FedCSD: A Federated Learning Based Approach for Code-Smell Detection
Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing...
Saved in:
| Published in: | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting "God Class," to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers. |
|---|---|
| AbstractList | Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting "God Class," to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers. Software quality is critical, as low quality, or 'Code smell,' increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sources while respecting privacy and providing a scalable solution for continuously integrating new patterns and practices in code quality management. However, the current literature is still missing such capabilities. This paper addresses the previous challenges by proposing a Federated Learning Code Smell Detection (FedCSD) approach, specifically targeting 'God Class,' to enable organizations to train distributed ML models while safeguarding data privacy collaboratively. We conduct experiments using manually validated datasets to detect and analyze code smell scenarios to validate our approach. Experiment 1, a centralized training experiment, revealed varying accuracies across datasets, with dataset two achieving the lowest accuracy (92.30%) and datasets one and three achieving the highest (98.90% and 99.5%, respectively). Experiment 2, focusing on cross-evaluation, showed a significant drop in accuracy (lowest: 63.80%) when fewer smells were present in the training dataset, reflecting technical debt. Experiment 3 involved splitting the dataset across 10 companies, resulting in a global model accuracy of 98.34%, comparable to the centralized model's highest accuracy. The application of federated ML techniques demonstrates promising performance improvements in code-smell detection, benefiting both software developers and researchers. © 2013 IEEE. |
| Author | Alkhabbas, Fahed Alkharabsheh, Khalid Kebande, Victor R. Awaysheh, Feras M. Awad, Mohammed Alawadi, Sadi Palomba, Fabio |
| Author_xml | – sequence: 1 givenname: Sadi orcidid: 0000-0002-6309-2892 surname: Alawadi fullname: Alawadi, Sadi organization: Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden – sequence: 2 givenname: Khalid orcidid: 0000-0002-3182-418X surname: Alkharabsheh fullname: Alkharabsheh, Khalid organization: Software Engineering Department, Prince Abdullah bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, As-Salt, Jordan – sequence: 3 givenname: Fahed surname: Alkhabbas fullname: Alkhabbas, Fahed organization: Internet of Things and People Research Center, Malmö University, Malmö, Sweden – sequence: 4 givenname: Victor R. orcidid: 0000-0003-4071-4596 surname: Kebande fullname: Kebande, Victor R. organization: Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden – sequence: 5 givenname: Feras M. surname: Awaysheh fullname: Awaysheh, Feras M. organization: Delta Research Centre, Institute of Computer Science, University of Tartu, Tartu, Estonia – sequence: 6 givenname: Fabio orcidid: 0000-0001-9337-5116 surname: Palomba fullname: Palomba, Fabio organization: University of Salerno, Italy – sequence: 7 givenname: Mohammed surname: Awad fullname: Awad, Mohammed organization: Arab American University, Palestine |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:bth-26101$$DView record from Swedish Publication Index (Blekinge Tekniska Högskola) https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-66923$$DView record from Swedish Publication Index |
| BookMark | eNqNUU1v1DAQtVCRKKW_AA6RuJLFX3FibiHbQqWVOCxwtcb2uM0qGy9OVhX_Hm9TpMIBMZcZj957Gr_3kpyNcURCXjO6Yozq923XXW23K065XAnRUKbqZ-ScM6VLUQl19mR-QS6naUdzNXlV1edkfY2-264_FG2RJ0wwoy82CGnsx9viI0z52R4OKYK7K0JMRRc9lts9DkOxxhnd3MfxFXkeYJjw8rFfkG_XV1-7z-Xmy6ebrt2UTjZiLr0IlstK2QqorjkVwnGtqAQFzHmtPVBU3AvJG2yUhSCCbyjY2rkgrUBxQW4WXR9hZw6p30P6aSL05mER062BNPduQMMrZJ4CDdhUUgVrBdde6poGmr8Zqqz1btGa7vFwtH-orfvv7YPaHo5GKc3F_8HtfGe4YpRl-NsFnp37ccRpNrt4TGM2xwjKKsq1rnVG6QXlUpymhMG4foaTo3OCfjCMmlPCZknYnBI2jwlnrviL-_ukf7PeLKweEZ8wZF1LJsQv4OiyYQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s13748_024_00322_3 crossref_primary_10_1007_s13748_025_00386_9 crossref_primary_10_1145_3708529 crossref_primary_10_1038_s41597_025_05465_z crossref_primary_10_1007_s10586_024_04724_9 crossref_primary_10_1016_j_engappai_2024_109527 |
| Cites_doi | 10.1016/j.infsof.2021.106736 10.1109/COMST.2021.3094993 10.1109/TIFS.2023.3302161 10.1002/smr.1737 10.1007/s10664-008-9102-8 10.1109/JIOT.2020.3007662 10.1145/157710.157715 10.1145/3510548.3519372 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361408 10.1109/TEM.2020.3045661 10.1088/1742-6596/1142/1/012012 10.1002/smr.1702 10.1016/j.infsof.2021.106783 10.1109/EDGE60047.2023.00054 10.1007/s11219-021-09550-5 10.1038/s41598-023-43380-8 10.1109/ICSM.2015.7332458 10.1109/ACCESS.2021.3049216 10.1109/ICDCS.2019.00023 10.1145/1321631.1321727 10.1109/IRI.2019.00039 10.1016/j.entcs.2005.02.059 10.1109/COMST.2020.2986024 10.1109/MSP.2020.2975749 10.1002/smr.2320 10.1109/ACCESS.2021.3075203 10.1109/ACCESS.2021.3133810 10.1109/ACCESS.2021.3123123 10.1109/SE.2007.13 10.1201/9781003194538-3 10.1016/j.jksuci.2022.09.011 10.1007/978-3-642-29044-2 10.1145/581339.581453 10.1007/s10664-015-9378-4 10.18293/SEKE2019-140 10.1109/csit.2018.8486180 10.1007/978-3-642-21378-6_2 10.1016/j.jss.2020.110693 10.1109/ACCESS.2021.3063002 10.1016/j.procs.2022.12.125 10.1007/s11219-018-9424-8 10.1145/2351676.2351723 10.1145/3423423.3423425 10.1109/eScience.2017.35 10.1007/s13369-019-04311-w 10.1145/2557833.2560586 10.1016/j.knosys.2021.106775 10.1007/978-3-030-85082-1_21 10.1109/ICPC.2019.00023 10.3390/app122010321 10.3390/fi13030073 10.1016/j.jss.2010.11.921 10.1145/3338501.3357370 10.1016/j.infsof.2018.12.009 10.1109/QUATIC.2010.61 10.1109/JCSSE.2011.5930143 10.1007/978-3-319-10632-8 10.1109/METRICS.2005.38 10.1109/JEEIT53412.2021.9634144 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTPV AOWAS D8T DF3 ZZAVC DOA |
| DOI | 10.1109/ACCESS.2024.3380167 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Freely available online SWEPUB Blekinge Tekniska Högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_25e1d0a0fe8546fbb329d4970f0edef5 oai_DiVA_org_mau_66923 oai_DiVA_org_bth_26101 10_1109_ACCESS_2024_3380167 10477413 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTPV AOWAS D8T DF3 ZZAVC |
| ID | FETCH-LOGICAL-c483t-d3fb2456b5a0972033c29604a6a1cd99da0e62d3428e86baf3fd80ab7ccf4b3e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193664800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:23 EDT 2025 Thu Aug 21 06:38:18 EDT 2025 Tue Nov 04 16:14:34 EST 2025 Mon Jun 30 03:04:57 EDT 2025 Sat Nov 29 06:25:34 EST 2025 Tue Nov 18 22:33:12 EST 2025 Wed Aug 27 02:17:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-d3fb2456b5a0972033c29604a6a1cd99da0e62d3428e86baf3fd80ab7ccf4b3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3182-418X 0000-0001-9337-5116 0000-0002-6309-2892 0000-0003-4071-4596 0000-0002-8025-4734 0000-0002-5053-0785 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10477413 |
| PQID | 3015029979 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_25e1d0a0fe8546fbb329d4970f0edef5 ieee_primary_10477413 swepub_primary_oai_DiVA_org_mau_66923 proquest_journals_3015029979 crossref_primary_10_1109_ACCESS_2024_3380167 swepub_primary_oai_DiVA_org_bth_26101 crossref_citationtrail_10_1109_ACCESS_2024_3380167 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 Ragab (ref44) 2021; 2840 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Marinescu (ref9) ref17 ref16 Pérez (ref2) 2011 ref19 ref18 ref51 Bonawitz (ref49) 2019 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref8 ref4 ref3 Alkharabsheh (ref39) 2016 ref6 ref40 ref35 ref34 Galozy (ref74) 2023 ref37 ref36 ref31 ref30 ref33 Ekmefjord (ref64) 2021 ref1 Alkharabsheh (ref66) 2021 Suri (ref73) 2022 McMahan (ref50) 2017; 54 ref71 ref70 ref72 Brown (ref5) 1998 Alkharabsheh (ref38) 2016 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref63 ref22 ref21 ref65 ref28 ref27 ref29 Lanza (ref32) 2007 Choinzon (ref7) ref60 ref62 ref61 Goodfellow (ref56) 2014 |
| References_xml | – ident: ref37 doi: 10.1016/j.infsof.2021.106736 – ident: ref45 doi: 10.1109/COMST.2021.3094993 – ident: ref72 doi: 10.1109/TIFS.2023.3302161 – start-page: 159 year: 2016 ident: ref38 article-title: Comparación de herramientas de detección de design smells publication-title: XXI Jornadas de Ingeniería del Softw. Bases de Datos – start-page: 61 volume-title: Proc. 7th Joint Conf. Knowl.-Based Softw. Eng. ident: ref7 article-title: Detecting defects in object oriented designs using design metrics – ident: ref30 doi: 10.1002/smr.1737 – volume-title: AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis year: 1998 ident: ref5 – ident: ref61 doi: 10.1007/s10664-008-9102-8 – ident: ref48 doi: 10.1109/JIOT.2020.3007662 – ident: ref6 doi: 10.1145/157710.157715 – ident: ref71 doi: 10.1145/3510548.3519372 – volume-title: Object-oriented Metrics in Practice: Using Software Metrics To Characterize, Evaluate, and Improve the Design of Object-oriented Systems year: 2007 ident: ref32 – ident: ref59 doi: 10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361408 – ident: ref51 doi: 10.1109/TEM.2020.3045661 – ident: ref23 doi: 10.1088/1742-6596/1142/1/012012 – year: 2022 ident: ref73 article-title: Subject membership inference attacks in federated learning publication-title: arXiv:2206.03317 – ident: ref12 doi: 10.1002/smr.1702 – ident: ref31 doi: 10.1016/j.infsof.2021.106783 – ident: ref27 doi: 10.1109/EDGE60047.2023.00054 – ident: ref13 doi: 10.1007/s11219-021-09550-5 – ident: ref24 doi: 10.1038/s41598-023-43380-8 – ident: ref41 doi: 10.1109/ICSM.2015.7332458 – ident: ref55 doi: 10.1109/ACCESS.2021.3049216 – ident: ref47 doi: 10.1109/ICDCS.2019.00023 – ident: ref10 doi: 10.1145/1321631.1321727 – volume-title: Replication package of raw data, scripts and all necessary material for replication year: 2021 ident: ref66 – start-page: 143 year: 2016 ident: ref39 article-title: Sobre El grado de acuerdo entre evaluadores en La detección de design smells publication-title: XXI Jornadas de Ingeniería del Softw. Bases de Datos – ident: ref53 doi: 10.1109/IRI.2019.00039 – ident: ref16 doi: 10.1016/j.entcs.2005.02.059 – ident: ref46 doi: 10.1109/COMST.2020.2986024 – ident: ref28 doi: 10.1109/MSP.2020.2975749 – year: 2021 ident: ref64 article-title: Scalable federated machine learning with FEDn publication-title: arXiv:2103.00148 – ident: ref3 doi: 10.1002/smr.2320 – year: 2019 ident: ref49 article-title: Towards federated learning at scale: System design publication-title: arXiv:1902.01046 – year: 2023 ident: ref74 article-title: Beyond random noise: Insights on anonymization strategies from a latent bandit study publication-title: arXiv:2310.00221 – ident: ref69 doi: 10.1109/ACCESS.2021.3075203 – ident: ref26 doi: 10.1109/ACCESS.2021.3133810 – ident: ref35 doi: 10.1109/ACCESS.2021.3123123 – ident: ref40 doi: 10.1109/SE.2007.13 – ident: ref63 doi: 10.1201/9781003194538-3 – ident: ref36 doi: 10.1016/j.jksuci.2022.09.011 – ident: ref62 doi: 10.1007/978-3-642-29044-2 – ident: ref1 doi: 10.1145/581339.581453 – ident: ref22 doi: 10.1007/s10664-015-9378-4 – ident: ref65 doi: 10.18293/SEKE2019-140 – volume: 2840 start-page: 71 year: 2021 ident: ref44 article-title: An in-depth investigation of large-scale RDF relational schema optimizations using spark-SQL publication-title: DOLAP – ident: ref33 doi: 10.1109/csit.2018.8486180 – ident: ref8 doi: 10.1007/978-3-642-21378-6_2 – ident: ref18 doi: 10.1016/j.jss.2020.110693 – ident: ref57 doi: 10.1109/ACCESS.2021.3063002 – ident: ref67 doi: 10.1016/j.procs.2022.12.125 – ident: ref4 doi: 10.1007/s11219-018-9424-8 – ident: ref42 doi: 10.1145/2351676.2351723 – year: 2014 ident: ref56 article-title: Explaining and harnessing adversarial examples publication-title: arXiv:1412.6572 – ident: ref58 doi: 10.1145/3423423.3423425 – ident: ref68 doi: 10.1109/eScience.2017.35 – ident: ref20 doi: 10.1007/s13369-019-04311-w – start-page: 77 volume-title: Proc. Intl. Conf. Softw. Maintenance—Ind. Tool ident: ref9 article-title: IPlasma: An integrated platform for quality assessment of object-oriented design – ident: ref43 doi: 10.1145/2557833.2560586 – ident: ref29 doi: 10.1016/j.knosys.2021.106775 – ident: ref54 doi: 10.1007/978-3-030-85082-1_21 – year: 2011 ident: ref2 article-title: Refactoring planning for design smell correction object-oriented software – ident: ref19 doi: 10.1109/ICPC.2019.00023 – ident: ref25 doi: 10.3390/app122010321 – volume: 54 start-page: 1273 year: 2017 ident: ref50 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc. Artif. Intell. Statist. – ident: ref70 doi: 10.3390/fi13030073 – ident: ref15 doi: 10.1016/j.jss.2010.11.921 – ident: ref52 doi: 10.1145/3338501.3357370 – ident: ref21 doi: 10.1016/j.infsof.2018.12.009 – ident: ref14 doi: 10.1109/QUATIC.2010.61 – ident: ref17 doi: 10.1109/JCSSE.2011.5930143 – ident: ref60 doi: 10.1007/978-3-319-10632-8 – ident: ref11 doi: 10.1109/METRICS.2005.38 – ident: ref34 doi: 10.1109/JEEIT53412.2021.9634144 |
| SSID | ssj0000816957 |
| Score | 2.3667486 |
| Snippet | Software quality is critical, as low quality, or "Code smell," increases technical debt and maintenance costs. There is a timely need for a collaborative model... Software quality is critical, as low quality, or “Code smell,” increases technical debt and maintenance costs. There is a timely need for a collaborative model... Software quality is critical, as low quality, or 'Code smell,' increases technical debt and maintenance costs. There is a timely need for a collaborative model... |
| SourceID | doaj swepub proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Application programs Code Code smell Code Smell Detection Codes Codes (symbols) Companies Computer software maintenance Computer software selection and evaluation Costs Cryptography Data privacy Datasets Experiments Federated learning Ho-momorphic encryptions Homomorphic encryption Homomorphic-encryptions Maintenance costs Maintenance engineering Model accuracy Object oriented modeling Object oriented modelling Object oriented programming Odors Privacy Privacy preserving Quality management Software development Software engineering Software quality Source code Technical Debit Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOiI8iAgX5ADdCndhxbG5plhWnCqmAerP8MYZK223Vpvx-xo5bZS_0wjVyNPHzJPOeY70h5D1o3skoutpab2shrapt0BFzuVcon72PLuRmE_3xsTo91d8Wrb7SmbDZHngG7rDtoAnMsgiqEzI6x1sdhO5ZZBAgZvdSZD0LMZW_waqRuuuLzVDD9OEwjjgjFISt-ISyLJ2-3ylF2bG_tFjZZZtLB9FcddZPyZNCF-kwP-Yz8gC2z8njhYngC7JaQxhPVp_pQNfJGQLJY6DFNvUXPcIqFehQnMMpUlQ6XgSoT85hs6ErmPJRrO0--bH-8n38WpfeCLUXik914NGlf5aus8mAh3Hu2-SzYqVtfNA6WAayDRzVBSjpbOQxKGZdj-gLx4G_JHvbiy28IhQJU2SdFwJxFT2zlnEnrQQLTIBWtiLtLUzGF-Pw1L9iY7KAYNrM2JqErSnYVuTj3U2Xs2_Gv4cfJfzvhibT63wBU8GUVDD3pUJF9tPqLeIJJLcNr8jB7XKa8oZeG562erAW97oiH-Yl3om-Ovs55Ohu-m1QZrLmnnHn9sZIiXz59f-YyxvyKOEzb_YckL3p6gbekof-z3R2ffUuJ_tftigAtA priority: 102 providerName: Directory of Open Access Journals |
| Title | FedCSD: A Federated Learning Based Approach for Code-Smell Detection |
| URI | https://ieeexplore.ieee.org/document/10477413 https://www.proquest.com/docview/3015029979 https://urn.kb.se/resolve?urn=urn:nbn:se:bth-26101 https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-66923 https://doaj.org/article/25e1d0a0fe8546fbb329d4970f0edef5 |
| Volume | 12 |
| WOSCitedRecordID | wos001193664800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPItIKZUPcCOtN3bimFua7YoLFVIB9Wb5MaaVtruozXLsb2fsuKvdAyAuURRN5Mc31jxsf0PIO1C8boKoS2OcKUVj2tJ4FVCXZYvhs3PB-lRsQp6dtRcX6ku-rJ7uwgBAOnwGR_E17eX7pVvFVNlxpBVAC8h3yI6UcrystU6oxAoSqpaZWWjC1HHX9zgIjAErcYSRWDxwv2V9Ekl_rqqy7WBukoYmQzN7-p9dfEaeZI-SdqMKPCcPYPGCPN7gGXxJpjPw_fn0I-3oLJJHoH_paWZW_UFP0JB52mVycYpeLO2XHsrza5jP6RSGdFprsUe-zU6_9p_KXD6hdKLlQ-l5sHFb09YmcvQwzl0VqVhMYybOK-UNg6byHAMQaBtrAg--ZcZKBEhYDvwV2V0sF_CaUPSpAqudEMoLIZkxjNvGNGCACVCtKUh1P63aZW7xWOJirlOMwZQesdARC52xKMiH9U8_R2qNv4ufRLzWopEXO33A-dd5memqholnhgVoa9EEa3mFXVaSBYbTG-qC7EXMNtob4SrIwT38Oi_iW81jNgjNtVQFeT-qxFbr06vvXWrdDpcaI1E2-YfctVnppkGXev8P3XhDHsUhjymeA7I73KzgLXnofg1XtzeHKV-Az893p4dJ938DD3L_kg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagIAEH1iICBXyAG2mdeEnMLc0wKqKMkFpQb5aXZ6g0nUFtht-P7bijmQMgblFky8v3rLf4-XsIvQFJufCMl1pbXTKh21I76YMsN21wn631xqViE81s1p6dyS_5sXp6CwMAKfkM9uNnust3S7uKobKDSCsQNCC9iW5xxupqfK61DqnEGhKSN5lbqCLyoOv7sIzgBdZsP_hiMeV-S_8kmv5cV2XbxNykDU2qZvrgPyf5EN3PNiXuRiF4hG7A4jG6t8E0-ARNpuD6k8l73OFppI8IFqbDmVv1Oz4MqszhLtOL42DH4n7poDy5gPkcT2BI-VqLXfR1-uG0PypzAYXSspYOpaPexItNw3Vk6SGU2jqSsWihK-ukdJqAqB0NLgi0wmhPvWuJNk2AiBkK9CnaWSwX8AzhYFV5wi1j0jHWEK0JNUIL0EAYyFYXqL7eVmUzu3gscjFXycsgUo1YqIiFylgU6N2608-RXOPvzQ8jXuumkRk7_Qj7r_JBUzWHyhFNPLScCW8MrcOUZUM8CdvreYF2I2Yb441wFWjvGn6Vj_GVojEeFBR2Iwv0dhSJrdEn59-6NLoZfqjgi5LqH-0u9EoJEYzq53-Yxmt05-j087E6_jj79ALdjcsfAz57aGe4XMFLdNv-Gs6vLl8l2f8NcLQAwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedCSD%3A+A+Federated+Learning+Based+Approach+for+Code-Smell+Detection&rft.jtitle=IEEE+access&rft.au=Alawadi%2C+Sadi&rft.au=Alkharabsheh%2C+Khalid&rft.au=Alkhabbas%2C+Fahed&rft.au=Kebande%2C+Victor+R.&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2024.3380167&rft.externalDocID=10477413 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |