJLcNr8jB7XKa8oZeG562erAW97oiH-Yl3om-Ovs55Ohu-m1QZrLmnnHn9sZIiXz59f-YyxvyKOEzb_YckL3p6gbekof-z3R2ffUuJ_tftigAtA
  priority: 102
  providerName: Directory of Open Access Journals
Title FedCSD: A Federated Learning Based Approach for Code-Smell Detection
URI https://ieeexplore.ieee.org/document/10477413
https://www.proquest.com/docview/3015029979
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-26101
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-66923
https://doaj.org/article/25e1d0a0fe8546fbb329d4970f0edef5
Volume 12
WOSCitedRecordID wos001193664800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPItIKZUPcCOtN3bimFua7YoLFVIB9Wb5MaaVtruozXLsb2fsuKvdAyAuURRN5Mc31jxsf0PIO1C8boKoS2OcKUVj2tJ4FVCXZYvhs3PB-lRsQp6dtRcX6ku-rJ7uwgBAOnwGR_E17eX7pVvFVNlxpBVAC8h3yI6UcrystU6oxAoSqpaZWWjC1HHX9zgIjAErcYSRWDxwv2V9Ekl_rqqy7WBukoYmQzN7-p9dfEaeZI-SdqMKPCcPYPGCPN7gGXxJpjPw_fn0I-3oLJJHoH_paWZW_UFP0JB52mVycYpeLO2XHsrza5jP6RSGdFprsUe-zU6_9p_KXD6hdKLlQ-l5sHFb09YmcvQwzl0VqVhMYybOK-UNg6byHAMQaBtrAg--ZcZKBEhYDvwV2V0sF_CaUPSpAqudEMoLIZkxjNvGNGCACVCtKUh1P63aZW7xWOJirlOMwZQesdARC52xKMiH9U8_R2qNv4ufRLzWopEXO33A-dd5memqholnhgVoa9EEa3mFXVaSBYbTG-qC7EXMNtob4SrIwT38Oi_iW81jNgjNtVQFeT-qxFbr06vvXWrdDpcaI1E2-YfctVnppkGXev8P3XhDHsUhjymeA7I73KzgLXnofg1XtzeHKV-Az893p4dJ938DD3L_kg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagIAEH1iICBXyAG2mdeEnMLc0wKqKMkFpQb5aXZ6g0nUFtht-P7bijmQMgblFky8v3rLf4-XsIvQFJufCMl1pbXTKh21I76YMsN21wn631xqViE81s1p6dyS_5sXp6CwMAKfkM9uNnust3S7uKobKDSCsQNCC9iW5xxupqfK61DqnEGhKSN5lbqCLyoOv7sIzgBdZsP_hiMeV-S_8kmv5cV2XbxNykDU2qZvrgPyf5EN3PNiXuRiF4hG7A4jG6t8E0-ARNpuD6k8l73OFppI8IFqbDmVv1Oz4MqszhLtOL42DH4n7poDy5gPkcT2BI-VqLXfR1-uG0PypzAYXSspYOpaPexItNw3Vk6SGU2jqSsWihK-ukdJqAqB0NLgi0wmhPvWuJNk2AiBkK9CnaWSwX8AzhYFV5wi1j0jHWEK0JNUIL0EAYyFYXqL7eVmUzu3gscjFXycsgUo1YqIiFylgU6N2608-RXOPvzQ8jXuumkRk7_Qj7r_JBUzWHyhFNPLScCW8MrcOUZUM8CdvreYF2I2Yb441wFWjvGn6Vj_GVojEeFBR2Iwv0dhSJrdEn59-6NLoZfqjgi5LqH-0u9EoJEYzq53-Yxmt05-j087E6_jj79ALdjcsfAz57aGe4XMFLdNv-Gs6vLl8l2f8NcLQAwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedCSD%3A+A+Federated+Learning+Based+Approach+for+Code-Smell+Detection&rft.jtitle=IEEE+access&rft.au=Alawadi%2C+Sadi&rft.au=Alkharabsheh%2C+Khalid&rft.au=Alkhabbas%2C+Fahed&rft.au=Kebande%2C+Victor+R.&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2024.3380167&rft.externalDocID=10477413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon