A Tradeoff-Based Interactive Multi-Objective Optimization Method Driven by Evolutionary Algorithms
Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optim...
Gespeichert in:
| Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics Jg. 21; H. 2; S. 284 - 292 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
20.03.2017
|
| ISSN: | 1343-0130, 1883-8014 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optimization method based on the DM’s preferences in the form of indifference tradeoffs. The method combines evolutionary algorithms with the gradient-based interactive step tradeoff (GRIST) method. An evolutionary algorithm is used to generate an approximate Pareto optimal solution at each iteration. The DM is asked to provide indifference tradeoffs whose projection onto the tangent hyperplane of the Pareto front provides a tradeoff direction. An approach for approximating the normal vector of the tangent hyperplane is proposed which is used to calculate the projection. A water quality management problem is used to demonstrate the interaction process of the interactive method. In addition, three benchmark problems are used to test the accuracy of the normal vector approximation approach and compare the proposed method with GRIST. |
|---|---|
| AbstractList | Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal solution. In order to support the decision maker (DM) to find his/her most preferred solution, we propose an interactive multi-objective optimization method based on the DM’s preferences in the form of indifference tradeoffs. The method combines evolutionary algorithms with the gradient-based interactive step tradeoff (GRIST) method. An evolutionary algorithm is used to generate an approximate Pareto optimal solution at each iteration. The DM is asked to provide indifference tradeoffs whose projection onto the tangent hyperplane of the Pareto front provides a tradeoff direction. An approach for approximating the normal vector of the tangent hyperplane is proposed which is used to calculate the projection. A water quality management problem is used to demonstrate the interaction process of the interactive method. In addition, three benchmark problems are used to test the accuracy of the normal vector approximation approach and compare the proposed method with GRIST. |
| Author | Xin, Bin Chen, Lu Chen, Jie |
| Author_xml | – sequence: 1 givenname: Lu surname: Chen fullname: Chen, Lu – sequence: 2 givenname: Bin surname: Xin fullname: Xin, Bin – sequence: 3 givenname: Jie surname: Chen fullname: Chen, Jie |
| BookMark | eNp9kM1uwjAQhK2KSqWUF-jJL2C6jh3HHCmlFAnEhZ4j_xajkCDHINGnb4CeeuhpZzSa1e73iHp1UzuEnimMMhiL_GWnTAihM7QYHSCT_A71qZSMSKC812nGGQHK4AEN23YH0OlMAKd9pCd4E5V1jffkVbXO4kWdXFQmhZPDq2OVAlnrnbv59SGFffhWKTQ1Xrm0bSx-i11SY33Gs1NTHS-Rimc8qb6aGNJ23z6he6-q1g1_5wB9vs820w-yXM8X08mSGC5ZIsa6PAfJxlYxsOOceqYBpNXKgPbMF0Jzz3nGbCYEU4UTRnEvJJVC8sIwNkDyttfEpm2j86UJ6XpqiipUJYXyiqu84SovuMorrq6a_akeYth3b_xX-gGiHXPA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2856832 crossref_primary_10_1016_j_ins_2022_09_001 crossref_primary_10_1109_TEVC_2020_2987559 crossref_primary_10_1145_3448301 crossref_primary_10_1109_TEVC_2023_3234269 crossref_primary_10_1080_01605682_2022_2141145 crossref_primary_10_1007_s13042_024_02331_z crossref_primary_10_1016_j_cie_2023_109491 crossref_primary_10_1016_j_ejor_2025_06_012 |
| Cites_doi | 10.1109/TEVC.2014.2303783 10.1109/TEVC.2010.2041667 10.1016/S0045-7825(99)00389-8 10.1007/978-1-4615-5563-6 10.1109/TSMCA.2009.2019855 10.1007/978-3-540-88908-3 10.1016/0377-2217(94)00251-7 10.1007/978-3-642-19893-9_15 10.1007/s11573-015-0786-0 10.1007/978-1-4939-3094-4_22 10.1023/A:1008202821328 10.1016/S0377-2217(97)00451-7 10.1109/CEC.2010.5586278 10.1016/j.ejor.2010.02.041 10.1007/978-3-319-15892-1_17 10.1007/978-3-642-45511-7 10.1109/TEVC.2010.2064323 10.1109/CEC.2002.1007032 10.1109/TSMCA.2002.802806 |
| ContentType | Journal Article |
| CorporateAuthor | School of Automation, Beijing Institute of Technology Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology |
| CorporateAuthor_xml | – name: Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology – name: State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology – name: School of Automation, Beijing Institute of Technology |
| DBID | AAYXX CITATION |
| DOI | 10.20965/jaciii.2017.p0284 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 292 |
| ExternalDocumentID | 10_20965_jaciii_2017_p0284 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ ISHAI JSI JSP P2P RJT RZJ TUS |
| ID | FETCH-LOGICAL-c483t-cde550839da30d951f3b008dbac0bf3f76b4f4423d2663a7e6ca4f68186847c33 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398603500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Sat Nov 29 06:43:32 EST 2025 Tue Nov 18 22:13:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c483t-cde550839da30d951f3b008dbac0bf3f76b4f4423d2663a7e6ca4f68186847c33 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2017.p0284 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_20965_jaciii_2017_p0284 crossref_primary_10_20965_jaciii_2017_p0284 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-20 |
| PublicationDateYYYYMMDD | 2017-03-20 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2017 |
| References | key-10.20965/jaciii.2017.p0284-9 key-10.20965/jaciii.2017.p0284-8 key-10.20965/jaciii.2017.p0284-7 key-10.20965/jaciii.2017.p0284-6 key-10.20965/jaciii.2017.p0284-1 key-10.20965/jaciii.2017.p0284-15 key-10.20965/jaciii.2017.p0284-16 key-10.20965/jaciii.2017.p0284-13 key-10.20965/jaciii.2017.p0284-14 key-10.20965/jaciii.2017.p0284-5 key-10.20965/jaciii.2017.p0284-19 key-10.20965/jaciii.2017.p0284-4 key-10.20965/jaciii.2017.p0284-3 key-10.20965/jaciii.2017.p0284-17 key-10.20965/jaciii.2017.p0284-2 key-10.20965/jaciii.2017.p0284-18 key-10.20965/jaciii.2017.p0284-11 key-10.20965/jaciii.2017.p0284-12 key-10.20965/jaciii.2017.p0284-20 key-10.20965/jaciii.2017.p0284-10 key-10.20965/jaciii.2017.p0284-21 |
| References_xml | – ident: key-10.20965/jaciii.2017.p0284-12 doi: 10.1109/TEVC.2014.2303783 – ident: key-10.20965/jaciii.2017.p0284-15 doi: 10.1109/TEVC.2010.2041667 – ident: key-10.20965/jaciii.2017.p0284-17 doi: 10.1016/S0045-7825(99)00389-8 – ident: key-10.20965/jaciii.2017.p0284-2 doi: 10.1007/978-1-4615-5563-6 – ident: key-10.20965/jaciii.2017.p0284-5 doi: 10.1109/TSMCA.2009.2019855 – ident: key-10.20965/jaciii.2017.p0284-6 doi: 10.1007/978-3-540-88908-3 – ident: key-10.20965/jaciii.2017.p0284-19 doi: 10.1016/0377-2217(94)00251-7 – ident: key-10.20965/jaciii.2017.p0284-10 doi: 10.1007/978-3-642-19893-9_15 – ident: key-10.20965/jaciii.2017.p0284-13 doi: 10.1007/s11573-015-0786-0 – ident: key-10.20965/jaciii.2017.p0284-20 – ident: key-10.20965/jaciii.2017.p0284-14 doi: 10.1007/978-1-4939-3094-4_22 – ident: key-10.20965/jaciii.2017.p0284-16 doi: 10.1023/A:1008202821328 – ident: key-10.20965/jaciii.2017.p0284-3 doi: 10.1016/S0377-2217(97)00451-7 – ident: key-10.20965/jaciii.2017.p0284-9 doi: 10.1109/CEC.2010.5586278 – ident: key-10.20965/jaciii.2017.p0284-7 doi: 10.1016/j.ejor.2010.02.041 – ident: key-10.20965/jaciii.2017.p0284-11 doi: 10.1007/978-3-319-15892-1_17 – ident: key-10.20965/jaciii.2017.p0284-18 – ident: key-10.20965/jaciii.2017.p0284-1 doi: 10.1007/978-3-642-45511-7 – ident: key-10.20965/jaciii.2017.p0284-8 doi: 10.1109/TEVC.2010.2064323 – ident: key-10.20965/jaciii.2017.p0284-21 doi: 10.1109/CEC.2002.1007032 – ident: key-10.20965/jaciii.2017.p0284-4 doi: 10.1109/TSMCA.2002.802806 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.10782 |
| Snippet | Multi-objective optimization problems involve two or more conflicting objectives, and they have a set of Pareto optimal solutions instead of a single optimal... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 284 |
| Title | A Tradeoff-Based Interactive Multi-Objective Optimization Method Driven by Evolutionary Algorithms |
| Volume | 21 |
| WOSCitedRecordID | wos000398603500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELb0RLQXvgZi3Y3nXWPqalCCFoORQpN2u9D3AVnCikUfvD-v86-7CzpALRAxcrWq1XdubLzLebmfkQetM0QsOvpiKFrmCDAgGLAKvmJDPcCCPGEPIaJzbBj4_L6bT6Ohpd9bUw6xnvuvLiolr8V1PDGBjbls7ewtzDojAAn8HocAWzw_WfDD-xDcuVnhtDDiBEKX_oJ5xfS1y9LTlpzryfS07AY_wMpZjJF6cmnbxfWg9oeenROjypTa2bzL7Pl-3qR2hvfpPQDukE0ilF9KeMbdz00_d66gesPEEgzZuc-8NQL_L5vB-ZBk35ttue86nV8bEFhMKUkjyNPC1lNpEr_Cmj_VhZUhsyWeyefQF1gGEe-1qvLRfCdu4l9bYjQm672zgpAmmbddgnebtIh1vj9ttbYXFIVoRtklul9mvUdo3arXEH3c15UWXRTh7cWAE7UCCm2eaoDyhyyvzWP7y0L99yy7678WgRRYq4zukj9CDYFE88uB6jke6eoIe9AAgO8eApaib4d6zhCGt4C2s4xhr2WMMea7i5xDHW8AZrz9C3D0enhx9JEO0gkpV0RaTShZUYqJSgqQL-bih49lI1QqaNoYaPG2YYkHgF1JAKrsdSMDO2jRWBKElKn6Odbt7pFwgXUjGRGWU41xBnhCiozV9glCqayZLuoqz_nmoZOtpbYZVZ_WeT7aJkuGfh-7n8ZfberWa_RPc3SN9HO6vluX6F7sn1qv21fO0wcg05DJ0H |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tradeoff-Based+Interactive+Multi-Objective+Optimization+Method+Driven+by+Evolutionary+Algorithms&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Chen%2C+Lu&rft.au=Xin%2C+Bin&rft.au=Chen%2C+Jie&rft.date=2017-03-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=21&rft.issue=2&rft.spage=284&rft.epage=292&rft_id=info:doi/10.20965%2Fjaciii.2017.p0284&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2017_p0284 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |