Data-driven molecular modeling with the generalized Langevin equation

•Data-driven GLE approximation balances computational cost and accuracy.•Accuracy tunable by adjusting order of memory kernel approximation.•Approximate GLE predicts non-equilibrium properties, like autocorrelation, well. The complexity of molecular dynamics simulations necessitates dimension reduct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 418; s. 109633
Hlavní autoři: Grogan, Francesca, Lei, Huan, Li, Xiantao, Baker, Nathan A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Inc 01.10.2020
Elsevier Science Ltd
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Data-driven GLE approximation balances computational cost and accuracy.•Accuracy tunable by adjusting order of memory kernel approximation.•Approximate GLE predicts non-equilibrium properties, like autocorrelation, well. The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.
AbstractList The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.
The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.
•Data-driven GLE approximation balances computational cost and accuracy.•Accuracy tunable by adjusting order of memory kernel approximation.•Approximate GLE predicts non-equilibrium properties, like autocorrelation, well. The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The generalized Langevin equation (GLE) describes coarse-grained dynamics in reduced dimensions. In spite of playing a crucial role in non-equilibrium dynamics, the memory kernel of the GLE is often ignored because it is difficult to characterize and expensive to solve. To address these issues, we construct a data-driven rational approximation to the GLE. Building upon previous work leveraging the GLE to simulate simple systems, we extend these results to more complex molecules, whose many degrees of freedom and complicated dynamics require approximation methods. We demonstrate the effectiveness of our approximation by testing it against exact methods and comparing observables such as autocorrelation and transition rates.
ArticleNumber 109633
Author Grogan, Francesca
Li, Xiantao
Lei, Huan
Baker, Nathan A.
AuthorAffiliation a Pacific Northwest National Laboratory, Richland, WA 99352, United States
d Department of Mathematics, Pennsylvania State University, State College, PA 16801, United States
e Division of Applied Mathematics, Brown University, Providence, RI 02912, United States
c Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States
b Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, United States
AuthorAffiliation_xml – name: d Department of Mathematics, Pennsylvania State University, State College, PA 16801, United States
– name: e Division of Applied Mathematics, Brown University, Providence, RI 02912, United States
– name: b Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, United States
– name: a Pacific Northwest National Laboratory, Richland, WA 99352, United States
– name: c Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, United States
Author_xml – sequence: 1
  givenname: Francesca
  surname: Grogan
  fullname: Grogan, Francesca
  email: francesca.grogan@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States
– sequence: 2
  givenname: Huan
  surname: Lei
  fullname: Lei, Huan
  email: leihuan@msu.edu
  organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, United States
– sequence: 3
  givenname: Xiantao
  surname: Li
  fullname: Li, Xiantao
  email: xli@math.psu.edu
  organization: Department of Mathematics, Pennsylvania State University, State College, PA 16801, United States
– sequence: 4
  givenname: Nathan A.
  orcidid: 0000-0002-5892-6506
  surname: Baker
  fullname: Baker, Nathan A.
  email: nathan.baker@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States
BookMark eNp9UU1r3DAUFCWh2aT9Ab0ZeunFW31ZtigUSpp-wEIuyVnI0vOujFfaSPKG9tdX7oZCc8hJT7yZYd7MJTrzwQNC7wheE0zEx3E9msOaYrr8pWDsFVqVAde0JeIMrTCmpJZSkgt0mdKIMe4a3r1GF4zKhlLCV-jmq866ttEdwVf7MIGZJx3LZGFyfls9uryr8g6qLXiIenK_wVYb7bdwdL6Ch1lnF_wbdD7oKcHbp_cK3X-7ubv-UW9uv_-8_rKpDe9YrvuBmaHFIDVQPQjbdAb3vTRUCixEa2VP2GB6Ka0hjIPEdAChZV92Hci2Z1fo80n3MPd7sAZ8Lp7UIbq9jr9U0E79v_Fup7bhqFouOcVNEfjwJBDDwwwpq71LBqZJewhzUpRzLnDTsQX6_hl0DHP05bwF1S0BclxQ5IQyMaQUYfhnhmC1lKRGVUpSS0nqVFLhtM84xuW_ORbPbnqR-enEhBLy0UFUyTjwBqyLYLKywb3A_gMU-q1q
CitedBy_id crossref_primary_10_1016_j_cam_2024_115801
crossref_primary_10_1016_j_jcp_2024_113210
crossref_primary_10_1016_j_eswa_2024_124389
crossref_primary_10_1016_j_engfracmech_2022_108681
crossref_primary_10_1063_5_0289081
crossref_primary_10_1088_2632_072X_adbba8
crossref_primary_10_1007_s00397_023_01412_0
crossref_primary_10_1103_PhysRevE_111_054132
crossref_primary_10_1093_bioinformatics_btaf321
crossref_primary_10_1209_0295_5075_ac35ba
crossref_primary_10_1088_2632_2153_ad7ad7
crossref_primary_10_1103_PhysRevLett_134_147101
crossref_primary_10_1016_j_spa_2023_04_006
crossref_primary_10_1016_j_newton_2025_100138
crossref_primary_10_1103_PhysRevApplied_18_024078
crossref_primary_10_1016_j_jcp_2022_111332
crossref_primary_10_1016_j_jcp_2023_112626
crossref_primary_10_1137_20M138497X
crossref_primary_10_1063_5_0203832
crossref_primary_10_1016_j_physrep_2022_04_006
crossref_primary_10_1063_5_0149764
crossref_primary_10_1088_1402_4896_acfce5
Cites_doi 10.1021/acs.jctc.7b00274
10.1021/acs.energyfuels.9b01321
10.1063/1.5055573
10.1103/PhysRevA.31.1695
10.1073/pnas.1609587113
10.1002/9780470142639.ch2
10.1039/C8SM01579A
10.1002/jcc.20035
10.1016/j.jcp.2018.06.047
10.1007/s10955-006-9165-0
10.1016/0010-4655(95)00042-E
10.1016/j.commatsci.2018.05.029
10.2140/camcos.2016.11.187
10.1137/140981587
10.1063/1.434249
10.1063/1.2199530
10.1002/nme.2892
10.1007/BF01008729
10.1063/1.449379
10.1143/PTP.33.423
10.1122/1.3675625
10.1063/1.434317
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1016/j.polymer.2007.07.007
10.1063/1.4892412
10.1073/pnas.0902633106
10.1088/1367-2630/16/5/053032
10.1007/s10955-020-02499-y
10.1093/comjnl/12.4.393
10.1088/0034-4885/29/1/306
10.1063/1.464397
10.1063/1.4967936
10.1016/j.cma.2019.03.014
10.1063/1.5003467
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier Science Ltd. Oct 1, 2020
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Oct 1, 2020
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1016/j.jcp.2020.109633
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID PMC7494205
10_1016_j_jcp_2020_109633
S0021999120304071
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c483t-bf3cf70e9ae2af6d58c0bb9c2960667d9b13fcb99dc134e902fe6a9b6678e97b3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561583600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Tue Sep 30 16:11:29 EDT 2025
Sun Sep 28 11:00:40 EDT 2025
Sun Nov 09 05:31:29 EST 2025
Sat Nov 29 03:10:28 EST 2025
Tue Nov 18 20:51:51 EST 2025
Fri Feb 23 02:46:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Molecular dynamics
Coarse-grained models
Dimension reduction
Generalized Langevin equation
Data-driven parametrization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-bf3cf70e9ae2af6d58c0bb9c2960667d9b13fcb99dc134e902fe6a9b6678e97b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5892-6506
OpenAccessLink https://doi.org/10.1016/j.jcp.2020.109633
PMID 32952214
PQID 2448952240
PQPubID 2047462
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7494205
proquest_miscellaneous_2444605835
proquest_journals_2448952240
crossref_primary_10_1016_j_jcp_2020_109633
crossref_citationtrail_10_1016_j_jcp_2020_109633
elsevier_sciencedirect_doi_10_1016_j_jcp_2020_109633
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Lee, Ahn, Darve (br0300) 2019; 150
Lei, Li, Gao, Stinis, Baker (br0050) 2019; 350
Ma, Wang (br0260) 2018
Zwanzig (br0080) 1973; 9
Turq, Lantelme, Friedman (br0100) 1977; 66
Hudson, Li (br0350) 2018
Zhao, Han, Li, Zhu, Tao, Guo (br0060) 2019; 33
Adelman (br0090) 2007
Lei, Caswell, Karniadakis (br0190) 2010; 81
Kubo (br0230) 1966; 29
Linz (br0330) 1969; 12
Wang, Wolf, Caldwell, Kollman, Case (br0380) 2004; 25
Hoover (br0390) 1985; 31
Mori (br0070) 1965; 33
Guàrdia, Padró (br0180) 1985; 83
Córdoba, Indei, Schieber (br0110) 2012; 56
Razi, Narayan, Kirby, Bedrov (br0040) 2018; 152
Darve, Solomon, Kia (br0150) 2009; 106
Lei, Baker, Li (br0220) 2016; 113
Russo, Durán-Olivencia, Kevrekidis, Kalliadasis (br0270) 2019
Lange, Grubmüller (br0310) 2006; 124
Hess, Bekker, Berendsen, Fraaije (br0410) 1997; 18
Démery, Bénichou, Jacquin (br0120) 2014; 16
Chen, Li, Liu (br0320) 2014; 141
Lu, Lin, Chorin (br0250) 2016; 11
Zhu, Dominy, Venturi (br0210) 2018; 59
Lin, Lu (br0240) 2019
Zhu, Venturi (br0280) 2018; 372
Zhu, Venturi (br0290) 2020
Darden, York, Pedersen (br0400) 1993; 98
Gubskaya, Kholodovych, Knight, Kohn, Welsh (br0010) 2007; 48
Zhu, Venturi (br0360) 2020
Berendsen, van der Spoel, van Drunen (br0370) 1995; 91
Nance (br0020) 2015
Shugard, Tully, Nitzan (br0200) 1977; 66
Lei, Yang, Zheng, Lin, Baker (br0030) 2015; 13
Ariel, Vanden-Eijnden (br0140) 2007; 126
Davies (br0340) 2010
Ma, Li, Liu (br0420) 2016; 145
Jung, Hanke, Schmid (br0170) 2017; 13
Li (br0160) 2010; 83
Wu, Yu (br0130) 2018; 14
Lei (10.1016/j.jcp.2020.109633_br0220) 2016; 113
Lange (10.1016/j.jcp.2020.109633_br0310) 2006; 124
Razi (10.1016/j.jcp.2020.109633_br0040) 2018; 152
Hudson (10.1016/j.jcp.2020.109633_br0350)
Wu (10.1016/j.jcp.2020.109633_br0130) 2018; 14
Linz (10.1016/j.jcp.2020.109633_br0330) 1969; 12
Lu (10.1016/j.jcp.2020.109633_br0250) 2016; 11
Zhu (10.1016/j.jcp.2020.109633_br0360)
Gubskaya (10.1016/j.jcp.2020.109633_br0010) 2007; 48
Lei (10.1016/j.jcp.2020.109633_br0050) 2019; 350
Wang (10.1016/j.jcp.2020.109633_br0380) 2004; 25
Hoover (10.1016/j.jcp.2020.109633_br0390) 1985; 31
Shugard (10.1016/j.jcp.2020.109633_br0200) 1977; 66
Hess (10.1016/j.jcp.2020.109633_br0410) 1997; 18
Adelman (10.1016/j.jcp.2020.109633_br0090) 2007
Darve (10.1016/j.jcp.2020.109633_br0150) 2009; 106
Démery (10.1016/j.jcp.2020.109633_br0120) 2014; 16
Guàrdia (10.1016/j.jcp.2020.109633_br0180) 1985; 83
Córdoba (10.1016/j.jcp.2020.109633_br0110) 2012; 56
Zwanzig (10.1016/j.jcp.2020.109633_br0080) 1973; 9
Darden (10.1016/j.jcp.2020.109633_br0400) 1993; 98
Ma (10.1016/j.jcp.2020.109633_br0260)
Davies (10.1016/j.jcp.2020.109633_br0340) 2010
Lee (10.1016/j.jcp.2020.109633_br0300) 2019; 150
Lin (10.1016/j.jcp.2020.109633_br0240)
Zhu (10.1016/j.jcp.2020.109633_br0210) 2018; 59
Mori (10.1016/j.jcp.2020.109633_br0070) 1965; 33
Berendsen (10.1016/j.jcp.2020.109633_br0370) 1995; 91
Zhao (10.1016/j.jcp.2020.109633_br0060) 2019; 33
Li (10.1016/j.jcp.2020.109633_br0160) 2010; 83
Zhu (10.1016/j.jcp.2020.109633_br0280) 2018; 372
Lei (10.1016/j.jcp.2020.109633_br0030) 2015; 13
Jung (10.1016/j.jcp.2020.109633_br0170) 2017; 13
Ariel (10.1016/j.jcp.2020.109633_br0140) 2007; 126
Lei (10.1016/j.jcp.2020.109633_br0190) 2010; 81
Chen (10.1016/j.jcp.2020.109633_br0320) 2014; 141
Turq (10.1016/j.jcp.2020.109633_br0100) 1977; 66
Ma (10.1016/j.jcp.2020.109633_br0420) 2016; 145
Kubo (10.1016/j.jcp.2020.109633_br0230) 1966; 29
Zhu (10.1016/j.jcp.2020.109633_br0290) 2020
Nance (10.1016/j.jcp.2020.109633_br0020) 2015
Russo (10.1016/j.jcp.2020.109633_br0270)
References_xml – volume: 126
  start-page: 43
  year: 2007
  end-page: 73
  ident: br0140
  article-title: Testing transition state theory on Kac-Zwanzig model
  publication-title: J. Stat. Phys.
– volume: 145
  year: 2016
  ident: br0420
  article-title: The derivation and approximation of coarse-grained dynamics from Langevin dynamics
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 185
  year: 2012
  end-page: 212
  ident: br0110
  article-title: Elimination of inertia from a generalized Langevin equation: applications to microbead rheology modeling and data analysis
  publication-title: J. Rheol.
– volume: 106
  start-page: 10884
  year: 2009
  end-page: 10889
  ident: br0150
  article-title: Computing generalized Langevin equations and generalized Fokker-Planck equations
  publication-title: Proc. Natl. Acad. Sci.
– volume: 150
  year: 2019
  ident: br0300
  article-title: The multi-dimensional generalized Langevin equation for conformational motion of proteins
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 2481
  year: 2017
  end-page: 2488
  ident: br0170
  article-title: Iterative reconstruction of memory kernels
  publication-title: J. Chem. Theory Comput.
– volume: 33
  start-page: 423
  year: 1965
  end-page: 455
  ident: br0070
  article-title: Transport collective motion, and Brownian motion
  publication-title: Prog. Theor. Phys.
– volume: 13
  start-page: 1327
  year: 2015
  end-page: 1353
  ident: br0030
  article-title: Constructing surrogate models of complex systems with enhanced sparsity: quantifying the influence of conformational uncertainty in biomolecular solvation
  publication-title: SIAM Multiscale Model. Simul.
– year: 2019
  ident: br0270
  article-title: Deep learning as closure for irreversible processes: a data-driven generalized Langevin equation
– year: 2018
  ident: br0260
  article-title: Model reduction with memory and the machine learning of dynamical systems
– start-page: 143
  year: 2007
  end-page: 253
  ident: br0090
  article-title: Generalized Langevin equations and many-body problems in chemical dynamics
  publication-title: Advances in Chemical Physics
– year: 2015
  ident: br0020
  article-title: Investigating Molecular Dynamics with Sparse Grid Surrogate Models
– volume: 83
  start-page: 986
  year: 2010
  end-page: 997
  ident: br0160
  article-title: A coarse-grained molecular dynamics model for crystalline solids
  publication-title: Int. J. Numer. Methods Eng.
– volume: 12
  start-page: 393
  year: 1969
  end-page: 397
  ident: br0330
  article-title: Numerical methods for Volterra integral equations of the first kind
  publication-title: Comput. J.
– volume: 29
  start-page: 255
  year: 1966
  end-page: 284
  ident: br0230
  article-title: The fluctuation-dissipation theorem
  publication-title: Rep. Prog. Phys.
– volume: 59
  year: 2018
  ident: br0210
  article-title: On the estimation of the Mori-Zwanzig memory integral
  publication-title: J. Math. Phys.
– volume: 113
  start-page: 14183
  year: 2016
  end-page: 14188
  ident: br0220
  article-title: Data-driven parameterization of the generalized Langevin equation
  publication-title: Proc. Natl. Acad. Sci.
– year: 2018
  ident: br0350
  article-title: Coarse-graining of overdamped Langevin dynamics via the Mori-Zwanzig formalism
– volume: 33
  start-page: 7176
  year: 2019
  end-page: 7187
  ident: br0060
  article-title: Comparison of RP-3 pyrolysis reactions between surrogates and 45-component model by ReaxFF molecular dynamics simulations
  publication-title: Energy Fuels
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  ident: br0400
  article-title: Particle mesh Ewald: an
  publication-title: J. Chem. Phys.
– volume: 48
  start-page: 5788
  year: 2007
  end-page: 5801
  ident: br0010
  article-title: Prediction of fibrinogen adsorption for biodegradable polymers: integration of molecular dynamics and surrogate modeling
  publication-title: Polymer
– volume: 91
  start-page: 43
  year: 1995
  end-page: 56
  ident: br0370
  article-title: GROMACS: a message-passing parallel molecular dynamics implementation
  publication-title: Comput. Phys. Commun.
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  ident: br0380
  article-title: Development and testing of a general AMBER force field
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 215
  year: 1973
  end-page: 220
  ident: br0080
  article-title: Nonlinear generalized Langevin equations
  publication-title: J. Stat. Phys.
– volume: 124
  year: 2006
  ident: br0310
  article-title: Collective Langevin dynamics of conformational motions in proteins
  publication-title: J. Chem. Phys.
– volume: 350
  start-page: 199
  year: 2019
  end-page: 227
  ident: br0050
  article-title: A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent randomness
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 66
  start-page: 2534
  year: 1977
  end-page: 2544
  ident: br0200
  article-title: Dynamics of gas-solid interactions: calculations of energy transfer and sticking
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: br0390
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
– volume: 11
  start-page: 187
  year: 2016
  end-page: 216
  ident: br0250
  article-title: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems
  publication-title: Commun. Appl. Math. Comput. Sci.
– volume: 14
  start-page: 9910
  year: 2018
  end-page: 9922
  ident: br0130
  article-title: Adhesion of a polymer-grafted nanoparticle to cells explored using generalized Langevin dynamics
  publication-title: Soft Matter
– volume: 372
  start-page: 694
  year: 2018
  end-page: 718
  ident: br0280
  article-title: Faber approximation of the Mori-Zwanzig equation
  publication-title: J. Comput. Phys.
– volume: 83
  start-page: 1917
  year: 1985
  end-page: 1920
  ident: br0180
  article-title: Generalized Langevin dynamics simulation of interacting particles
  publication-title: J. Chem. Phys.
– volume: 66
  start-page: 3039
  year: 1977
  end-page: 3044
  ident: br0100
  article-title: Brownian dynamics: its application to ionic solutions
  publication-title: J. Chem. Phys.
– volume: 81
  year: 2010
  ident: br0190
  article-title: Direct construction of mesoscopic models from microscopic simulations
  publication-title: Phys. Rev. E
– volume: 16
  year: 2014
  ident: br0120
  article-title: Generalized Langevin equations for a driven tracer in dense soft colloids: construction and applications
  publication-title: New J. Phys.
– year: 2020
  ident: br0290
  article-title: Generalized Langevin equations for systems with local interactions
  publication-title: J. Stat. Phys.
– volume: 152
  start-page: 125
  year: 2018
  end-page: 133
  ident: br0040
  article-title: Fast predictive models based on multi-fidelity sampling of properties in molecular dynamics simulations
  publication-title: Comput. Mater. Sci.
– year: 2019
  ident: br0240
  article-title: Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism
– volume: 141
  year: 2014
  ident: br0320
  article-title: Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules
  publication-title: J. Chem. Phys.
– year: 2010
  ident: br0340
  article-title: Integral Transforms and Their Applications
– year: 2020
  ident: br0360
  article-title: Hypoellipticity and the Mori-Zwanzig formulation of stochastic differential equations
– volume: 18
  year: 1997
  ident: br0410
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
– volume: 13
  start-page: 2481
  issue: 6
  year: 2017
  ident: 10.1016/j.jcp.2020.109633_br0170
  article-title: Iterative reconstruction of memory kernels
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00274
– volume: 33
  start-page: 7176
  issue: 8
  year: 2019
  ident: 10.1016/j.jcp.2020.109633_br0060
  article-title: Comparison of RP-3 pyrolysis reactions between surrogates and 45-component model by ReaxFF molecular dynamics simulations
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b01321
– volume: 150
  issue: 17
  year: 2019
  ident: 10.1016/j.jcp.2020.109633_br0300
  article-title: The multi-dimensional generalized Langevin equation for conformational motion of proteins
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5055573
– volume: 31
  start-page: 1695
  issue: 3
  year: 1985
  ident: 10.1016/j.jcp.2020.109633_br0390
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 113
  start-page: 14183
  issue: 50
  year: 2016
  ident: 10.1016/j.jcp.2020.109633_br0220
  article-title: Data-driven parameterization of the generalized Langevin equation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1609587113
– start-page: 143
  year: 2007
  ident: 10.1016/j.jcp.2020.109633_br0090
  article-title: Generalized Langevin equations and many-body problems in chemical dynamics
  doi: 10.1002/9780470142639.ch2
– volume: 14
  start-page: 9910
  issue: 48
  year: 2018
  ident: 10.1016/j.jcp.2020.109633_br0130
  article-title: Adhesion of a polymer-grafted nanoparticle to cells explored using generalized Langevin dynamics
  publication-title: Soft Matter
  doi: 10.1039/C8SM01579A
– volume: 25
  start-page: 1157
  issue: 9
  year: 2004
  ident: 10.1016/j.jcp.2020.109633_br0380
  article-title: Development and testing of a general AMBER force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 372
  start-page: 694
  year: 2018
  ident: 10.1016/j.jcp.2020.109633_br0280
  article-title: Faber approximation of the Mori-Zwanzig equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.06.047
– volume: 126
  start-page: 43
  issue: 1
  year: 2007
  ident: 10.1016/j.jcp.2020.109633_br0140
  article-title: Testing transition state theory on Kac-Zwanzig model
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-006-9165-0
– volume: 91
  start-page: 43
  issue: 1–3
  year: 1995
  ident: 10.1016/j.jcp.2020.109633_br0370
  article-title: GROMACS: a message-passing parallel molecular dynamics implementation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00042-E
– volume: 152
  start-page: 125
  year: 2018
  ident: 10.1016/j.jcp.2020.109633_br0040
  article-title: Fast predictive models based on multi-fidelity sampling of properties in molecular dynamics simulations
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.05.029
– volume: 11
  start-page: 187
  issue: 2
  year: 2016
  ident: 10.1016/j.jcp.2020.109633_br0250
  article-title: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2016.11.187
– volume: 13
  start-page: 1327
  issue: 4
  year: 2015
  ident: 10.1016/j.jcp.2020.109633_br0030
  article-title: Constructing surrogate models of complex systems with enhanced sparsity: quantifying the influence of conformational uncertainty in biomolecular solvation
  publication-title: SIAM Multiscale Model. Simul.
  doi: 10.1137/140981587
– volume: 66
  start-page: 2534
  issue: 6
  year: 1977
  ident: 10.1016/j.jcp.2020.109633_br0200
  article-title: Dynamics of gas-solid interactions: calculations of energy transfer and sticking
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434249
– ident: 10.1016/j.jcp.2020.109633_br0270
– volume: 124
  issue: 21
  year: 2006
  ident: 10.1016/j.jcp.2020.109633_br0310
  article-title: Collective Langevin dynamics of conformational motions in proteins
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2199530
– volume: 83
  start-page: 986
  issue: 8–9
  year: 2010
  ident: 10.1016/j.jcp.2020.109633_br0160
  article-title: A coarse-grained molecular dynamics model for crystalline solids
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2892
– volume: 9
  start-page: 215
  issue: 3
  year: 1973
  ident: 10.1016/j.jcp.2020.109633_br0080
  article-title: Nonlinear generalized Langevin equations
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01008729
– volume: 81
  issue: 2
  year: 2010
  ident: 10.1016/j.jcp.2020.109633_br0190
  article-title: Direct construction of mesoscopic models from microscopic simulations
  publication-title: Phys. Rev. E
– volume: 83
  start-page: 1917
  issue: 4
  year: 1985
  ident: 10.1016/j.jcp.2020.109633_br0180
  article-title: Generalized Langevin dynamics simulation of interacting particles
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449379
– volume: 33
  start-page: 423
  issue: 3
  year: 1965
  ident: 10.1016/j.jcp.2020.109633_br0070
  article-title: Transport collective motion, and Brownian motion
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.33.423
– volume: 56
  start-page: 185
  issue: 1
  year: 2012
  ident: 10.1016/j.jcp.2020.109633_br0110
  article-title: Elimination of inertia from a generalized Langevin equation: applications to microbead rheology modeling and data analysis
  publication-title: J. Rheol.
  doi: 10.1122/1.3675625
– ident: 10.1016/j.jcp.2020.109633_br0350
– volume: 66
  start-page: 3039
  issue: 7
  year: 1977
  ident: 10.1016/j.jcp.2020.109633_br0100
  article-title: Brownian dynamics: its application to ionic solutions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434317
– year: 2010
  ident: 10.1016/j.jcp.2020.109633_br0340
– volume: 18
  issue: 12
  year: 1997
  ident: 10.1016/j.jcp.2020.109633_br0410
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 48
  start-page: 5788
  issue: 19
  year: 2007
  ident: 10.1016/j.jcp.2020.109633_br0010
  article-title: Prediction of fibrinogen adsorption for biodegradable polymers: integration of molecular dynamics and surrogate modeling
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.07.007
– year: 2015
  ident: 10.1016/j.jcp.2020.109633_br0020
– volume: 141
  issue: 6
  year: 2014
  ident: 10.1016/j.jcp.2020.109633_br0320
  article-title: Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4892412
– volume: 106
  start-page: 10884
  issue: 27
  year: 2009
  ident: 10.1016/j.jcp.2020.109633_br0150
  article-title: Computing generalized Langevin equations and generalized Fokker-Planck equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0902633106
– volume: 16
  issue: 5
  year: 2014
  ident: 10.1016/j.jcp.2020.109633_br0120
  article-title: Generalized Langevin equations for a driven tracer in dense soft colloids: construction and applications
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/5/053032
– year: 2020
  ident: 10.1016/j.jcp.2020.109633_br0290
  article-title: Generalized Langevin equations for systems with local interactions
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-020-02499-y
– volume: 12
  start-page: 393
  issue: 4
  year: 1969
  ident: 10.1016/j.jcp.2020.109633_br0330
  article-title: Numerical methods for Volterra integral equations of the first kind
  publication-title: Comput. J.
  doi: 10.1093/comjnl/12.4.393
– volume: 29
  start-page: 255
  issue: 1
  year: 1966
  ident: 10.1016/j.jcp.2020.109633_br0230
  article-title: The fluctuation-dissipation theorem
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/29/1/306
– ident: 10.1016/j.jcp.2020.109633_br0260
– volume: 98
  start-page: 10089
  issue: 12
  year: 1993
  ident: 10.1016/j.jcp.2020.109633_br0400
  article-title: Particle mesh Ewald: an N⋅log⁡(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– ident: 10.1016/j.jcp.2020.109633_br0240
– ident: 10.1016/j.jcp.2020.109633_br0360
– volume: 145
  issue: 20
  year: 2016
  ident: 10.1016/j.jcp.2020.109633_br0420
  article-title: The derivation and approximation of coarse-grained dynamics from Langevin dynamics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4967936
– volume: 350
  start-page: 199
  issn: 0045-7825
  year: 2019
  ident: 10.1016/j.jcp.2020.109633_br0050
  article-title: A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent randomness
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.03.014
– volume: 59
  issue: 10
  year: 2018
  ident: 10.1016/j.jcp.2020.109633_br0210
  article-title: On the estimation of the Mori-Zwanzig memory integral
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5003467
SSID ssj0008548
Score 2.535006
Snippet •Data-driven GLE approximation balances computational cost and accuracy.•Accuracy tunable by adjusting order of memory kernel approximation.•Approximate GLE...
The complexity of molecular dynamics simulations necessitates dimension reduction and coarse-graining techniques to enable tractable computation. The...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109633
SubjectTerms Approximation
Coarse-grained models
Complexity
Computational physics
Data-driven parametrization
Dimension reduction
Generalized Langevin equation
Granulation
Mathematical analysis
Molecular dynamics
Title Data-driven molecular modeling with the generalized Langevin equation
URI https://dx.doi.org/10.1016/j.jcp.2020.109633
https://www.proquest.com/docview/2448952240
https://www.proquest.com/docview/2444605835
https://pubmed.ncbi.nlm.nih.gov/PMC7494205
Volume 418
WOSCitedRecordID wos000561583600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdYx4HL-BYdYwoS4gAKShOnto8TdHyoKhw6KTfLdpzRCtKuH9PEX8_zV5IyMY0Dl6iynTTy--X5956f30PoVVJqmhNGYpFWKsYSzB0JKy1YKVQPWF5qXAlbbIJMJrQo2DdfbXNtywmQuqZXV2z5X0UNbSBsc3T2H8TdPBQa4DcIHa4gdrjeSvAfxEbE5cposbc_Q_FbV_GmdbwCOM5dwunZL6CcY3PE4NJkD7nYtqK6zlmVrQER_IfOK9KQ8o-rxblo2DDonzYKaKxdcextJwLIthSAzo1YtP5UH-QxsS5972j1TgmwQEN4W3tIYBAb7tlVtNhp2mtK2_kP5u_myiQQTW2Kq6FLj7GbIHvylZ-ejcd8Oiqmr5cXsakdZvbYfSGVPbSfkpzRHto_-TwqvjQrMs2xW5H9S4XdbRvn98e__o2fdOyP3ejZDh2ZPkAHXibRiZP_Q3RH14_QfW9TRF5jrx-jUQcOUQOHKMAhMnCIAA5RBw5RgEMU4PAEnZ2Opu8_xb50RqwwzTaxrDJVkUQzoVNRDcucqkRKplJrsJKSyUFWKclYqQYZ1ixJKz0UTEIf1YzI7Cnq1YtaP0NRBTRK60zmMB4zTKROyVBTqrCoclySPkrChHHl88qb8iY_eAggnHOYY27mmLs57qM3zS1Ll1TlpsE4SIF7VujYHgf83HTbUZAY91_nmgOXpSw3LLaPXjbdoFDNLpmo9WJrx9hYgSzvI7Ij6eZdTUr23Z569t2mZicwQ2mSH97i6c_RvfbLOUK9zWqrX6C76nIzW6-O0R4p6LEH8m9WeLDI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+molecular+modeling+with+the+generalized+Langevin+equation&rft.jtitle=Journal+of+computational+physics&rft.au=Grogan%2C+Francesca&rft.au=Lei%2C+Huan&rft.au=Li%2C+Xiantao&rft.au=Baker%2C+Nathan+A&rft.date=2020-10-01&rft.issn=0021-9991&rft.volume=418&rft_id=info:doi/10.1016%2Fj.jcp.2020.109633&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon