Operator complexity: a journey to the edge of Krylov space

A bstract Heisenberg time evolution under a chaotic many-body Hamiltonian H transforms an initially simple operator into an increasingly complex one, as it spreads over Hilbert space. Krylov complexity, or ‘K-complexity’, quantifies this growth with respect to a special basis, generated by H by succ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2021; číslo 6; s. 1 - 24
Hlavní autoři: Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract Heisenberg time evolution under a chaotic many-body Hamiltonian H transforms an initially simple operator into an increasingly complex one, as it spreads over Hilbert space. Krylov complexity, or ‘K-complexity’, quantifies this growth with respect to a special basis, generated by H by successive nested commutators with the operator. In this work we study the evolution of K-complexity in finite-entropy systems for time scales greater than the scrambling time t s > log( S ). We prove rigorous bounds on K-complexity as well as the associated Lanczos sequence and, using refined parallelized algorithms, we undertake a detailed numerical study of these quantities in the SYK 4 model, which is maximally chaotic, and compare the results with the SYK 2 model, which is integrable. While the former saturates the bound, the latter stays exponentially below it. We discuss to what extent this is a generic feature distinguishing between chaotic vs. integrable systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP06(2021)062