A Tradeoff-Based Interactive Multi-Objective Optimization Method Driven by Evolutionary Algorithms

Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics Jg. 21; H. 2; S. 284 - 292
Hauptverfasser: Chen, Lu, Xin, Bin, Chen, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 20.03.2017
ISSN:1343-0130, 1883-8014
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optimization method based on the DM’s preferences in the form of indifference tradeoffs. The method combines evolutionary algorithms with the gradient-based interactive step tradeoff (GRIST) method. An evolutionary algorithm is used to generate an approximate Pareto optimal solution at each iteration. The DM is asked to provide indifference tradeoffs whose projection onto the tangent hyperplane of the Pareto front provides a tradeoff direction. An approach for approximating the normal vector of the tangent hyperplane is proposed which is used to calculate the projection. A water quality management problem is used to demonstrate the interaction process of the interactive method. In addition, three benchmark problems are used to test the accuracy of the normal vector approximation approach and compare the proposed method with GRIST.
AbstractList Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optimization method based on the DM’s preferences in the form of indifference tradeoffs. The method combines evolutionary algorithms with the gradient-based interactive step tradeoff (GRIST) method. An evolutionary algorithm is used to generate an approximate Pareto optimal solution at each iteration. The DM is asked to provide indifference tradeoffs whose projection onto the tangent hyperplane of the Pareto front provides a tradeoff direction. An approach for approximating the normal vector of the tangent hyperplane is proposed which is used to calculate the projection. A water quality management problem is used to demonstrate the interaction process of the interactive method. In addition, three benchmark problems are used to test the accuracy of the normal vector approximation approach and compare the proposed method with GRIST.
Author Xin, Bin
Chen, Lu
Chen, Jie
Author_xml – sequence: 1
  givenname: Lu
  surname: Chen
  fullname: Chen, Lu
– sequence: 2
  givenname: Bin
  surname: Xin
  fullname: Xin, Bin
– sequence: 3
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
BookMark eNp9kM1uwjAQhK2KSqWUF-jJL2C6jh3HHCmlFAnEhZ4j_xajkCDHINGnb4CeeuhpZzSa1e73iHp1UzuEnimMMhiL_GWnTAihM7QYHSCT_A71qZSMSKC812nGGQHK4AEN23YH0OlMAKd9pCd4E5V1jffkVbXO4kWdXFQmhZPDq2OVAlnrnbv59SGFffhWKTQ1Xrm0bSx-i11SY33Gs1NTHS-Rimc8qb6aGNJ23z6he6-q1g1_5wB9vs820w-yXM8X08mSGC5ZIsa6PAfJxlYxsOOceqYBpNXKgPbMF0Jzz3nGbCYEU4UTRnEvJJVC8sIwNkDyttfEpm2j86UJ6XpqiipUJYXyiqu84SovuMorrq6a_akeYth3b_xX-gGiHXPA
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2856832
crossref_primary_10_1016_j_ins_2022_09_001
crossref_primary_10_1109_TEVC_2020_2987559
crossref_primary_10_1145_3448301
crossref_primary_10_1109_TEVC_2023_3234269
crossref_primary_10_1080_01605682_2022_2141145
crossref_primary_10_1007_s13042_024_02331_z
crossref_primary_10_1016_j_cie_2023_109491
crossref_primary_10_1016_j_ejor_2025_06_012
Cites_doi 10.1109/TEVC.2014.2303783
10.1109/TEVC.2010.2041667
10.1016/S0045-7825(99)00389-8
10.1007/978-1-4615-5563-6
10.1109/TSMCA.2009.2019855
10.1007/978-3-540-88908-3
10.1016/0377-2217(94)00251-7
10.1007/978-3-642-19893-9_15
10.1007/s11573-015-0786-0
10.1007/978-1-4939-3094-4_22
10.1023/A:1008202821328
10.1016/S0377-2217(97)00451-7
10.1109/CEC.2010.5586278
10.1016/j.ejor.2010.02.041
10.1007/978-3-319-15892-1_17
10.1007/978-3-642-45511-7
10.1109/TEVC.2010.2064323
10.1109/CEC.2002.1007032
10.1109/TSMCA.2002.802806
ContentType Journal Article
CorporateAuthor School of Automation, Beijing Institute of Technology
Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology
State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
CorporateAuthor_xml – name: Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology
– name: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology
– name: School of Automation, Beijing Institute of Technology
DBID AAYXX
CITATION
DOI 10.20965/jaciii.2017.p0284
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 292
ExternalDocumentID 10_20965_jaciii_2017_p0284
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ISHAI
JSI
JSP
P2P
RJT
RZJ
TUS
ID FETCH-LOGICAL-c483t-cde550839da30d951f3b008dbac0bf3f76b4f4423d2663a7e6ca4f68186847c33
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398603500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1343-0130
IngestDate Sat Nov 29 06:43:32 EST 2025
Tue Nov 18 22:13:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-cde550839da30d951f3b008dbac0bf3f76b4f4423d2663a7e6ca4f68186847c33
OpenAccessLink https://doi.org/10.20965/jaciii.2017.p0284
PageCount 9
ParticipantIDs crossref_citationtrail_10_20965_jaciii_2017_p0284
crossref_primary_10_20965_jaciii_2017_p0284
PublicationCentury 2000
PublicationDate 2017-03-20
PublicationDateYYYYMMDD 2017-03-20
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-20
  day: 20
PublicationDecade 2010
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2017
References key-10.20965/jaciii.2017.p0284-9
key-10.20965/jaciii.2017.p0284-8
key-10.20965/jaciii.2017.p0284-7
key-10.20965/jaciii.2017.p0284-6
key-10.20965/jaciii.2017.p0284-1
key-10.20965/jaciii.2017.p0284-15
key-10.20965/jaciii.2017.p0284-16
key-10.20965/jaciii.2017.p0284-13
key-10.20965/jaciii.2017.p0284-14
key-10.20965/jaciii.2017.p0284-5
key-10.20965/jaciii.2017.p0284-19
key-10.20965/jaciii.2017.p0284-4
key-10.20965/jaciii.2017.p0284-3
key-10.20965/jaciii.2017.p0284-17
key-10.20965/jaciii.2017.p0284-2
key-10.20965/jaciii.2017.p0284-18
key-10.20965/jaciii.2017.p0284-11
key-10.20965/jaciii.2017.p0284-12
key-10.20965/jaciii.2017.p0284-20
key-10.20965/jaciii.2017.p0284-10
key-10.20965/jaciii.2017.p0284-21
References_xml – ident: key-10.20965/jaciii.2017.p0284-12
  doi: 10.1109/TEVC.2014.2303783
– ident: key-10.20965/jaciii.2017.p0284-15
  doi: 10.1109/TEVC.2010.2041667
– ident: key-10.20965/jaciii.2017.p0284-17
  doi: 10.1016/S0045-7825(99)00389-8
– ident: key-10.20965/jaciii.2017.p0284-2
  doi: 10.1007/978-1-4615-5563-6
– ident: key-10.20965/jaciii.2017.p0284-5
  doi: 10.1109/TSMCA.2009.2019855
– ident: key-10.20965/jaciii.2017.p0284-6
  doi: 10.1007/978-3-540-88908-3
– ident: key-10.20965/jaciii.2017.p0284-19
  doi: 10.1016/0377-2217(94)00251-7
– ident: key-10.20965/jaciii.2017.p0284-10
  doi: 10.1007/978-3-642-19893-9_15
– ident: key-10.20965/jaciii.2017.p0284-13
  doi: 10.1007/s11573-015-0786-0
– ident: key-10.20965/jaciii.2017.p0284-20
– ident: key-10.20965/jaciii.2017.p0284-14
  doi: 10.1007/978-1-4939-3094-4_22
– ident: key-10.20965/jaciii.2017.p0284-16
  doi: 10.1023/A:1008202821328
– ident: key-10.20965/jaciii.2017.p0284-3
  doi: 10.1016/S0377-2217(97)00451-7
– ident: key-10.20965/jaciii.2017.p0284-9
  doi: 10.1109/CEC.2010.5586278
– ident: key-10.20965/jaciii.2017.p0284-7
  doi: 10.1016/j.ejor.2010.02.041
– ident: key-10.20965/jaciii.2017.p0284-11
  doi: 10.1007/978-3-319-15892-1_17
– ident: key-10.20965/jaciii.2017.p0284-18
– ident: key-10.20965/jaciii.2017.p0284-1
  doi: 10.1007/978-3-642-45511-7
– ident: key-10.20965/jaciii.2017.p0284-8
  doi: 10.1109/TEVC.2010.2064323
– ident: key-10.20965/jaciii.2017.p0284-21
  doi: 10.1109/CEC.2002.1007032
– ident: key-10.20965/jaciii.2017.p0284-4
  doi: 10.1109/TSMCA.2002.802806
SSID ssj0001326041
ssib051641541
Score 2.10782
Snippet Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 284
Title A Tradeoff-Based Interactive Multi-Objective Optimization Method Driven by Evolutionary Algorithms
Volume 21
WOSCitedRecordID wos000398603500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELb0RLQXvgZi3Y3nXWPqalCCFoORQpN2u9D3AVnCikUfvD-v86-7CzpALRAxcrWq1XdubLzLebmfkQetM0QsOvpiKFrmCDAgGLAKvmJDPcCCPGEPIaJzbBj4_L6bT6Ohpd9bUw6xnvuvLiolr8V1PDGBjbls7ewtzDojAAn8HocAWzw_WfDD-xDcuVnhtDDiBEKX_oJ5xfS1y9LTlpzryfS07AY_wMpZjJF6cmnbxfWg9oeenROjypTa2bzL7Pl-3qR2hvfpPQDukE0ilF9KeMbdz00_d66gesPEEgzZuc-8NQL_L5vB-ZBk35ttue86nV8bEFhMKUkjyNPC1lNpEr_Cmj_VhZUhsyWeyefQF1gGEe-1qvLRfCdu4l9bYjQm672zgpAmmbddgnebtIh1vj9ttbYXFIVoRtklul9mvUdo3arXEH3c15UWXRTh7cWAE7UCCm2eaoDyhyyvzWP7y0L99yy7678WgRRYq4zukj9CDYFE88uB6jke6eoIe9AAgO8eApaib4d6zhCGt4C2s4xhr2WMMea7i5xDHW8AZrz9C3D0enhx9JEO0gkpV0RaTShZUYqJSgqQL-bih49lI1QqaNoYaPG2YYkHgF1JAKrsdSMDO2jRWBKElKn6Odbt7pFwgXUjGRGWU41xBnhCiozV9glCqayZLuoqz_nmoZOtpbYZVZ_WeT7aJkuGfh-7n8ZfberWa_RPc3SN9HO6vluX6F7sn1qv21fO0wcg05DJ0H
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tradeoff-Based+Interactive+Multi-Objective+Optimization+Method+Driven+by+Evolutionary+Algorithms&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Chen%2C+Lu&rft.au=Xin%2C+Bin&rft.au=Chen%2C+Jie&rft.date=2017-03-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=21&rft.issue=2&rft.spage=284&rft.epage=292&rft_id=info:doi/10.20965%2Fjaciii.2017.p0284&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2017_p0284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon