Expanding roles of superoxide dismutases in cell regulation and cancer
•Superoxide dismutases (SODs) have important regulatory functions in metabolism, signalling and transcription.•SODs are crucial for cancer cell growth, proliferation, survival and metastasis.•SODs are potential therapeutic targets for drug and radiation therapy for human cancer. Reactive oxygen spec...
Saved in:
| Published in: | Drug discovery today Vol. 21; no. 1; pp. 143 - 149 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.01.2016
|
| Subjects: | |
| ISSN: | 1359-6446, 1878-5832, 1878-5832 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Superoxide dismutases (SODs) have important regulatory functions in metabolism, signalling and transcription.•SODs are crucial for cancer cell growth, proliferation, survival and metastasis.•SODs are potential therapeutic targets for drug and radiation therapy for human cancer.
Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy. |
|---|---|
| AbstractList | Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy. •Superoxide dismutases (SODs) have important regulatory functions in metabolism, signalling and transcription.•SODs are crucial for cancer cell growth, proliferation, survival and metastasis.•SODs are potential therapeutic targets for drug and radiation therapy for human cancer. Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy. Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy.Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they participate in redox reactions and serve as second messengers for regulatory functions. Owing to aberrant metabolism, cancer cells accumulate excessive ROS, thus requiring a robustly active antioxidant system to prevent cellular damage. Superoxide dismutases (SODs) are enzymes that catalyze the removal of superoxide free radicals. There are three distinct members of this metalloenzyme family in mammals: SOD1 (Cu/ZnSOD), SOD2 (MnSOD) and SOD3 (ecSOD). SODs are increasingly recognized for their regulatory functions in growth, metabolism and oxidative stress responses, which are also crucial for cancer development and survival. Growing evidence shows that SODs are also potentially useful anticancer drug targets. This review will focus on recent research of SODs in cellular regulation, with emphasis on their roles in cancer biology and therapy. |
| Author | Che, Meixia Wang, Ren Zheng, X.F. Steven Wang, Hui-Yun Li, Xiaoxing |
| AuthorAffiliation | 2 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China 1 Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA |
| AuthorAffiliation_xml | – name: 2 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China – name: 1 Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA |
| Author_xml | – sequence: 1 givenname: Meixia surname: Che fullname: Che, Meixia organization: Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA – sequence: 2 givenname: Ren surname: Wang fullname: Wang, Ren organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China – sequence: 3 givenname: Xiaoxing surname: Li fullname: Li, Xiaoxing organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China – sequence: 4 givenname: Hui-Yun surname: Wang fullname: Wang, Hui-Yun organization: Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA – sequence: 5 givenname: X.F. Steven surname: Zheng fullname: Zheng, X.F. Steven email: zhengst@cinj.rutgers.edu organization: Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ 08903, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26475962$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUctOGzEUtSpQA7R_UKFZsplge2yP3UUlhHhJSGxgbXnsO6mjiZ3aMwj-vk6TVKULWNm69zx0zzlGByEGQOgbwXOCiThfzl2anM9zigkvoznG5BM6IrKVNZcNPSj_hqtaMCZm6DjnZQFQxcVnNKOCtVwJeoSur17WJjgfFlWKA-Qq9lWe1pDii3dQFf3VNJpcFj5UFoahSrCYBjP6GKpCrKwJFtIXdNibIcPX3XuCnq6vHi9v6_uHm7vLi_vaMtmMtSVSYa46zBxmqmXYCOI6pTrZNs7hHoglou-F660UtLG070xnm4aCooRz1ZygH1vd9dStwFkIYzKDXie_MulVR-P1203wP_UiPmvWUsYpLQJnO4EUf02QR73yeXOXCRCnrEkrsFRUYlagp_96_TXZh1cA37cAm2LOCXpt_fgnmWLtB02w3jSll3rblN40tZmWIgqZ_Ufe639A2wUAJeVnD0ln66FU4HwCO2oX_fsCvwGyM7C6 |
| CitedBy_id | crossref_primary_10_1016_j_actbio_2023_03_030 crossref_primary_10_1016_j_freeradbiomed_2016_11_050 crossref_primary_10_1007_s11011_017_0057_6 crossref_primary_10_1016_j_mcn_2019_04_003 crossref_primary_10_1186_s12864_025_11874_6 crossref_primary_10_1038_s41598_024_82261_6 crossref_primary_10_1016_j_nantod_2022_101704 crossref_primary_10_1038_s41598_020_74444_8 crossref_primary_10_3390_jcm14051620 crossref_primary_10_1016_j_freeradbiomed_2018_06_024 crossref_primary_10_3390_md17120700 crossref_primary_10_1039_C6MT00103C crossref_primary_10_1038_s41467_021_22480_x crossref_primary_10_3390_ijms242216189 crossref_primary_10_1016_j_neuint_2021_105168 crossref_primary_10_3390_cancers12071706 crossref_primary_10_1007_s10924_023_03076_6 crossref_primary_10_3390_antiox12101872 crossref_primary_10_2217_nnm_2019_0166 crossref_primary_10_1155_2020_5047987 crossref_primary_10_3390_ijms17040558 crossref_primary_10_1177_1724600819841619 crossref_primary_10_1016_j_clinbiochem_2019_11_001 crossref_primary_10_3390_antiox10050724 crossref_primary_10_1016_j_molcel_2018_03_029 crossref_primary_10_3390_antiox6030066 crossref_primary_10_1155_2019_9706792 crossref_primary_10_2174_0113895575308206240911104945 crossref_primary_10_3390_cancers15215289 crossref_primary_10_1007_s10522_016_9653_9 crossref_primary_10_3390_ijms24098318 crossref_primary_10_1002_cbic_202000094 crossref_primary_10_1016_j_mehy_2021_110512 crossref_primary_10_3390_nu17071249 crossref_primary_10_1007_s12032_022_01871_0 crossref_primary_10_3390_cancers13133227 crossref_primary_10_3390_antiox10010128 crossref_primary_10_1002_tox_24074 crossref_primary_10_1038_s41598_020_71764_7 crossref_primary_10_1111_jcmm_18050 crossref_primary_10_1016_j_jff_2020_103917 crossref_primary_10_3390_ijms20143384 crossref_primary_10_3389_fphar_2021_616318 crossref_primary_10_1002_btpr_3148 crossref_primary_10_1016_j_bios_2018_05_040 crossref_primary_10_1111_exd_14743 crossref_primary_10_1038_s41419_020_02959_z crossref_primary_10_3923_ijp_2021_532_540 crossref_primary_10_3390_jof9020242 crossref_primary_10_1016_j_biopha_2021_111570 crossref_primary_10_3390_molecules27020333 crossref_primary_10_1016_j_tiv_2024_105938 crossref_primary_10_3390_antiox11030471 crossref_primary_10_3390_foods13213520 crossref_primary_10_1038_s42004_024_01256_6 crossref_primary_10_4103_jhrs_jhrs_44_24 crossref_primary_10_1007_s13596_020_00504_z crossref_primary_10_1186_s12964_018_0240_3 crossref_primary_10_3390_molecules27010148 crossref_primary_10_1002_jbt_70239 crossref_primary_10_1016_j_mrrev_2021_108365 crossref_primary_10_1111_odi_14404 crossref_primary_10_1111_srt_13539 crossref_primary_10_1177_1934578X20947233 crossref_primary_10_1186_s13046_018_0849_5 crossref_primary_10_1002_advs_202401041 crossref_primary_10_1134_S0006297920140047 crossref_primary_10_1038_s12276_019_0207_5 crossref_primary_10_3390_antiox11020427 crossref_primary_10_1007_s10811_016_0909_1 crossref_primary_10_7717_peerj_6421 crossref_primary_10_30621_jbachs_1180856 crossref_primary_10_1016_j_ijbiomac_2023_126684 crossref_primary_10_1002_em_70030 crossref_primary_10_3390_ijms25094887 crossref_primary_10_1016_j_envpol_2019_05_095 crossref_primary_10_1089_ars_2017_7225 crossref_primary_10_1016_j_freeradbiomed_2017_05_024 crossref_primary_10_3390_pharmaceutics12090794 crossref_primary_10_1002_cam4_4761 crossref_primary_10_1016_j_jrras_2025_101501 crossref_primary_10_3892_ol_2018_8941 crossref_primary_10_3390_antiox11122423 crossref_primary_10_3390_biom15060771 crossref_primary_10_1007_s10534_025_00745_y crossref_primary_10_1016_j_jtemb_2019_126415 crossref_primary_10_3389_fncel_2023_1132015 crossref_primary_10_3390_molecules25184284 crossref_primary_10_3390_antiox12061159 crossref_primary_10_1093_carcin_bgac005 crossref_primary_10_1186_s12199_017_0617_8 crossref_primary_10_1016_j_bbamcr_2021_119160 crossref_primary_10_1039_D0FO02603D crossref_primary_10_1016_j_archoralbio_2022_105373 crossref_primary_10_1016_j_jinorgbio_2020_111053 crossref_primary_10_1016_j_gene_2024_149066 crossref_primary_10_3390_antiox8100471 crossref_primary_10_1016_j_gene_2018_01_074 crossref_primary_10_1080_15257770_2021_2014521 crossref_primary_10_1038_s41598_024_76084_8 crossref_primary_10_1371_journal_pone_0303136 crossref_primary_10_1002_iub_2821 crossref_primary_10_1007_s12275_017_6647_5 crossref_primary_10_1016_j_abb_2020_108701 crossref_primary_10_1016_j_marpolbul_2024_116426 crossref_primary_10_3390_ijms21228530 crossref_primary_10_1016_j_envres_2024_118820 crossref_primary_10_1038_s41598_019_54208_9 crossref_primary_10_1016_j_scitotenv_2021_145641 crossref_primary_10_1007_s11274_020_02892_5 crossref_primary_10_1155_2021_9972057 crossref_primary_10_14348_molcells_2021_2179 crossref_primary_10_1186_s13550_019_0513_x crossref_primary_10_1007_s12274_021_3449_1 crossref_primary_10_1177_17246008221075042 crossref_primary_10_1016_j_ccr_2016_05_013 crossref_primary_10_1016_j_ecoenv_2022_113337 crossref_primary_10_1016_j_biopha_2022_113937 crossref_primary_10_1158_1940_6207_CAPR_23_0423 crossref_primary_10_1038_s41467_024_51995_2 crossref_primary_10_3390_ani9060309 crossref_primary_10_1096_fj_202400893R crossref_primary_10_2174_1570159X16666180302120925 crossref_primary_10_3389_fchem_2024_1450106 crossref_primary_10_1002_jat_4503 crossref_primary_10_1111_ajt_15123 crossref_primary_10_1155_2021_9912436 crossref_primary_10_1016_j_nbd_2022_105737 crossref_primary_10_1016_j_jddst_2024_106076 crossref_primary_10_1016_j_prp_2023_154965 crossref_primary_10_1016_j_jtemb_2019_01_010 crossref_primary_10_1016_j_molcel_2019_02_012 crossref_primary_10_3389_fvets_2022_926822 crossref_primary_10_1080_09553002_2020_1721597 crossref_primary_10_1007_s00592_021_01832_5 crossref_primary_10_18632_oncotarget_24850 crossref_primary_10_1155_2017_3034245 crossref_primary_10_1093_carcin_bgae046 crossref_primary_10_1016_j_aquatox_2024_107112 crossref_primary_10_1016_j_clim_2023_109802 crossref_primary_10_1038_s41598_017_18335_5 crossref_primary_10_3390_cancers16010081 crossref_primary_10_1016_j_bbrc_2021_11_039 crossref_primary_10_3390_antiox8120603 crossref_primary_10_2215_CJN_02500220 crossref_primary_10_18632_oncotarget_17245 crossref_primary_10_1080_10715762_2018_1457217 crossref_primary_10_1111_jac_12367 crossref_primary_10_1016_j_bioactmat_2022_05_025 crossref_primary_10_1111_php_13723 crossref_primary_10_1089_vim_2017_0043 crossref_primary_10_3390_ani12172216 crossref_primary_10_1007_s00294_022_01258_8 crossref_primary_10_1016_j_biomaterials_2019_119254 crossref_primary_10_4103_indianjotol_indianjotol_97_24 crossref_primary_10_1002_advs_202404994 crossref_primary_10_1002_jat_3520 crossref_primary_10_3390_antiox6040086 crossref_primary_10_1016_j_biopha_2023_115522 crossref_primary_10_1016_j_clbc_2025_08_004 crossref_primary_10_1186_s12951_022_01661_w crossref_primary_10_1038_s41420_024_02145_6 crossref_primary_10_1080_19476337_2020_1721562 crossref_primary_10_3390_molecules25051164 crossref_primary_10_1016_j_jtemb_2025_127752 crossref_primary_10_1165_rcmb_2020_0550TR crossref_primary_10_1002_ijc_34486 crossref_primary_10_1016_j_ijbiomac_2025_145627 crossref_primary_10_1002_jcp_26586 crossref_primary_10_1016_j_etap_2017_12_022 crossref_primary_10_1038_s41419_024_06531_x crossref_primary_10_1016_j_jscs_2023_101652 crossref_primary_10_1080_10826068_2025_2484596 crossref_primary_10_3390_ijms22020591 crossref_primary_10_1016_j_foodres_2020_110023 crossref_primary_10_3390_molecules24193556 crossref_primary_10_1016_j_ijpharm_2020_119947 |
| Cites_doi | 10.1038/nrc3365 10.1038/nrm2256 10.1158/1541-7786.MCR-11-0501 10.1177/1087057109350919 10.1016/j.molcel.2007.03.016 10.1074/jbc.M105296200 10.2174/187152011795255911 10.1074/jbc.C113.526475 10.1021/bi973035t 10.1016/j.freeradbiomed.2012.03.009 10.7554/eLife.02935.028 10.1126/stke.2000.53.pe1 10.1038/onc.2012.582 10.3109/10715761003667554 10.1083/jcb.201102095 10.1158/1078-0432.CCR-14-1959 10.1038/ncomms4446 10.1073/pnas.1113554108 10.18632/genesandcancer.4 10.1080/152165401753311762 10.1038/onc.2014.449 10.1093/carcin/bgn250 10.1089/ars.2010.3114 10.1096/fj.08-113571 10.1074/jbc.273.25.15366 10.1016/j.cell.2012.11.046 10.1073/pnas.0709451105 10.1016/j.advenzreg.2006.01.007 10.1042/bj3530411 10.1056/NEJM200105313442207 10.1038/ncomms7053 10.1089/ars.2012.5000 10.1126/science.2834821 10.1016/j.molcel.2006.01.013 10.1146/annurev.arplant.55.031903.141701 10.1038/sj.onc.1208207 10.1038/nrd4002 10.1016/j.molcel.2013.05.003 10.1128/MCB.25.23.10273-10285.2005 10.1016/j.freeradbiomed.2014.02.002 10.1093/carcin/bgt220 10.1006/abbi.2001.2455 10.1038/nrc3038 10.1158/1078-0432.CCR-06-0171 10.1146/annurev.micro.57.030502.090938 10.1371/journal.pgen.1003974 10.1146/annurev.biochem.72.121801.161647 10.1074/jbc.M603761200 10.1016/j.cell.2009.08.037 10.1210/me.2007-0381 10.1073/pnas.1003428107 10.1158/1078-0432.CCR-08-0315 10.1016/S0891-5849(00)00280-X 10.1038/35030140 10.1172/JCI71714 10.1021/bi9020378 10.1016/j.redox.2014.01.005 10.4061/2010/795946 10.1089/ars.2008.2331 10.1172/JCI111550 10.1089/ars.2010.3219 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.drudis.2015.10.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1878-5832 |
| EndPage | 149 |
| ExternalDocumentID | PMC4724522 26475962 10_1016_j_drudis_2015_10_001 S1359644615003785 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA123391 – fundername: NCI NIH HHS grantid: R01 CA123391 – fundername: NCI NIH HHS grantid: R01 CA099004 – fundername: NCI NIH HHS grantid: R01 CA173519 – fundername: NCI NIH HHS grantid: R01 CA166575 – fundername: NCI NIH HHS grantid: CA166575 – fundername: NCI NIH HHS grantid: CA173519 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABGSF ABJNI ABMAC ABOCM ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IH2 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SPCBC SSP SSU SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c483t-c189059b04d049740a61db99b873dd0fe1c16ff6dfc8623c2fbabc332e9215593 |
| ISICitedReferencesCount | 204 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369561100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-6446 1878-5832 |
| IngestDate | Tue Sep 30 16:56:13 EDT 2025 Sun Sep 28 12:09:05 EDT 2025 Mon Jul 21 05:55:14 EDT 2025 Tue Nov 18 22:34:21 EST 2025 Sat Nov 29 07:03:41 EST 2025 Fri Feb 23 02:16:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c483t-c189059b04d049740a61db99b873dd0fe1c16ff6dfc8623c2fbabc332e9215593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 26475962 |
| PQID | 1760892804 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4724522 proquest_miscellaneous_1760892804 pubmed_primary_26475962 crossref_citationtrail_10_1016_j_drudis_2015_10_001 crossref_primary_10_1016_j_drudis_2015_10_001 elsevier_sciencedirect_doi_10_1016_j_drudis_2015_10_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Drug discovery today |
| PublicationTitleAlternate | Drug Discov Today |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hempel (bib0550) 2011; 11 Apel, Hirt (bib0330) 2004; 55 Copin (bib0445) 2000; 28 Valentine (bib0490) 2005; 74 Lee (bib0390) 1998; 273 Rhee (bib0375) 2000; 2000 Rowland, Shneider (bib0485) 2001; 344 Huang (bib0635) 2000; 407 Somwar (bib0645) 2009; 14 Imlay (bib0400) 1988; 240 Bienert (bib0395) 2007; 282 Kobayashi, Yamamoto (bib0415) 2006; 46 Dhar, St Clair (bib0545) 2012; 52 Stowe, Camara (bib0345) 2009; 11 Oberley, Buettner (bib0540) 1979; 39 Reddi, Culotta (bib0455) 2013; 152 Lowndes (bib0625) 2008; 14 Kienhöfer (bib0440) 2009; 23 Hart (bib0575) 2015; 6 Kinugasa (bib0585) 2015 Maynard (bib0405) 2009; 30 Han (bib0365) 2001; 353 Ju (bib0565) 2014 Sullivan (bib0510) 2013; 51 Itsara (bib0570) 2014; 10 Rao (bib0480) 2008; 22 Imlay (bib0360) 2003; 57 Marklund (bib0435) 1984; 74 Elchuri (bib0495) 2004; 24 Sibenaller (bib0610) 2014; 69 Slot (bib0420) 1986; 55 Somwar (bib0535) 2011; 108 Dansen, Wirtz (bib0340) 2001; 51 Weinberg (bib0500) 2010; 107 Singh (bib0515) 2010; 13 Veal (bib0380) 2007; 26 Inoue (bib0460) 2010 Gorrini (bib0650) 2013; 12 Teoh-Fitzgerald (bib0595) 2012; 10 D’Autreaux, Toledano (bib0350) 2007; 8 Wallace (bib0555) 2012; 12 Holley (bib0615) 2014; 20 Tsang (bib0470) 2014; 5 Papa (bib0525) 2014; 289 Denu, Tanner (bib0385) 1998; 37 Sturtz (bib0425) 2001; 276 Lin (bib0630) 2009; 27 Padmanabhan (bib0505) 2006; 21 Juarez (bib0620) 2006; 12 Juarez (bib0450) 2008; 105 Collet, Messens (bib0410) 2010; 13 Liou, Storz (bib0335) 2010; 44 Koppenol (bib0580) 2011; 11 Teoh-Fitzgerald (bib0600) 2014; 33 O’Leary (bib0605) 2015; 21 Kachadourian (bib0640) 2001; 392 Tsang (bib0430) 2014; 5 Forman (bib0370) 2010; 49 Papa (bib0530) 2014; 5 Hu (bib0475) 2009; 139 Chen (bib0590) 2013; 34 Hempel, Melendez (bib0560) 2014; 2 Carter (bib0465) 2005; 25 Finkel (bib0355) 2011; 194 Glasauer (bib0520) 2014; 124 Somwar (10.1016/j.drudis.2015.10.001_bib0535) 2011; 108 Hu (10.1016/j.drudis.2015.10.001_bib0475) 2009; 139 Tsang (10.1016/j.drudis.2015.10.001_bib0470) 2014; 5 Han (10.1016/j.drudis.2015.10.001_bib0365) 2001; 353 Finkel (10.1016/j.drudis.2015.10.001_bib0355) 2011; 194 Glasauer (10.1016/j.drudis.2015.10.001_bib0520) 2014; 124 Hempel (10.1016/j.drudis.2015.10.001_bib0550) 2011; 11 Holley (10.1016/j.drudis.2015.10.001_bib0615) 2014; 20 Tsang (10.1016/j.drudis.2015.10.001_bib0430) 2014; 5 Padmanabhan (10.1016/j.drudis.2015.10.001_bib0505) 2006; 21 Denu (10.1016/j.drudis.2015.10.001_bib0385) 1998; 37 Slot (10.1016/j.drudis.2015.10.001_bib0420) 1986; 55 Hart (10.1016/j.drudis.2015.10.001_bib0575) 2015; 6 Sibenaller (10.1016/j.drudis.2015.10.001_bib0610) 2014; 69 Imlay (10.1016/j.drudis.2015.10.001_bib0360) 2003; 57 Lowndes (10.1016/j.drudis.2015.10.001_bib0625) 2008; 14 Collet (10.1016/j.drudis.2015.10.001_bib0410) 2010; 13 Dhar (10.1016/j.drudis.2015.10.001_bib0545) 2012; 52 Juarez (10.1016/j.drudis.2015.10.001_bib0620) 2006; 12 Carter (10.1016/j.drudis.2015.10.001_bib0465) 2005; 25 Kobayashi (10.1016/j.drudis.2015.10.001_bib0415) 2006; 46 Chen (10.1016/j.drudis.2015.10.001_bib0590) 2013; 34 Rowland (10.1016/j.drudis.2015.10.001_bib0485) 2001; 344 Itsara (10.1016/j.drudis.2015.10.001_bib0570) 2014; 10 Oberley (10.1016/j.drudis.2015.10.001_bib0540) 1979; 39 Rhee (10.1016/j.drudis.2015.10.001_bib0375) 2000; 2000 Lee (10.1016/j.drudis.2015.10.001_bib0390) 1998; 273 Huang (10.1016/j.drudis.2015.10.001_bib0635) 2000; 407 Copin (10.1016/j.drudis.2015.10.001_bib0445) 2000; 28 Sturtz (10.1016/j.drudis.2015.10.001_bib0425) 2001; 276 Maynard (10.1016/j.drudis.2015.10.001_bib0405) 2009; 30 O’Leary (10.1016/j.drudis.2015.10.001_bib0605) 2015; 21 Stowe (10.1016/j.drudis.2015.10.001_bib0345) 2009; 11 Juarez (10.1016/j.drudis.2015.10.001_bib0450) 2008; 105 Bienert (10.1016/j.drudis.2015.10.001_bib0395) 2007; 282 Singh (10.1016/j.drudis.2015.10.001_bib0515) 2010; 13 Lin (10.1016/j.drudis.2015.10.001_bib0630) 2009; 27 Sullivan (10.1016/j.drudis.2015.10.001_bib0510) 2013; 51 Apel (10.1016/j.drudis.2015.10.001_bib0330) 2004; 55 Weinberg (10.1016/j.drudis.2015.10.001_bib0500) 2010; 107 Imlay (10.1016/j.drudis.2015.10.001_bib0400) 1988; 240 Ju (10.1016/j.drudis.2015.10.001_bib0565) 2014 Rao (10.1016/j.drudis.2015.10.001_bib0480) 2008; 22 Papa (10.1016/j.drudis.2015.10.001_bib0530) 2014; 5 Dansen (10.1016/j.drudis.2015.10.001_bib0340) 2001; 51 Koppenol (10.1016/j.drudis.2015.10.001_bib0580) 2011; 11 Inoue (10.1016/j.drudis.2015.10.001_bib0460) 2010 Forman (10.1016/j.drudis.2015.10.001_bib0370) 2010; 49 Valentine (10.1016/j.drudis.2015.10.001_bib0490) 2005; 74 Somwar (10.1016/j.drudis.2015.10.001_bib0645) 2009; 14 Liou (10.1016/j.drudis.2015.10.001_bib0335) 2010; 44 Wallace (10.1016/j.drudis.2015.10.001_bib0555) 2012; 12 Kinugasa (10.1016/j.drudis.2015.10.001_bib0585) 2015 Papa (10.1016/j.drudis.2015.10.001_bib0525) 2014; 289 Kachadourian (10.1016/j.drudis.2015.10.001_bib0640) 2001; 392 Teoh-Fitzgerald (10.1016/j.drudis.2015.10.001_bib0600) 2014; 33 Hempel (10.1016/j.drudis.2015.10.001_bib0560) 2014; 2 Teoh-Fitzgerald (10.1016/j.drudis.2015.10.001_bib0595) 2012; 10 Elchuri (10.1016/j.drudis.2015.10.001_bib0495) 2004; 24 D’Autreaux (10.1016/j.drudis.2015.10.001_bib0350) 2007; 8 Marklund (10.1016/j.drudis.2015.10.001_bib0435) 1984; 74 Reddi (10.1016/j.drudis.2015.10.001_bib0455) 2013; 152 Kienhöfer (10.1016/j.drudis.2015.10.001_bib0440) 2009; 23 Gorrini (10.1016/j.drudis.2015.10.001_bib0650) 2013; 12 Veal (10.1016/j.drudis.2015.10.001_bib0380) 2007; 26 20811569 - J Nucleic Acids. 2010 Aug 05;2010:null 20370557 - Free Radic Res. 2010 May;44(5):479-96 19010871 - Clin Cancer Res. 2008 Nov 15;14(22):7526-34 11139407 - Biochem J. 2001 Jan 15;353(Pt 2):411-6 11569916 - IUBMB Life. 2001 Apr;51(4):223-30 24955214 - Genes Cancer. 2014 Apr;5(1-2):15-21 2834821 - Science. 1988 Apr 29;240(4852):640-2 9548949 - Biochemistry. 1998 Apr 21;37(16):5633-42 16507366 - Mol Cell. 2006 Mar 3;21(5):689-700 16914587 - Clin Cancer Res. 2006 Aug 15;12(16):4974-82 10927183 - Free Radic Biol Med. 2000 May 15;28(10):1571-6 15377225 - Annu Rev Plant Biol. 2004;55:373-99 15531919 - Oncogene. 2005 Jan 13;24(3):367-80 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 21434856 - Anticancer Agents Med Chem. 2011 Feb;11(2):191-201 20421486 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93 24292713 - J Clin Invest. 2014 Jan;124(1):117-28 21930909 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16375-80 17848967 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24 16287844 - Mol Cell Biol. 2005 Dec;25(23):10273-85 19228881 - FASEB J. 2009 Jul;23(7):2034-44 24448804 - J Biol Chem. 2014 Feb 28;289(9):5412-6 18978338 - Carcinogenesis. 2009 Jan;30(1):2-10 18258688 - Mol Endocrinol. 2008 May;22(5):1113-24 24094070 - Antioxid Redox Signal. 2014 Apr 1;20(10):1567-89 11752613 - Sci STKE. 2000 Oct 10;2000(53):pe1 17105724 - J Biol Chem. 2007 Jan 12;282(2):1183-92 22561706 - Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2209-22 21746850 - J Cell Biol. 2011 Jul 11;194(1):7-15 22064654 - Mol Cancer Res. 2012 Jan;10(1):40-51 19879846 - Cell. 2009 Oct 30;139(3):610-22 20446773 - Antioxid Redox Signal. 2010 Dec 1;13(11):1627-37 3747450 - Lab Invest. 1986 Sep;55(3):363-71 25651975 - Nat Commun. 2015;6:6053 23318435 - Oncogene. 2014 Jan 16;33(3):358-68 24509158 - Free Radic Biol Med. 2014 Apr;69:357-66 217531 - Cancer Res. 1979 Apr;39(4):1141-9 16887173 - Adv Enzyme Regul. 2006;46:113-40 17434122 - Mol Cell. 2007 Apr 13;26(1):1-14 14527285 - Annu Rev Microbiol. 2003;57:395-418 23784082 - Carcinogenesis. 2013 Nov;34(11):2655-63 25271376 - Elife. 2014;3. doi: 10.7554/eLife.02935 24494199 - Redox Biol. 2014;2:245-50 11014196 - Nature. 2000 Sep 21;407(6802):390-5 25659582 - Oncogene. 2015 Oct 8;34(41):5229-39 25634994 - Clin Cancer Res. 2015 Apr 1;21(7):1741-51 23332757 - Cell. 2013 Jan 17;152(1-2):224-35 9624118 - J Biol Chem. 1998 Jun 19;273(25):15366-72 21508971 - Nat Rev Cancer. 2011 May;11(5):325-37 23747014 - Mol Cell. 2013 Jul 25;51(2):236-48 24287781 - Nat Rev Drug Discov. 2013 Dec;12(12):931-47 19187004 - Antioxid Redox Signal. 2009 Jun;11(6):1373-414 11386269 - N Engl J Med. 2001 May 31;344(22):1688-700 6541229 - J Clin Invest. 1984 Oct;74(4):1398-403 19887599 - J Biomol Screen. 2009 Dec;14(10):1176-84 11488612 - Arch Biochem Biophys. 2001 Aug 15;392(2):349-53 11500508 - J Biol Chem. 2001 Oct 12;276(41):38084-9 15952898 - Annu Rev Biochem. 2005;74:563-93 24516391 - PLoS Genet. 2014 Feb;10(2):e1003974 18480265 - Proc Natl Acad Sci U S A. 2008 May 20;105(20):7147-52 20136512 - Antioxid Redox Signal. 2010 Oct;13(8):1205-16 20050630 - Biochemistry. 2010 Feb 9;49(5):835-42 24647101 - Nat Commun. 2014;5:3446 |
| References_xml | – volume: 276 start-page: 38084 year: 2001 end-page: 38089 ident: bib0425 article-title: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage publication-title: J. Biol. Chem. – volume: 2000 start-page: pe1 year: 2000 ident: bib0375 article-title: Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation publication-title: Sci. STKE – volume: 24 start-page: 367 year: 2004 end-page: 380 ident: bib0495 article-title: CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life publication-title: Oncogene – volume: 8 start-page: 813 year: 2007 end-page: 824 ident: bib0350 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell. Biol. – volume: 108 start-page: 16375 year: 2011 end-page: 16380 ident: bib0535 article-title: Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 245 year: 2014 end-page: 250 ident: bib0560 article-title: Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules publication-title: Redox Biol. – volume: 14 start-page: 1176 year: 2009 end-page: 1184 ident: bib0645 article-title: Identification and preliminary characterization of novel small molecules that inhibit growth of human lung adenocarcinoma cells publication-title: J. Biomol. Screen. – year: 2010 ident: bib0460 article-title: SOD1 is essential for the viability of DT40 cells and nuclear SOD1 functions as a guardian of genomic DNA publication-title: J. Nucleic Acids – volume: 12 start-page: 931 year: 2013 end-page: 947 ident: bib0650 article-title: Modulation of oxidative stress as an anticancer strategy publication-title: Nat. Rev. Drug Discov. – volume: 13 start-page: 1205 year: 2010 end-page: 1216 ident: bib0410 article-title: Structure, function, and mechanism of thioredoxin proteins publication-title: Antioxid. Redox Signal. – volume: 21 start-page: 689 year: 2006 end-page: 700 ident: bib0505 article-title: Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer publication-title: Mol. Cell – volume: 69 start-page: 357 year: 2014 end-page: 366 ident: bib0610 article-title: Extracellular superoxide dismutase suppresses hypoxia-inducible factor-1alpha in pancreatic cancer publication-title: Free Radic. Biol. Med. – volume: 37 start-page: 5633 year: 1998 end-page: 5642 ident: bib0385 article-title: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation publication-title: Biochemistry – volume: 13 start-page: 1627 year: 2010 end-page: 1637 ident: bib0515 article-title: Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance publication-title: Antioxid. Redox Signal. – volume: 23 start-page: 2034 year: 2009 end-page: 2044 ident: bib0440 article-title: Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents publication-title: FASEB J. – volume: 33 start-page: 358 year: 2014 end-page: 368 ident: bib0600 article-title: Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis publication-title: Oncogene – volume: 12 start-page: 4974 year: 2006 end-page: 4982 ident: bib0620 article-title: Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1 publication-title: Clin. Cancer Res. – volume: 5 start-page: 3446 year: 2014 ident: bib0470 article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance publication-title: Nat. Commun. – volume: 22 start-page: 1113 year: 2008 end-page: 1124 ident: bib0480 article-title: Effects of Cu/Zn superoxide dismutase on estrogen responsiveness and oxidative stress in human breast cancer cells publication-title: Mol. Endocrinol. – volume: 407 start-page: 390 year: 2000 end-page: 395 ident: bib0635 article-title: Superoxide dismutase as a target for the selective killing of cancer cells publication-title: Nature – volume: 30 start-page: 2 year: 2009 end-page: 10 ident: bib0405 article-title: Base excision repair of oxidative DNA damage and association with cancer and aging publication-title: Carcinogenesis – volume: 57 start-page: 395 year: 2003 end-page: 418 ident: bib0360 article-title: Pathways of oxidative damage publication-title: Annu. Rev. Microbiol. – volume: 25 start-page: 10273 year: 2005 end-page: 10285 ident: bib0465 article-title: Loss of SOD1 and LYS7 sensitizes publication-title: Mol. Cell Biol. – volume: 51 start-page: 223 year: 2001 end-page: 230 ident: bib0340 article-title: The peroxisome in oxidative stress publication-title: IUBMB Life – volume: 34 start-page: 2655 year: 2013 end-page: 2663 ident: bib0590 article-title: Activation of NF-kappaB by SOD2 promotes the aggressiveness of lung adenocarcinoma by modulating NKX2-1-mediated IKKbeta expression publication-title: Carcinogenesis – volume: 5 start-page: 15 year: 2014 end-page: 21 ident: bib0530 article-title: SOD1, an unexpected novel target for cancer therapy publication-title: Genes Cancer – volume: 11 start-page: 191 year: 2011 end-page: 201 ident: bib0550 article-title: Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis publication-title: Anticancer Agents Med. Chem. – year: 2014 ident: bib0565 article-title: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer publication-title: Elife – volume: 6 start-page: 6053 year: 2015 ident: bib0575 article-title: MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer publication-title: Nat. Commun. – volume: 27 start-page: 5135 year: 2009 ident: bib0630 article-title: A randomized, phase II study of ATN-224 in patients with biochemically relapsed, hormone-naive prostate cancer: a DOD/PCF Prostate Cancer Clinical Trials Consortium trial publication-title: ASCO Meeting Abstracts – volume: 55 start-page: 373 year: 2004 end-page: 399 ident: bib0330 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. – volume: 11 start-page: 325 year: 2011 end-page: 337 ident: bib0580 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer – volume: 273 start-page: 15366 year: 1998 end-page: 15372 ident: bib0390 article-title: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor publication-title: J. Biol. Chem. – volume: 152 start-page: 224 year: 2013 end-page: 235 ident: bib0455 article-title: SOD1 integrates signals from oxygen and glucose to repress respiration publication-title: Cell – volume: 353 start-page: 411 year: 2001 end-page: 416 ident: bib0365 article-title: Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space publication-title: Biochem. J. – volume: 21 start-page: 1741 year: 2015 end-page: 1751 ident: bib0605 article-title: Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma publication-title: Clin. Cancer Res. – volume: 49 start-page: 835 year: 2010 end-page: 842 ident: bib0370 article-title: Signaling functions of reactive oxygen species publication-title: Biochemistry – volume: 282 start-page: 1183 year: 2007 end-page: 1192 ident: bib0395 article-title: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes publication-title: J. Biol. Chem. – volume: 14 start-page: 7526 year: 2008 end-page: 7534 ident: bib0625 article-title: Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors publication-title: Clin. Cancer Res. – volume: 26 start-page: 1 year: 2007 end-page: 14 ident: bib0380 article-title: Hydrogen peroxide sensing and signaling publication-title: Mol. Cell – volume: 39 start-page: 1141 year: 1979 end-page: 1149 ident: bib0540 article-title: Role of superoxide dismutase in cancer: a review publication-title: Cancer Res. – volume: 52 start-page: 2209 year: 2012 end-page: 2222 ident: bib0545 article-title: Manganese superoxide dismutase regulation and cancer publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 1567 year: 2014 end-page: 1589 ident: bib0615 article-title: Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases publication-title: Antioxid. Redox Signal. – volume: 12 start-page: 685 year: 2012 end-page: 698 ident: bib0555 article-title: Mitochondria and cancer publication-title: Nat. Rev. Cancer – volume: 46 start-page: 113 year: 2006 end-page: 140 ident: bib0415 article-title: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species publication-title: Adv. Enzyme Regul. – volume: 139 start-page: 610 year: 2009 end-page: 622 ident: bib0475 article-title: Profiling the human protein–DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling publication-title: Cell – volume: 51 start-page: 236 year: 2013 end-page: 248 ident: bib0510 article-title: The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling publication-title: Mol. Cell – volume: 194 start-page: 7 year: 2011 end-page: 15 ident: bib0355 article-title: Signal transduction by reactive oxygen species publication-title: J. Cell Biol. – volume: 5 start-page: 3446 year: 2014 ident: bib0430 article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance publication-title: Nat. Commun. – volume: 107 start-page: 8788 year: 2010 end-page: 8793 ident: bib0500 article-title: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 124 start-page: 117 year: 2014 end-page: 128 ident: bib0520 article-title: Targeting SOD1 reduces experimental non-small-cell lung cancer publication-title: J. Clin. Invest. – volume: 74 start-page: 563 year: 2005 end-page: 593 ident: bib0490 article-title: Copper–zinc superoxide dismutase and amyotrophic lateral sclerosis publication-title: Ann. Rev. Biochem. – volume: 392 start-page: 349 year: 2001 end-page: 353 ident: bib0640 article-title: 2-Methoxyestradiol does not inhibit superoxide dismutase publication-title: Arch. Biochem. Biophys. – volume: 344 start-page: 1688 year: 2001 end-page: 1700 ident: bib0485 article-title: Amyotrophic lateral sclerosis publication-title: N. Eng. J. Med. – volume: 289 start-page: 5412 year: 2014 end-page: 5416 ident: bib0525 article-title: SOD2 to SOD1 switch in breast cancer publication-title: J. Biol. Chem. – volume: 44 start-page: 479 year: 2010 end-page: 496 ident: bib0335 article-title: Reactive oxygen species in cancer publication-title: Free Radic. Res. – volume: 10 start-page: 40 year: 2012 end-page: 51 ident: bib0595 article-title: Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis publication-title: Mol. Cancer Res. – volume: 11 start-page: 1373 year: 2009 end-page: 1414 ident: bib0345 article-title: Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function publication-title: Antioxid. Redox Signal. – volume: 74 start-page: 1398 year: 1984 end-page: 1403 ident: bib0435 article-title: Extracellular superoxide dismutase in human tissues and human cell lines publication-title: J. Clin. Invest. – volume: 55 start-page: 363 year: 1986 end-page: 371 ident: bib0420 article-title: Intracellular localization of the copper–zinc and manganese superoxide dismutases in rat liver parenchymal cells publication-title: Lab. Invest. – year: 2015 ident: bib0585 article-title: Mitochondrial SOD2 regulates epithelial–mesenchymal transition and cell populations defined by differential CD44 expression publication-title: Oncogene – volume: 28 start-page: 1571 year: 2000 end-page: 1576 ident: bib0445 article-title: Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase publication-title: Free Radic. Biol. Med. – volume: 240 start-page: 640 year: 1988 end-page: 642 ident: bib0400 article-title: Toxic DNA damage by hydrogen peroxide through the Fenton reaction publication-title: Science – volume: 10 start-page: e1003974 year: 2014 ident: bib0570 article-title: Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations publication-title: PLoS Genet. – volume: 105 start-page: 7147 year: 2008 end-page: 7152 ident: bib0450 article-title: Superoxide dismutase 1 (SOD1) is essential for H publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 685 year: 2012 ident: 10.1016/j.drudis.2015.10.001_bib0555 article-title: Mitochondria and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3365 – volume: 8 start-page: 813 year: 2007 ident: 10.1016/j.drudis.2015.10.001_bib0350 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm2256 – volume: 10 start-page: 40 year: 2012 ident: 10.1016/j.drudis.2015.10.001_bib0595 article-title: Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-11-0501 – volume: 14 start-page: 1176 year: 2009 ident: 10.1016/j.drudis.2015.10.001_bib0645 article-title: Identification and preliminary characterization of novel small molecules that inhibit growth of human lung adenocarcinoma cells publication-title: J. Biomol. Screen. doi: 10.1177/1087057109350919 – volume: 26 start-page: 1 year: 2007 ident: 10.1016/j.drudis.2015.10.001_bib0380 article-title: Hydrogen peroxide sensing and signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.03.016 – volume: 276 start-page: 38084 year: 2001 ident: 10.1016/j.drudis.2015.10.001_bib0425 article-title: A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M105296200 – volume: 11 start-page: 191 year: 2011 ident: 10.1016/j.drudis.2015.10.001_bib0550 article-title: Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis publication-title: Anticancer Agents Med. Chem. doi: 10.2174/187152011795255911 – volume: 39 start-page: 1141 year: 1979 ident: 10.1016/j.drudis.2015.10.001_bib0540 article-title: Role of superoxide dismutase in cancer: a review publication-title: Cancer Res. – volume: 289 start-page: 5412 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0525 article-title: SOD2 to SOD1 switch in breast cancer publication-title: J. Biol. Chem. doi: 10.1074/jbc.C113.526475 – volume: 37 start-page: 5633 year: 1998 ident: 10.1016/j.drudis.2015.10.001_bib0385 article-title: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation publication-title: Biochemistry doi: 10.1021/bi973035t – volume: 52 start-page: 2209 year: 2012 ident: 10.1016/j.drudis.2015.10.001_bib0545 article-title: Manganese superoxide dismutase regulation and cancer publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.03.009 – year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0565 article-title: Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer publication-title: Elife doi: 10.7554/eLife.02935.028 – volume: 2000 start-page: pe1 year: 2000 ident: 10.1016/j.drudis.2015.10.001_bib0375 article-title: Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation publication-title: Sci. STKE doi: 10.1126/stke.2000.53.pe1 – volume: 33 start-page: 358 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0600 article-title: Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis publication-title: Oncogene doi: 10.1038/onc.2012.582 – volume: 44 start-page: 479 year: 2010 ident: 10.1016/j.drudis.2015.10.001_bib0335 article-title: Reactive oxygen species in cancer publication-title: Free Radic. Res. doi: 10.3109/10715761003667554 – volume: 194 start-page: 7 year: 2011 ident: 10.1016/j.drudis.2015.10.001_bib0355 article-title: Signal transduction by reactive oxygen species publication-title: J. Cell Biol. doi: 10.1083/jcb.201102095 – volume: 21 start-page: 1741 year: 2015 ident: 10.1016/j.drudis.2015.10.001_bib0605 article-title: Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1959 – volume: 5 start-page: 3446 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0430 article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance publication-title: Nat. Commun. doi: 10.1038/ncomms4446 – volume: 55 start-page: 363 year: 1986 ident: 10.1016/j.drudis.2015.10.001_bib0420 article-title: Intracellular localization of the copper–zinc and manganese superoxide dismutases in rat liver parenchymal cells publication-title: Lab. Invest. – volume: 108 start-page: 16375 year: 2011 ident: 10.1016/j.drudis.2015.10.001_bib0535 article-title: Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1113554108 – volume: 5 start-page: 15 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0530 article-title: SOD1, an unexpected novel target for cancer therapy publication-title: Genes Cancer doi: 10.18632/genesandcancer.4 – volume: 51 start-page: 223 year: 2001 ident: 10.1016/j.drudis.2015.10.001_bib0340 article-title: The peroxisome in oxidative stress publication-title: IUBMB Life doi: 10.1080/152165401753311762 – year: 2015 ident: 10.1016/j.drudis.2015.10.001_bib0585 article-title: Mitochondrial SOD2 regulates epithelial–mesenchymal transition and cell populations defined by differential CD44 expression publication-title: Oncogene doi: 10.1038/onc.2014.449 – volume: 30 start-page: 2 year: 2009 ident: 10.1016/j.drudis.2015.10.001_bib0405 article-title: Base excision repair of oxidative DNA damage and association with cancer and aging publication-title: Carcinogenesis doi: 10.1093/carcin/bgn250 – volume: 13 start-page: 1205 year: 2010 ident: 10.1016/j.drudis.2015.10.001_bib0410 article-title: Structure, function, and mechanism of thioredoxin proteins publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3114 – volume: 23 start-page: 2034 year: 2009 ident: 10.1016/j.drudis.2015.10.001_bib0440 article-title: Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents publication-title: FASEB J. doi: 10.1096/fj.08-113571 – volume: 273 start-page: 15366 year: 1998 ident: 10.1016/j.drudis.2015.10.001_bib0390 article-title: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.25.15366 – volume: 152 start-page: 224 year: 2013 ident: 10.1016/j.drudis.2015.10.001_bib0455 article-title: SOD1 integrates signals from oxygen and glucose to repress respiration publication-title: Cell doi: 10.1016/j.cell.2012.11.046 – volume: 105 start-page: 7147 year: 2008 ident: 10.1016/j.drudis.2015.10.001_bib0450 article-title: Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709451105 – volume: 46 start-page: 113 year: 2006 ident: 10.1016/j.drudis.2015.10.001_bib0415 article-title: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species publication-title: Adv. Enzyme Regul. doi: 10.1016/j.advenzreg.2006.01.007 – volume: 353 start-page: 411 year: 2001 ident: 10.1016/j.drudis.2015.10.001_bib0365 article-title: Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space publication-title: Biochem. J. doi: 10.1042/bj3530411 – volume: 344 start-page: 1688 year: 2001 ident: 10.1016/j.drudis.2015.10.001_bib0485 article-title: Amyotrophic lateral sclerosis publication-title: N. Eng. J. Med. doi: 10.1056/NEJM200105313442207 – volume: 6 start-page: 6053 year: 2015 ident: 10.1016/j.drudis.2015.10.001_bib0575 article-title: MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer publication-title: Nat. Commun. doi: 10.1038/ncomms7053 – volume: 20 start-page: 1567 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0615 article-title: Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5000 – volume: 240 start-page: 640 year: 1988 ident: 10.1016/j.drudis.2015.10.001_bib0400 article-title: Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro publication-title: Science doi: 10.1126/science.2834821 – volume: 21 start-page: 689 year: 2006 ident: 10.1016/j.drudis.2015.10.001_bib0505 article-title: Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.01.013 – volume: 55 start-page: 373 year: 2004 ident: 10.1016/j.drudis.2015.10.001_bib0330 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 24 start-page: 367 year: 2004 ident: 10.1016/j.drudis.2015.10.001_bib0495 article-title: CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life publication-title: Oncogene doi: 10.1038/sj.onc.1208207 – volume: 12 start-page: 931 year: 2013 ident: 10.1016/j.drudis.2015.10.001_bib0650 article-title: Modulation of oxidative stress as an anticancer strategy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4002 – volume: 51 start-page: 236 year: 2013 ident: 10.1016/j.drudis.2015.10.001_bib0510 article-title: The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.003 – volume: 25 start-page: 10273 year: 2005 ident: 10.1016/j.drudis.2015.10.001_bib0465 article-title: Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.23.10273-10285.2005 – volume: 69 start-page: 357 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0610 article-title: Extracellular superoxide dismutase suppresses hypoxia-inducible factor-1alpha in pancreatic cancer publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.02.002 – volume: 34 start-page: 2655 year: 2013 ident: 10.1016/j.drudis.2015.10.001_bib0590 article-title: Activation of NF-kappaB by SOD2 promotes the aggressiveness of lung adenocarcinoma by modulating NKX2-1-mediated IKKbeta expression publication-title: Carcinogenesis doi: 10.1093/carcin/bgt220 – volume: 392 start-page: 349 year: 2001 ident: 10.1016/j.drudis.2015.10.001_bib0640 article-title: 2-Methoxyestradiol does not inhibit superoxide dismutase publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2001.2455 – volume: 11 start-page: 325 year: 2011 ident: 10.1016/j.drudis.2015.10.001_bib0580 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3038 – volume: 12 start-page: 4974 year: 2006 ident: 10.1016/j.drudis.2015.10.001_bib0620 article-title: Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-0171 – volume: 57 start-page: 395 year: 2003 ident: 10.1016/j.drudis.2015.10.001_bib0360 article-title: Pathways of oxidative damage publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.57.030502.090938 – volume: 10 start-page: e1003974 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0570 article-title: Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003974 – volume: 74 start-page: 563 year: 2005 ident: 10.1016/j.drudis.2015.10.001_bib0490 article-title: Copper–zinc superoxide dismutase and amyotrophic lateral sclerosis publication-title: Ann. Rev. Biochem. doi: 10.1146/annurev.biochem.72.121801.161647 – volume: 5 start-page: 3446 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0470 article-title: Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance publication-title: Nat. Commun. doi: 10.1038/ncomms4446 – volume: 282 start-page: 1183 year: 2007 ident: 10.1016/j.drudis.2015.10.001_bib0395 article-title: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603761200 – volume: 139 start-page: 610 year: 2009 ident: 10.1016/j.drudis.2015.10.001_bib0475 article-title: Profiling the human protein–DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling publication-title: Cell doi: 10.1016/j.cell.2009.08.037 – volume: 22 start-page: 1113 year: 2008 ident: 10.1016/j.drudis.2015.10.001_bib0480 article-title: Effects of Cu/Zn superoxide dismutase on estrogen responsiveness and oxidative stress in human breast cancer cells publication-title: Mol. Endocrinol. doi: 10.1210/me.2007-0381 – volume: 107 start-page: 8788 year: 2010 ident: 10.1016/j.drudis.2015.10.001_bib0500 article-title: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1003428107 – volume: 14 start-page: 7526 year: 2008 ident: 10.1016/j.drudis.2015.10.001_bib0625 article-title: Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-0315 – volume: 28 start-page: 1571 year: 2000 ident: 10.1016/j.drudis.2015.10.001_bib0445 article-title: Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(00)00280-X – volume: 407 start-page: 390 year: 2000 ident: 10.1016/j.drudis.2015.10.001_bib0635 article-title: Superoxide dismutase as a target for the selective killing of cancer cells publication-title: Nature doi: 10.1038/35030140 – volume: 124 start-page: 117 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0520 article-title: Targeting SOD1 reduces experimental non-small-cell lung cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI71714 – volume: 49 start-page: 835 year: 2010 ident: 10.1016/j.drudis.2015.10.001_bib0370 article-title: Signaling functions of reactive oxygen species publication-title: Biochemistry doi: 10.1021/bi9020378 – volume: 2 start-page: 245 year: 2014 ident: 10.1016/j.drudis.2015.10.001_bib0560 article-title: Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules publication-title: Redox Biol. doi: 10.1016/j.redox.2014.01.005 – year: 2010 ident: 10.1016/j.drudis.2015.10.001_bib0460 article-title: SOD1 is essential for the viability of DT40 cells and nuclear SOD1 functions as a guardian of genomic DNA publication-title: J. Nucleic Acids doi: 10.4061/2010/795946 – volume: 27 start-page: 5135 year: 2009 ident: 10.1016/j.drudis.2015.10.001_bib0630 article-title: A randomized, phase II study of ATN-224 in patients with biochemically relapsed, hormone-naive prostate cancer: a DOD/PCF Prostate Cancer Clinical Trials Consortium trial publication-title: ASCO Meeting Abstracts – volume: 11 start-page: 1373 year: 2009 ident: 10.1016/j.drudis.2015.10.001_bib0345 article-title: Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2331 – volume: 74 start-page: 1398 year: 1984 ident: 10.1016/j.drudis.2015.10.001_bib0435 article-title: Extracellular superoxide dismutase in human tissues and human cell lines publication-title: J. Clin. Invest. doi: 10.1172/JCI111550 – volume: 13 start-page: 1627 year: 2010 ident: 10.1016/j.drudis.2015.10.001_bib0515 article-title: Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3219 – reference: 20421486 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93 – reference: 20370557 - Free Radic Res. 2010 May;44(5):479-96 – reference: 11139407 - Biochem J. 2001 Jan 15;353(Pt 2):411-6 – reference: 23747014 - Mol Cell. 2013 Jul 25;51(2):236-48 – reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 – reference: 17434122 - Mol Cell. 2007 Apr 13;26(1):1-14 – reference: 24494199 - Redox Biol. 2014;2:245-50 – reference: 20811569 - J Nucleic Acids. 2010 Aug 05;2010:null – reference: 217531 - Cancer Res. 1979 Apr;39(4):1141-9 – reference: 25651975 - Nat Commun. 2015;6:6053 – reference: 15531919 - Oncogene. 2005 Jan 13;24(3):367-80 – reference: 19187004 - Antioxid Redox Signal. 2009 Jun;11(6):1373-414 – reference: 24516391 - PLoS Genet. 2014 Feb;10(2):e1003974 – reference: 6541229 - J Clin Invest. 1984 Oct;74(4):1398-403 – reference: 19228881 - FASEB J. 2009 Jul;23(7):2034-44 – reference: 10927183 - Free Radic Biol Med. 2000 May 15;28(10):1571-6 – reference: 24509158 - Free Radic Biol Med. 2014 Apr;69:357-66 – reference: 18480265 - Proc Natl Acad Sci U S A. 2008 May 20;105(20):7147-52 – reference: 20050630 - Biochemistry. 2010 Feb 9;49(5):835-42 – reference: 19879846 - Cell. 2009 Oct 30;139(3):610-22 – reference: 16287844 - Mol Cell Biol. 2005 Dec;25(23):10273-85 – reference: 19010871 - Clin Cancer Res. 2008 Nov 15;14(22):7526-34 – reference: 18978338 - Carcinogenesis. 2009 Jan;30(1):2-10 – reference: 17848967 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24 – reference: 2834821 - Science. 1988 Apr 29;240(4852):640-2 – reference: 20446773 - Antioxid Redox Signal. 2010 Dec 1;13(11):1627-37 – reference: 22561706 - Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2209-22 – reference: 16507366 - Mol Cell. 2006 Mar 3;21(5):689-700 – reference: 21434856 - Anticancer Agents Med Chem. 2011 Feb;11(2):191-201 – reference: 17105724 - J Biol Chem. 2007 Jan 12;282(2):1183-92 – reference: 9624118 - J Biol Chem. 1998 Jun 19;273(25):15366-72 – reference: 3747450 - Lab Invest. 1986 Sep;55(3):363-71 – reference: 24292713 - J Clin Invest. 2014 Jan;124(1):117-28 – reference: 20136512 - Antioxid Redox Signal. 2010 Oct;13(8):1205-16 – reference: 14527285 - Annu Rev Microbiol. 2003;57:395-418 – reference: 15377225 - Annu Rev Plant Biol. 2004;55:373-99 – reference: 11500508 - J Biol Chem. 2001 Oct 12;276(41):38084-9 – reference: 25634994 - Clin Cancer Res. 2015 Apr 1;21(7):1741-51 – reference: 11386269 - N Engl J Med. 2001 May 31;344(22):1688-700 – reference: 11014196 - Nature. 2000 Sep 21;407(6802):390-5 – reference: 16887173 - Adv Enzyme Regul. 2006;46:113-40 – reference: 11752613 - Sci STKE. 2000 Oct 10;2000(53):pe1 – reference: 24955214 - Genes Cancer. 2014 Apr;5(1-2):15-21 – reference: 24287781 - Nat Rev Drug Discov. 2013 Dec;12(12):931-47 – reference: 25271376 - Elife. 2014;3. doi: 10.7554/eLife.02935 – reference: 21746850 - J Cell Biol. 2011 Jul 11;194(1):7-15 – reference: 11488612 - Arch Biochem Biophys. 2001 Aug 15;392(2):349-53 – reference: 9548949 - Biochemistry. 1998 Apr 21;37(16):5633-42 – reference: 23318435 - Oncogene. 2014 Jan 16;33(3):358-68 – reference: 18258688 - Mol Endocrinol. 2008 May;22(5):1113-24 – reference: 15952898 - Annu Rev Biochem. 2005;74:563-93 – reference: 16914587 - Clin Cancer Res. 2006 Aug 15;12(16):4974-82 – reference: 21930909 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16375-80 – reference: 24448804 - J Biol Chem. 2014 Feb 28;289(9):5412-6 – reference: 23332757 - Cell. 2013 Jan 17;152(1-2):224-35 – reference: 23784082 - Carcinogenesis. 2013 Nov;34(11):2655-63 – reference: 19887599 - J Biomol Screen. 2009 Dec;14(10):1176-84 – reference: 22064654 - Mol Cancer Res. 2012 Jan;10(1):40-51 – reference: 25659582 - Oncogene. 2015 Oct 8;34(41):5229-39 – reference: 24094070 - Antioxid Redox Signal. 2014 Apr 1;20(10):1567-89 – reference: 24647101 - Nat Commun. 2014;5:3446 – reference: 11569916 - IUBMB Life. 2001 Apr;51(4):223-30 – reference: 21508971 - Nat Rev Cancer. 2011 May;11(5):325-37 |
| SSID | ssj0012956 |
| Score | 2.5771804 |
| SecondaryResourceType | review_article |
| Snippet | •Superoxide dismutases (SODs) have important regulatory functions in metabolism, signalling and transcription.•SODs are crucial for cancer cell growth,... Reactive oxygen species (ROS) have important roles in normal physiology and diseases, particularly cancer. Under normal physiological conditions, they... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 143 |
| SubjectTerms | Animals Antioxidants - metabolism Humans Neoplasms - metabolism Oxidation-Reduction Oxidative Stress - physiology Reactive Oxygen Species - metabolism Superoxide Dismutase - metabolism |
| Title | Expanding roles of superoxide dismutases in cell regulation and cancer |
| URI | https://dx.doi.org/10.1016/j.drudis.2015.10.001 https://www.ncbi.nlm.nih.gov/pubmed/26475962 https://www.proquest.com/docview/1760892804 https://pubmed.ncbi.nlm.nih.gov/PMC4724522 |
| Volume | 21 |
| WOSCitedRecordID | wos000369561100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5832 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012956 issn: 1359-6446 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoywEOCMprC1RGQr20qfJqbB-rslVBVbVCC1pOUew4bSqaXWU31fbfM2PntayqwoFLFCW2k_j7Mhk734wJ-cTdSOBnzsmOtHJCL_GcRKWJA85oJpVkKjXLdP44ZxcXfDIRozo9wdwsJ8CKgi-XYvZfoYZjADaGzv4D3G2jcAD2AXTYAuyw_Svgh8tZHaqCykGj1JhXmA58macaf8jcoAzb6LD2cdp-v7TL0Te6ZIU8KPtO6-eyusSKCuWe6K32lDcnV3ZqW-fLvLPw9ST0ty7O7NyoBiZ5ArdRfyx7Bc-q3PlZFf0pCK8_BaGt2eTMxG-t2FUb-bzCH2skPZuYac1423mE68O0rOCZUHZ3dGiUd16_OPT27MZgB74cw8WDuk9ZKzBsTm2QLR92wGJvHX8ZTr62P5h8GBc2kZRG7rd-UcwTXTdzn9OyPij5U1vbc1bGz8mzepRBjy07XpBHutgmT3u5J7fJ3sgmLb87oOMuBm9-QPfoqEtnfveSnLaEooZQdJrRjlC0IxTNC4qEoh2hKFSkllCvyPfT4fjkzKlX33BUyIOFozwuwPeWbpjCi8tCN4m8VAohOQvS1M20p7woy6I0UzAqDpSfyUSqIPC18PFfd_CabBbTQr8l1FfCla6OpM-jUEmRCFfzLE0ljJ8DEWUDEjTdG6s6NT2ukPIrbjSI17HFJ0Z88CjgMyBOW2tmU7M8UJ41yMW1e2ndxhgI-EDNjw3QMVhf7Mqk0NNqHnsscrnwuRsOyBsLfHsvDXnguiuUaAtgZvfVM0V-ZTK8hwwFEf7OvW2-I0-6F_E92VyUlf5AHqvbRT4vd8kGm_DdmvK_AU0KweM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+roles+of+superoxide+dismutases+in+cell+regulation+and+cancer&rft.jtitle=Drug+discovery+today&rft.au=Che%2C+Meixia&rft.au=Wang%2C+Ren&rft.au=Li%2C+Xiaoxing&rft.au=Wang%2C+Hui-Yun&rft.date=2016-01-01&rft.eissn=1878-5832&rft.volume=21&rft.issue=1&rft.spage=143&rft_id=info:doi/10.1016%2Fj.drudis.2015.10.001&rft_id=info%3Apmid%2F26475962&rft.externalDocID=26475962 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6446&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6446&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6446&client=summon |